1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-18 21:23:02 +00:00

Fix the bug fix

This commit is contained in:
Javier Arribas 2017-04-28 15:38:31 +02:00
parent c0c1838deb
commit 44f748cb41
3 changed files with 930 additions and 864 deletions

File diff suppressed because it is too large Load Diff

View File

@ -123,6 +123,7 @@ private:
int d_rtcm_MT1097_rate_ms;
int d_rtcm_MSM_rate_ms;
void print_receiver_status(Gnss_Synchro** channels_synchronization_data);
int d_last_status_print_seg; //for status printer
unsigned int d_nchannels;
@ -132,14 +133,16 @@ private:
bool d_flag_averaging;
int d_output_rate_ms;
int d_display_rate_ms;
long unsigned int d_last_sample_nav_output;
//long unsigned int d_sample_counter;
//long unsigned int d_last_sample_nav_output;
std::shared_ptr<Rinex_Printer> rp;
std::shared_ptr<Kml_Printer> d_kml_dump;
std::shared_ptr<Nmea_Printer> d_nmea_printer;
std::shared_ptr<GeoJSON_Printer> d_geojson_printer;
std::shared_ptr<Rtcm_Printer> d_rtcm_printer;
double d_rx_time;
double last_pvt_display_T_rx_s;
std::shared_ptr<rtklib_solver> d_ls_pvt;
prcopt_t rtklib_options;
std::map<int,Gnss_Synchro> gnss_observables_map;

