1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-16 04:05:46 +00:00

Remove unrequired includes. Remove tabs. Fix indentation

This commit is contained in:
Carles Fernandez 2018-01-26 12:40:58 +01:00
parent f600f95864
commit 30988b8e14
7 changed files with 459 additions and 471 deletions

View File

@ -32,6 +32,7 @@
#ifndef GNSS_SDR_GLONASS_L1_CA_H_
#define GNSS_SDR_GLONASS_L1_CA_H_
#include <map>
#include <vector>
#include <utility> // std::pair
#include "MATH_CONSTANTS.h"

View File

@ -29,30 +29,27 @@
*
* -------------------------------------------------------------------------
*/
#include "glonass_gnav_almanac.h"
#include <cmath>
#include "GLONASS_L1_CA.h"
#include "gnss_satellite.h"
Glonass_Gnav_Almanac::Glonass_Gnav_Almanac()
{
i_satellite_freq_channel = 0;
i_satellite_PRN = 0;
i_satellite_slot_number = 0;
d_n_A = 0.0;
d_H_n_A = 0.0;
d_lambda_n_A = 0.0;
d_t_lambda_n_A = 0.0;
d_Delta_i_n_A = 0.0;
d_Delta_T_n_A = 0.0;
d_Delta_T_n_A_dot = 0.0;
d_epsilon_n_A = 0.0;
d_omega_n_A = 0.0;
d_M_n_A = 0.0;
d_KP = 0.0;
d_tau_n_A = 0.0;
d_C_n = false;
d_l_n = false;
i_satellite_freq_channel = 0;
i_satellite_PRN = 0;
i_satellite_slot_number = 0;
d_n_A = 0.0;
d_H_n_A = 0.0;
d_lambda_n_A = 0.0;
d_t_lambda_n_A = 0.0;
d_Delta_i_n_A = 0.0;
d_Delta_T_n_A = 0.0;
d_Delta_T_n_A_dot = 0.0;
d_epsilon_n_A = 0.0;
d_omega_n_A = 0.0;
d_M_n_A = 0.0;
d_KP = 0.0;
d_tau_n_A = 0.0;
d_C_n = false;
d_l_n = false;
}

View File

@ -34,9 +34,6 @@
#ifndef GNSS_SDR_GLONASS_ALMANAC_H_
#define GNSS_SDR_GLONASS_ALMANAC_H_
#include <map>
#include <string>
#include "boost/assign.hpp"
#include <boost/serialization/nvp.hpp>
/*!
@ -59,8 +56,8 @@ public:
double d_M_n_A; //!< Type of satellite n_A [dimensionless]
double d_KP; //!< Notification on forthcoming leap second correction of UTC [dimensionless]
double d_tau_n_A; //!< Coarse value of d_n_A satellite time correction to GLONASS time at instant t_lambdan_A[s]
bool d_C_n; //!< Generalized “unhealthy flag” of n_A satellite at instant of almanac upload [dimensionless]
bool d_l_n; //!< Health flag for nth satellite; ln = 0 indicates the n-th satellite is helthy, ln = 1 indicates malfunction of this nth satellite [dimensionless]
bool d_C_n; //!< Generalized “unhealthy flag” of n_A satellite at instant of almanac upload [dimensionless]
bool d_l_n; //!< Health flag for nth satellite; ln = 0 indicates the n-th satellite is helthy, ln = 1 indicates malfunction of this nth satellite [dimensionless]
// Satellite Identification Information
int i_satellite_freq_channel; //!< SV Frequency Channel Number

