diff --git a/src/utils/matlab/vtl/kf_prototype_clk_d.m b/src/utils/matlab/vtl/kf_prototype_clk_d.m index 3b8d53eb9..2ee938376 100644 --- a/src/utils/matlab/vtl/kf_prototype_clk_d.m +++ b/src/utils/matlab/vtl/kf_prototype_clk_d.m @@ -126,17 +126,17 @@ for t=2:length(navSolution.RX_time) rhoDot_pri(chan,t)=(sat_velX(chan,t)-xDot_u)*a_x(chan,t)... +(sat_velY(chan,t)-yDot_u)*a_y(chan,t)... - +(sat_velZ(chan,t)-zDot_u)*a_z(chan,t); + +(sat_velZ(chan,t)-zDot_u)*a_z(chan,t)+cdeltatDot_u(t); end for chan=1:5 % Measurement matrix H assembling % It has st_nmbr columns (st_nmbr states) and 2*NSat rows (NSat psudorange error;NSat pseudo range rate error) kf_H(chan, 1) = a_x(chan,t); kf_H(chan, 2) = a_y(chan,t); kf_H(chan, 3) = a_z(chan,t); kf_H(chan, 7) = 1.0; kf_H(chan+sat_number, 4) = a_x(chan,t); kf_H(chan+sat_number, 5) = a_y(chan,t); kf_H(chan+sat_number, 6) = a_z(chan,t); kf_H(chan+sat_number, 8) = 1.0; - kf_H(chan+sat_number, 9) = kf_dt; + kf_H(chan+sat_number, 9) = 0.0; end - % unobsv(t) = length(kf_F) - rank(obsv(kf_F,kf_H)); + unobsv(t) = st_nmbr - rank(obsv(kf_F,kf_H)); % !!!! Limitaciones % obsv no se recomienda para el diseño de control, ya que calcular el rango de la matriz de observabilidad % no se recomienda para las pruebas de observabilidad. Ob será numéricamente singular para la mayoría de los @@ -145,7 +145,7 @@ for t=2:length(navSolution.RX_time) % Kalman estimation (measurement update) for chan=1:5 % Measurement matrix H assembling kf_yerr(chan,t)=c_pr_m(chan,t)-sat_prg_m(chan,t); - kf_yerr(chan+sat_number,t)=(sat_dopp_hz(chan,t)*Lambda_GPS_L1+cdeltatDot_u(t)+kf_dt*d_cdeltatDot_u(t))-rhoDot_pri(chan,t); + kf_yerr(chan+sat_number,t)=(sat_dopp_hz(chan,t)*Lambda_GPS_L1+cdeltatDot_u(t)+d_cdeltatDot_u(t-1)+d_cdeltatDot_u(t)*kf_dt)-rhoDot_pri(chan,t); end % DOUBLES DIFFERENCES @@ -184,23 +184,6 @@ for t=2:length(navSolution.RX_time) cdeltatDot_u_g=corr_kf_state(8,t); d_cdeltatDot_u_g=corr_kf_state(9,t); -% for chan=1:5 %neccesary quantities -% d(chan)=(sat_posX_m(chan,t)-x_u)^2; -% d(chan)=d(chan)+(sat_posY_m(chan,t)-y_u)^2; -% d(chan)=d(chan)+(sat_posZ_m(chan,t)-z_u)^2; -% d(chan)=sqrt(d(chan)); -% -% c_pr_m(chan,t)=d(chan)+cdeltat_u_g; -% -% a_x(chan,t)=-(sat_posX_m(chan,t)-x_u)/d(chan); -% a_y(chan,t)=-(sat_posY_m(chan,t)-y_u)/d(chan); -% a_z(chan,t)=-(sat_posZ_m(chan,t)-z_u)/d(chan); -% -% rhoDot_pri(chan,t)=(sat_velX(chan,t)-xDot_u)*a_x(chan,t)... -% +(sat_velY(chan,t)-yDot_u)*a_y(chan,t)... -% +(sat_velZ(chan,t)-zDot_u)*a_z(chan,t); -% end - kf_H = zeros(2*sat_number,st_nmbr); for chan=1:5 % Measurement matrix H assembling @@ -215,20 +198,17 @@ for t=2:length(navSolution.RX_time) % Filtered pseudorange error measurement (in m) AND Filtered Doppler shift measurements (in Hz): for chan=1:5 % Measurement vector pr_m_filt(chan,t)=sat_prg_m(chan,t)+kf_yerr_g(chan,t);% now filtered - rhoDot_pri_filt(chan,t)=(sat_dopp_hz(chan,t)*Lambda_GPS_L1+corr_kf_state(8,t)+kf_dt*corr_kf_state(9,t))-kf_yerr_g(chan+sat_number,t); + rhoDot_pri_filt(chan,t)=(sat_dopp_hz(chan,t)*Lambda_GPS_L1+corr_kf_state(8,t))-kf_yerr_g(chan+sat_number,t); %convert rhoDot_pri to doppler shift! -% d_dt_clk_drift=(corr_kf_state(8,t)-corr_kf_state(8,t-1)); + % d_dt_clk_drift=(corr_kf_state(8,t)-corr_kf_state(8,t-1)); - if (t<3) - sat_dopp_hz_filt(chan,t)=(rhoDot_pri_filt(chan,t)-corr_kf_state(8,t)-corr_kf_state(9,t)*kf_dt)/Lambda_GPS_L1; - else - sat_dopp_hz_filt(chan,t)=(rhoDot_pri_filt(chan,t)-corr_kf_state(8,t)-corr_kf_state(9,t)*kf_dt)/Lambda_GPS_L1; - end - -% carrier_phase_rads = 0; + sat_dopp_hz_filt(chan,t)=(rhoDot_pri_filt(chan,t)-corr_kf_state(8,t)+corr_kf_state(9,t-1)+corr_kf_state(9,t)*kf_dt)/Lambda_GPS_L1; + + + % carrier_phase_rads = 0; carrier_freq_hz =GPS_L1_freq_hz+sat_dopp_hz_filt(chan,t); -% carrier_freq_rate_hz_s = 0; -% code_phase_chips = 0; + % carrier_freq_rate_hz_s = 0; + % code_phase_chips = 0; end % carrier_phase_rads = 0;