View File

@ -54,8 +54,8 @@ hybrid_make_observables_cc(unsigned int nchannels, bool dump, std::string dump_f
hybrid_observables_cc::hybrid_observables_cc(unsigned int nchannels, bool dump, std::string dump_filename, unsigned int deep_history) :
gr::block("hybrid_observables_cc", gr::io_signature::make(nchannels, nchannels, sizeof(Gnss_Synchro)),
gr::io_signature::make(nchannels, nchannels, sizeof(Gnss_Synchro)))
gr::block("hybrid_observables_cc", gr::io_signature::make(nchannels, nchannels, sizeof(Gnss_Synchro)),
gr::io_signature::make(nchannels, nchannels, sizeof(Gnss_Synchro)))
{
// initialize internal vars
d_dump = dump;
@ -112,7 +112,7 @@ bool Hybrid_valueCompare_gnss_synchro_sample_counter(const Gnss_Synchro& a, unsi
bool Hybrid_valueCompare_gnss_synchro_receiver_time(const Gnss_Synchro& a, double b)
{
return ((double)a.Tracking_sample_counter/(double)a.fs) < (b);
return (((double)a.Tracking_sample_counter+a.Code_phase_samples)/(double)a.fs) < (b);
}
bool Hybrid_pairCompare_gnss_synchro_d_TOW(const std::pair<int,Gnss_Synchro>& a, const std::pair<int,Gnss_Synchro>& b)
@ -217,25 +217,25 @@ int hybrid_observables_cc::general_work (int noutput_items,
int distance=std::distance(d_gnss_synchro_history_queue[i].begin(), gnss_synchro_deque_iter);
if (distance>0)
{
// double T_rx_channel_prev=(double)d_gnss_synchro_history_queue[i].at(distance-1).Tracking_sample_counter/(double)gnss_synchro_deque_iter->fs;
// double delta_T_rx_s_prev=T_rx_channel_prev-T_rx_s;
// if (fabs(delta_T_rx_s_prev)<fabs(delta_T_rx_s))
// {
// realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(
// d_gnss_synchro_history_queue[i].at(distance-1).Channel_ID,
// d_gnss_synchro_history_queue[i].at(distance-1)));
// adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID,
// *gnss_synchro_deque_iter));
// }else{
double T_rx_channel_prev=(double)d_gnss_synchro_history_queue[i].at(distance-1).Tracking_sample_counter/(double)gnss_synchro_deque_iter->fs;
double delta_T_rx_s_prev=T_rx_channel_prev-T_rx_s;
if (fabs(delta_T_rx_s_prev)<fabs(delta_T_rx_s))
{
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(
d_gnss_synchro_history_queue[i].at(distance-1).Channel_ID,
d_gnss_synchro_history_queue[i].at(distance-1)));
adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID,
*gnss_synchro_deque_iter));
}else{
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID,
*gnss_synchro_deque_iter));
adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(
d_gnss_synchro_history_queue[i].at(distance-1).Channel_ID,
d_gnss_synchro_history_queue[i].at(distance-1)));
// }
// }else{
// realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID,
// *gnss_synchro_deque_iter));
}
}else{
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID,
*gnss_synchro_deque_iter));
}
}else{
@ -254,27 +254,65 @@ int hybrid_observables_cc::general_work (int noutput_items,
gnss_synchro_map_iter = max_element(realigned_gnss_synchro_map.begin(),
realigned_gnss_synchro_map.end(),
Hybrid_pairCompare_gnss_synchro_d_TOW);
double ref_fs_hz=(double)gnss_synchro_map_iter->second.fs;
// compute interpolated TOW value at T_rx_s
int ref_channel_key=gnss_synchro_map_iter->second.Channel_ID;
Gnss_Synchro adj_obs=adjacent_gnss_synchro_map.at(ref_channel_key);
double ref_adj_T_rx_s=(double)adj_obs.Tracking_sample_counter/ref_fs_hz
+adj_obs.Code_phase_samples/ref_fs_hz;
double d_TOW_reference = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
double d_ref_T_rx_s=(double)gnss_synchro_map_iter->second.Tracking_sample_counter/ref_fs_hz
+gnss_synchro_map_iter->second.Code_phase_samples/ref_fs_hz;
double selected_T_rx_s=T_rx_s;
// two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
double ref_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s+(selected_T_rx_s-ref_adj_T_rx_s)
*(d_TOW_reference-adj_obs.TOW_at_current_symbol_s)/(d_ref_T_rx_s-ref_adj_T_rx_s);
//std::cout<<"DELTA T REF:"<<T_rx_s-ref_adj_T_rx_s<<std::endl;
//std::cout<<"ref TOW:"<<d_TOW_reference<<" ref_TOW_at_T_rx_s:"<<ref_TOW_at_T_rx_s<<std::endl;
// std::cout << std::fixed;
// std::cout << std::setprecision(2);
// std::cout<<"d_TOW_reference:"<<d_TOW_reference*1000.0<<std::endl;
double d_ref_PRN_phase_samples = gnss_synchro_map_iter->second.Code_phase_samples;
//std::cout<<"OBS SV REF SAT: "<<gnss_synchro_map_iter->second.PRN<<std::endl;
// Now compute RX time differences due to the PRN alignment in the correlators
double traveltime_ms;
double pseudorange_m;
double channel_T_rx_s;
double channel_fs_hz;
double channel_TOW_s;
double delta_T_rx_s;
double delta_PRN_phase_s;
//std::cout<<"T_rx_s: "<<T_rx_s<<std::endl;