View File

@ -32,56 +32,55 @@
#include "glonass_gnav_ephemeris.h"
#include <cmath>
#include <boost/date_time/posix_time/posix_time.hpp>
#include "GLONASS_L1_CA.h"
#include "gnss_satellite.h"
Glonass_Gnav_Ephemeris::Glonass_Gnav_Ephemeris()
{
d_m = 0.0; //!< String number within frame [dimensionless]
d_t_k = 0.0; //!< GLONASS Time (UTC(SU) + 3 h) referenced to the beginning of the frame within the current day [s]
d_t_b = 0.0; //!< Reference ephemeris relative time in GLONASS Time (UTC(SU) + 3 h). Index of a time interval within current day according to UTC(SU) + 03 hours 00 min. [s]
d_M = 0.0; //!< Type of satellite transmitting navigation signal [dimensionless]
d_gamma_n = 0.0; //!< Relative deviation of predicted carrier frequency value of n- satellite from nominal value at the instant tb [dimensionless]
d_tau_n = 0.0; //!< Correction to the nth satellite time (tn) relative to GLONASS time (te),
d_Xn = 0.0; //!< Earth-fixed coordinate x of the satellite in PZ-90.02 coordinate system [km].
d_Yn = 0.0; //!< Earth-fixed coordinate y of the satellite in PZ-90.02 coordinate system [km]
d_Zn = 0.0; //!< Earth-fixed coordinate z of the satellite in PZ-90.02 coordinate system [km]
d_VXn = 0.0; //!< Earth-fixed velocity coordinate x of the satellite in PZ-90.02 coordinate system [km/s]
d_VYn = 0.0; //!< Earth-fixed velocity coordinate y of the satellite in PZ-90.02 coordinate system [km/s]
d_VZn = 0.0; //!< Earth-fixed velocity coordinate z of the satellite in PZ-90.02 coordinate system [km/s]
d_AXn = 0.0; //!< Earth-fixed acceleration coordinate x of the satellite in PZ-90.02 coordinate system [km/s^2]
d_AYn = 0.0; //!< Earth-fixed acceleration coordinate y of the satellite in PZ-90.02 coordinate system [km/s^2]
d_AZn = 0.0; //!< Earth-fixed acceleration coordinate z of the satellite in PZ-90.02 coordinate system [km/s^2]
d_B_n = 0.0; //!< Health flag [dimensionless]
d_P = 0.0; //!< Technological parameter of control segment, indication the satellite operation mode in respect of time parameters [dimensionless]
d_N_T = 0.0; //!< Current date, calendar number of day within four-year interval starting from the 1-st of January in a leap year [days]
d_F_T = 0.0; //!< Parameter that provides the predicted satellite user range accuracy at time tb [dimensionless]
d_n = 0.0; //!< Index of the satellite transmitting given navigation signal. It corresponds to a slot number within GLONASS constellation
d_Delta_tau_n = 0.0; //!< Time difference between navigation RF signal transmitted in L2 sub- band and aviation RF signal transmitted in L1 sub-band by nth satellite. [dimensionless]
d_E_n = 0.0; //!< Characterises "age" of a current information [days]
d_P_1 = 0.0; //!< Flag of the immediate data updating [minutes]
d_P_2 = false; //!< Flag of oddness ("1") or evenness ("0") of the value of (tb) [dimensionless]
d_P_3 = false; //!< Flag indicating a number of satellites for which almanac is transmitted within given frame: "1" corresponds to 5 satellites and "0" corresponds to 4 satellites [dimensionless]
d_P_4 = false; //!< Flag to show that ephemeris parameters are present. "1" indicates that updated ephemeris or frequency/time parameters have been uploaded by the control segment [dimensionless]
d_l3rd_n = false; //!< Health flag for nth satellite; ln = 0 indicates the n-th satellite is helthy, ln = 1 indicates malfunction of this nth satellite [dimensionless]
