mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2025-03-21 10:57:03 +00:00
Improve documentation
This commit is contained in:
parent
879bf2aa25
commit
43eafdd484
src/algorithms
@ -12069,6 +12069,7 @@ double Rinex_Printer::get_leap_second(const Glonass_Gnav_Ephemeris& eph, const d
|
||||
return leap_second;
|
||||
}
|
||||
|
||||
|
||||
void Rinex_Printer::set_pre_2009_file(bool pre_2009_file)
|
||||
{
|
||||
pre_2009_file_ = pre_2009_file;
|
||||
|
@ -54,19 +54,20 @@
|
||||
/*! \brief cn0_svn_estimator is a Carrier-to-Noise (CN0) estimator
|
||||
* based on the Signal-to-Noise Variance (SNV) estimator
|
||||
*
|
||||
* Signal-to-Noise (SNR) (\f$\rho\f$) estimator using the Signal-to-Noise Variance (SNV) estimator:
|
||||
* Signal-to-Noise (SNR) (\f$ \rho \f$) estimator using the Signal-to-Noise Variance (SNV) estimator:
|
||||
* \f{equation}
|
||||
* \hat{\rho}=\frac{\hat{P}_s}{\hat{P}_n}=\frac{\hat{P}_s}{\hat{P}_{tot}-\hat{P}_s},
|
||||
* \f}
|
||||
* where \f$\hat{P}_s=\left(\frac{1}{N}\sum^{N-1}_{i=0}|Re(Pc(i))|\right)^2\f$ is the estimation of the signal power,
|
||||
* \f$\hat{P}_{tot}=\frac{1}{N}\sum^{N-1}_{i=0}|Pc(i)|^2\f$ is the estimator of the total power, \f$|\cdot|\f$ is the absolute value,
|
||||
* \f$Re(\cdot)\f$ stands for the real part of the value, and \f$Pc(i)\f$ is the prompt correlator output for the sample index i.
|
||||
* where \f$ \hat{P}_s=\left(\frac{1}{N}\sum^{N-1}_{i=0}|Re(Pc(i))|\right)^2 \f$ is the estimation of the signal power,
|
||||
* \f$ \hat{P}_{tot}=\frac{1}{N}\sum^{N-1}_{i=0}|Pc(i)|^2 \f$ is the estimator of the total power, \f$ |\cdot| \f$ is the absolute value,
|
||||
* \f$ Re(\cdot) \f$ stands for the real part of the value, and \f$ Pc(i) \f$ is the prompt correlator output for the sample index i.
|
||||
*
|
||||
* The SNR value is converted to CN0 [dB-Hz], taking to account the coherent integration time, using the following formula:
|
||||
* The SNR value is converted to CN0 [dB-Hz], taking into account the coherent integration time, using the following formula:
|
||||
* \f{equation}
|
||||
* CN0_{dB}=10*log(\hat{\rho})-10*log(T_{int}),
|
||||
* \f}
|
||||
* where \f$T_{int}\f$ is the coherent integration time, in seconds.
|
||||
* where \f$ T_{int} \f$ is the coherent integration time, in seconds.