for(gnss_synchro_map_iter = realigned_gnss_synchro_map.begin(); gnss_synchro_map_iter != realigned_gnss_synchro_map.end(); gnss_synchro_map_iter++)
{
channel_fs_hz=(double)gnss_synchro_map_iter->second.fs;
channel_TOW_s=gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
channel_T_rx_s=(double)gnss_synchro_map_iter->second.Tracking_sample_counter/channel_fs_hz
+gnss_synchro_map_iter->second.Code_phase_samples/channel_fs_hz;
// compute interpolated observation values
// two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
// TOW at the selected receiver time T_rx_s
int element_key=gnss_synchro_map_iter->second.Channel_ID;
adj_obs=adjacent_gnss_synchro_map.at(element_key);
double adj_T_rx_s=(double)adj_obs.Tracking_sample_counter/channel_fs_hz
+adj_obs.Code_phase_samples/channel_fs_hz;
double channel_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s+(selected_T_rx_s-adj_T_rx_s)
*(channel_TOW_s-adj_obs.TOW_at_current_symbol_s)/(channel_T_rx_s-adj_T_rx_s);
//Doppler and Accumulated carrier phase
double Carrier_phase_lin_rads = adj_obs.Carrier_phase_rads+(selected_T_rx_s-adj_T_rx_s)
*(gnss_synchro_map_iter->second.Carrier_phase_rads-adj_obs.Carrier_phase_rads)/(channel_T_rx_s-adj_T_rx_s);
double Carrier_Doppler_lin_hz = adj_obs.Carrier_Doppler_hz+(selected_T_rx_s-adj_T_rx_s)
*(gnss_synchro_map_iter->second.Carrier_Doppler_hz-adj_obs.Carrier_Doppler_hz)/(channel_T_rx_s-adj_T_rx_s);
delta_T_rx_s = ((double)gnss_synchro_map_iter->second.Tracking_sample_counter/(double)gnss_synchro_map_iter->second.fs - T_rx_s);
delta_PRN_phase_s = (gnss_synchro_map_iter->second.Code_phase_samples - d_ref_PRN_phase_samples)/(double)gnss_synchro_map_iter->second.fs;
//compute the pseudorange (no rx time offset correction)
traveltime_ms = (d_TOW_reference - gnss_synchro_map_iter->second.TOW_at_current_symbol_s) * 1000.0
+ delta_T_rx_s*1000.0 + delta_PRN_phase_s*1000.0
traveltime_ms = (ref_TOW_at_T_rx_s - channel_TOW_at_T_rx_s) * 1000.0
+ GPS_STARTOFFSET_ms;
//convert to meters
pseudorange_m = traveltime_ms * GPS_C_m_ms; // [m]
@ -283,28 +321,16 @@ int hybrid_observables_cc::general_work (int noutput_items,
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Pseudorange_m = pseudorange_m;
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Flag_valid_pseudorange = true;
// Save the estimated RX time (no RX clock offset correction yet!)
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].RX_time = d_TOW_reference + GPS_STARTOFFSET_ms / 1000.0;
// compute interpolated observation values for Doppler and Accumulate carrier phase
// two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
int element_key=gnss_synchro_map_iter->second.Channel_ID;
Gnss_Synchro adj_obs=adjacent_gnss_synchro_map.at(element_key);
double adj_delta_T_rx_s=((double)adj_obs.Tracking_sample_counter/(double)adj_obs.fs - T_rx_s);
double Carrier_phase_lin_rads = adj_obs.Carrier_phase_rads+adj_delta_T_rx_s
*(gnss_synchro_map_iter->second.Carrier_phase_rads-adj_obs.Carrier_phase_rads)/(delta_T_rx_s-adj_delta_T_rx_s);
double Carrier_Doppler_lin_hz = adj_obs.Carrier_Doppler_hz+adj_delta_T_rx_s
*(gnss_synchro_map_iter->second.Carrier_Doppler_hz-adj_obs.Carrier_Doppler_hz)/(delta_T_rx_s-adj_delta_T_rx_s);
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].RX_time = ref_TOW_at_T_rx_s + GPS_STARTOFFSET_ms / 1000.0;
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_phase_rads = Carrier_phase_lin_rads;
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_Doppler_hz = Carrier_Doppler_lin_hz;
//debug
// double delta_T_rx_s_previous=((double)adjacent_gnss_synchro_map.at(gnss_synchro_map_iter->second.Channel_ID).Tracking_sample_counter/(double)gnss_synchro_map_iter->second.fs - T_rx_s);
//double delta_T_rx_s_previous=((double)adjacent_gnss_synchro_map.at(gnss_synchro_map_iter->second.Channel_ID).Tracking_sample_counter/(double)gnss_synchro_map_iter->second.fs - T_rx_s);
// std::cout<<"["<<gnss_synchro_map_iter->second.PRN<<"] delta_rx_t: "<<delta_T_rx_s*1000.0
// <<" [ms] (prev: "<<delta_T_rx_s_previous*1000.0<<") delta_TOW_ms: "<<(d_TOW_reference - gnss_synchro_map_iter->second.TOW_at_current_symbol_s) * 1000.0
// std::cout<<"["<<gnss_synchro_map_iter->second.PRN<<"] delta_TOW at T_rx: "<<(ref_TOW_at_T_rx_s - channel_TOW_at_T_rx_s)*1000.0
// <<" [ms] delta_TOW_ms: "<<(d_TOW_reference - gnss_synchro_map_iter->second.TOW_at_current_symbol_s) * 1000.0
// <<" Pr: "<<pseudorange_m<<" [m]"
// <<" Doppler estim: "<<gnss_synchro_map_iter->second.Carrier_Doppler_hz
// <<" Doppler inter: "<<Carrier_Doppler_lin_hz
// <<std::endl;
}