d_l5th_n = false; //!< Health flag for nth satellite; ln = 0 indicates the n-th satellite is helthy, ln = 1 indicates malfunction of this nth satellite [dimensionless]
d_m = 0.0; //!< String number within frame [dimensionless]
d_t_k = 0.0; //!< GLONASS Time (UTC(SU) + 3 h) referenced to the beginning of the frame within the current day [s]
d_t_b = 0.0; //!< Reference ephemeris relative time in GLONASS Time (UTC(SU) + 3 h). Index of a time interval within current day according to UTC(SU) + 03 hours 00 min. [s]
d_M = 0.0; //!< Type of satellite transmitting navigation signal [dimensionless]
d_gamma_n = 0.0; //!< Relative deviation of predicted carrier frequency value of n- satellite from nominal value at the instant tb [dimensionless]
d_tau_n = 0.0; //!< Correction to the nth satellite time (tn) relative to GLONASS time (te),
d_Xn = 0.0; //!< Earth-fixed coordinate x of the satellite in PZ-90.02 coordinate system [km].
d_Yn = 0.0; //!< Earth-fixed coordinate y of the satellite in PZ-90.02 coordinate system [km]
d_Zn = 0.0; //!< Earth-fixed coordinate z of the satellite in PZ-90.02 coordinate system [km]
d_VXn = 0.0; //!< Earth-fixed velocity coordinate x of the satellite in PZ-90.02 coordinate system [km/s]
d_VYn = 0.0; //!< Earth-fixed velocity coordinate y of the satellite in PZ-90.02 coordinate system [km/s]
d_VZn = 0.0; //!< Earth-fixed velocity coordinate z of the satellite in PZ-90.02 coordinate system [km/s]
d_AXn = 0.0; //!< Earth-fixed acceleration coordinate x of the satellite in PZ-90.02 coordinate system [km/s^2]
d_AYn = 0.0; //!< Earth-fixed acceleration coordinate y of the satellite in PZ-90.02 coordinate system [km/s^2]
d_AZn = 0.0; //!< Earth-fixed acceleration coordinate z of the satellite in PZ-90.02 coordinate system [km/s^2]
d_B_n = 0.0; //!< Health flag [dimensionless]
d_P = 0.0; //!< Technological parameter of control segment, indication the satellite operation mode in respect of time parameters [dimensionless]
d_N_T = 0.0; //!< Current date, calendar number of day within four-year interval starting from the 1-st of January in a leap year [days]
d_F_T = 0.0; //!< Parameter that provides the predicted satellite user range accuracy at time tb [dimensionless]
d_n = 0.0; //!< Index of the satellite transmitting given navigation signal. It corresponds to a slot number within GLONASS constellation
d_Delta_tau_n = 0.0; //!< Time difference between navigation RF signal transmitted in L2 sub- band and aviation RF signal transmitted in L1 sub-band by nth satellite. [dimensionless]
d_E_n = 0.0; //!< Characterises "age" of a current information [days]
d_P_1 = 0.0; //!< Flag of the immediate data updating [minutes]
d_P_2 = false; //!< Flag of oddness ("1") or evenness ("0") of the value of (tb) [dimensionless]
d_P_3 = false; //!< Flag indicating a number of satellites for which almanac is transmitted within given frame: "1" corresponds to 5 satellites and "0" corresponds to 4 satellites [dimensionless]
d_P_4 = false; //!< Flag to show that ephemeris parameters are present. "1" indicates that updated ephemeris or frequency/time parameters have been uploaded by the control segment [dimensionless]
d_l3rd_n = false; //!< Health flag for nth satellite; ln = 0 indicates the n-th satellite is helthy, ln = 1 indicates malfunction of this nth satellite [dimensionless]
d_l5th_n = false; //!< Health flag for nth satellite; ln = 0 indicates the n-th satellite is helthy, ln = 1 indicates malfunction of this nth satellite [dimensionless]
// Satellite Identification Information