|
||||
*
|
||||
* Ref: Marco Pini, Emanuela Falletti and Maurizio Fantino, "Performance
|
||||
* Evaluation of C/N0 Estimators using a Real Time GNSS Software Receiver,"
|
||||
* IEEE 10th International Symposium on Spread Spectrum Techniques and
|
||||
@ -76,21 +77,22 @@ float cn0_svn_estimator(const gr_complex* Prompt_buffer, int length, float coh_i
|
||||
|
||||
|
||||
/*! \brief cn0_mm_estimator is a Carrier-to-Noise (CN0) estimator
|
||||
* based on the Moments Method (MM)
|
||||
* based on the Second- and Fourth-Order Moments Method (M2M4)
|
||||
*
|
||||
* Signal-to-Noise (SNR) (\f$\rho\f$) estimator using the Moments Method:
|
||||
* Signal-to-Noise (SNR) (\f$ \rho \f$) estimator using the Moments Method:
|
||||
* \f{equation}
|
||||
* \hat{\rho}=\frac{\hat{P}_s}{\hat{P}_n}=\frac{\sqrt{2*\hat{M}_2^2 - \hat{M}_4 }}{\hat{M}_2-\sqrt{2*\hat{M}_2^2 - \hat{M}_4 }},
|
||||
* \hat{\rho}=\frac{\sqrt{2 \hat{M}_2^2 - \hat{M}_4 }}{\hat{M}_2-\sqrt{2 \hat{M}_2^2 - \hat{M}_4 }},
|
||||
* \f}
|
||||
* where \f$\hat{P}_s=\left(\frac{1}{N}\sum^{N-1}_{i=0}|Re(Pc(i))|\right)^2\f$ is the estimation of the signal power,
|
||||
* \f$ \hat{M}_2=\frac{1}{N}sum^{N-1}_{i=0}|Pc(i)|^2 \f$, \f$\hat{M}_4 = \frac{1}{N}sum^{N-1}_{i=0}|Pc(i)|^4 \f$, \f$|\cdot|\f$ is the absolute value,
|
||||
* \f$Re(\cdot)\f$ stands for the real part of the value, and \f$Pc(i)\f$ is the prompt correlator output for the sample index i.
|
||||
* where
|
||||
* \f$ \hat{M}_2=\frac{1}{N}\sum^{K-1}_{k=0}|P[k]|^2 \f$, \f$ \hat{M}_4 = \frac{1}{K}\sum^{K-1}_{k=0}|P[k]|^4 \f$, \f$ |\cdot| \f$ is the absolute value,
|
||||
* and \f$ P[k] \f$ is the prompt correlator output for the sample index k.
|
||||
*
|
||||
* The SNR value is converted to CN0 [dB-Hz], taking to account the coherent integration time, using the following formula:
|
||||
* The SNR value is converted to CN0 [dB-Hz] taking into account the coherent integration time, using the following formula:
|
||||
* \f{equation}
|
||||
* CN0_{dB}=10*log(\hat{\rho})-10*log(T_{int}),
|
||||
* \f}
|
||||
* where \f$T_{int}\f$ is the coherent integration time, in seconds.
|
||||
* where \f$ T_{int} \f$ is the coherent integration time, in seconds.
|
||||
*
|
||||
* Ref: D. R. Pauluzzi, N. C. Beaulieu, "A comparison of SNR estimation
|
||||
* techniques for the AWGN channel," IEEE Trans. on Comm., vol. 48,
|
||||
* no. 10, pp. 1681–1691, Oct. 2000.
|
||||
@ -104,9 +106,9 @@ float cn0_mm_estimator(const gr_complex* Prompt_buffer, int length, float coh_in
|
||||
* \f{equation}
|
||||
* C2\phi=\frac{NBD}{NBP},
|
||||
* \f}
|
||||
* where \f$NBD=(\sum^{N-1}_{i=0}|Im(Pc(i))|)^2+(\sum^{N-1}_{i=0}|Re(Pc(i))|)^2\f$,
|
||||
* \f$NBP=\sum^{N-1}_{i=0}Im(Pc(i))^2-\sum^{N-1}_{i=0}Re(Pc(i))^2\f$, and
|
||||
* \f$Pc(i)\f$ is the prompt correlator output for the sample index i.
|
||||
* where \f$ NBD=(\sum^{N-1}_{i=0}|Im(Pc(i))|)^2+(\sum^{N-1}_{i=0}|Re(Pc(i))|)^2 \f$,
|
||||
* \f$ NBP=\sum^{N-1}_{i=0}Im(Pc(i))^2-\sum^{N-1}_{i=0}Re(Pc(i))^2 \f$, and
|
||||
* \f$ Pc(i) \f$ is the prompt correlator output for the sample index i.
|
||||
* Ref: Van Dierendonck, A.J. (1996), Global Positioning System: Theory and
|
||||
* Applications,
|
||||
* Volume I, Chapter 8: GPS Receivers, AJ Systems, Los Altos, CA 94024.
|
||||
|
Loading…
x
Reference in New Issue
Block a user