i_satellite_freq_channel = 0; //!< SV Frequency Channel Number
i_satellite_PRN = 0; //!< SV PRN Number, equivalent to slot number for compatibility with GPS
i_satellite_slot_number = 0; //!< SV Slot Number
d_yr = 1972; //!< Current year, defaults to 1972 (UTC Epoch with leap seconds)
d_satClkDrift = 0.0; //!< GLONASS clock error
d_dtr = 0.0; //!< relativistic clock correction term
d_iode = 0.0; //!< Issue of data, ephemeris (Bit 0-6 of tb)
d_tau_c = 0.0;
d_TOW = 0.0; // tow of the start of frame
d_WN = 0.0; // week number of the start of frame
d_tod = 0.0;
// Satellite Identification Information
i_satellite_freq_channel = 0; //!< SV Frequency Channel Number
i_satellite_PRN = 0; //!< SV PRN Number, equivalent to slot number for compatibility with GPS
i_satellite_slot_number = 0; //!< SV Slot Number
d_yr = 1972; //!< Current year, defaults to 1972 (UTC Epoch with leap seconds)
d_satClkDrift = 0.0; //!< GLONASS clock error
d_dtr = 0.0; //!< relativistic clock correction term
d_iode = 0.0; //!< Issue of data, ephemeris (Bit 0-6 of tb)
d_tau_c = 0.0;
d_TOW = 0.0; // tow of the start of frame
d_WN = 0.0; // week number of the start of frame
d_tod = 0.0;
}
boost::posix_time::ptime Glonass_Gnav_Ephemeris::compute_GLONASS_time(const double offset_time) const
{
boost::posix_time::time_duration t(0, 0, offset_time + d_tau_c + d_tau_n);
@ -92,74 +91,75 @@ boost::posix_time::ptime Glonass_Gnav_Ephemeris::compute_GLONASS_time(const doub
return glonass_time;
}
boost::posix_time::ptime Glonass_Gnav_Ephemeris::glot_to_utc(const double offset_time, const double glot2utc_corr) const
{
double tod = 0.0;
double glot2utc = 3*3600;
double tod = 0.0;
double glot2utc = 3*3600;
tod = offset_time - glot2utc + glot2utc_corr + d_tau_n;
boost::posix_time::time_duration t(0, 0, tod);
boost::gregorian::date d1(d_yr, 1, 1);
boost::gregorian::days d2(d_N_T - 1);
boost::posix_time::ptime utc_time(d1+d2, t);
tod = offset_time - glot2utc + glot2utc_corr + d_tau_n;
boost::posix_time::time_duration t(0, 0, tod);
boost::gregorian::date d1(d_yr, 1, 1);
boost::gregorian::days d2(d_N_T - 1);
boost::posix_time::ptime utc_time(d1 + d2, t);
return utc_time;
return utc_time;
}
void Glonass_Gnav_Ephemeris::glot_to_gpst(double tod_offset, double glot2utc_corr, double glot2gpst_corr, double * wn, double * tow) const
{
double tod = 0.0;
double glot2utc = 3*3600;
double days = 0.0;
double total_sec = 0.0, sec_of_day = 0.0;
int i = 0;
double tod = 0.0;
double glot2utc = 3*3600;
double days = 0.0;
double total_sec = 0.0, sec_of_day = 0.0;
int i = 0;
boost::gregorian::date gps_epoch { 1980, 1, 6 };
boost::gregorian::date gps_epoch { 1980, 1, 6 };
// tk is relative to UTC(SU) + 3.00 hrs, so we need to convert to utc and add corrections
// tk plus 10 sec is the true tod since get_TOW is called when in str5
tod = tod_offset - glot2utc ;
// tk is relative to UTC(SU) + 3.00 hrs, so we need to convert to utc and add corrections
// tk plus 10 sec is the true tod since get_TOW is called when in str5
tod = tod_offset - glot2utc ;
boost::posix_time::time_duration t(0, 0, tod);
boost::gregorian::date d1(d_yr, 1, 1);
boost::gregorian::days d2(d_N_T-1);
boost::posix_time::ptime utc_time(d1+d2, t);
boost::gregorian::date utc_date = utc_time.date();
boost::posix_time::ptime gps_time;
boost::posix_time::time_duration t(0, 0, tod);
boost::gregorian::date d1(d_yr, 1, 1);
boost::gregorian::days d2(d_N_T-1);
boost::posix_time::ptime utc_time(d1+d2, t);
boost::gregorian::date utc_date = utc_time.date();
boost::posix_time::ptime gps_time;
// Adjust for leap second correction
for (i = 0; GLONASS_LEAP_SECONDS[i][0]>0; i++)
{
boost::posix_time::time_duration t3(GLONASS_LEAP_SECONDS[i][3], GLONASS_LEAP_SECONDS[i][4], GLONASS_LEAP_SECONDS[i][5]);
boost::gregorian::date d3(GLONASS_LEAP_SECONDS[i][0], GLONASS_LEAP_SECONDS[i][1], GLONASS_LEAP_SECONDS[i][2]);
boost::posix_time::ptime ls_time(d3, t3);
if (utc_time >= ls_time)
{
// We add the leap second when going from utc to gpst
gps_time = utc_time + boost::posix_time::time_duration(0,0,fabs(GLONASS_LEAP_SECONDS[i][6]));
break;
}
}
// Adjust for leap second correction
for (i = 0; GLONASS_LEAP_SECONDS[i][0]>0; i++)
{
boost::posix_time::time_duration t3(GLONASS_LEAP_SECONDS[i][3], GLONASS_LEAP_SECONDS[i][4], GLONASS_LEAP_SECONDS[i][5]);
boost::gregorian::date d3(GLONASS_LEAP_SECONDS[i][0], GLONASS_LEAP_SECONDS[i][1], GLONASS_LEAP_SECONDS[i][2]);
boost::posix_time::ptime ls_time(d3, t3);
if (utc_time >= ls_time)
{
// We add the leap second when going from utc to gpst
gps_time = utc_time + boost::posix_time::time_duration(0,0,fabs(GLONASS_LEAP_SECONDS[i][6]));
break;
}
}
// Total number of days
std::string fdat = boost::posix_time::to_simple_string(gps_time);
days = static_cast<double>((utc_date - gps_epoch).days());
// Total number of days
std::string fdat = boost::posix_time::to_simple_string(gps_time);
days = static_cast<double>((utc_date - gps_epoch).days());
// Total number of seconds
sec_of_day = static_cast<double>((gps_time.time_of_day()).total_seconds());
total_sec = days*86400 + sec_of_day;
// Total number of seconds
sec_of_day = static_cast<double>((gps_time.time_of_day()).total_seconds());
total_sec = days*86400 + sec_of_day;
// Compute Week number
*wn = floor(total_sec/604800);
// Compute the arithmetic modules to wrap around range
*tow = total_sec - 604800*floor(total_sec/604800);
// Perform corrections from fractional seconds
*tow += glot2utc_corr + glot2gpst_corr;
// Compute Week number
*wn = floor(total_sec/604800);
// Compute the arithmetic modules to wrap around range
*tow = total_sec - 604800*floor(total_sec/604800);
// Perform corrections from fractional seconds
*tow += glot2utc_corr + glot2gpst_corr;
}
double Glonass_Gnav_Ephemeris::check_t(double time)
{
double corrTime;
@ -176,6 +176,7 @@ double Glonass_Gnav_Ephemeris::check_t(double time)
return corrTime;
}
// FIXME Fix reference here
// 20.3.3.3.3.1 User Algorithm for SV Clock Correction.
double Glonass_Gnav_Ephemeris::sv_clock_drift(double transmitTime, double timeCorrUTC)

View File

@ -35,9 +35,6 @@
#define GNSS_SDR_GLONASS_GNAV_EPHEMERIS_H_
#include <map>
#include <string>
#include "boost/assign.hpp"
#include <boost/serialization/nvp.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>
@ -64,7 +61,7 @@ public:
double d_m; //!< String number within frame [dimensionless]
double d_t_k; //!< GLONASS Time (UTC(SU) + 3 h) referenced to the beginning of the frame within the current day [s]
double d_t_b; //!< Reference ephemeris relative time in GLONASS Time (UTC(SU) + 3 h). Index of a time interval within current day according to UTC(SU) + 03 hours 00 min. [s]
double d_M; //!< Type of satellite transmitting navigation signal [dimensionless]
double d_M; //!< Type of satellite transmitting navigation signal [dimensionless]
double d_gamma_n; //!< Relative deviation of predicted carrier frequency value of n- satellite from nominal value at the instant tb [dimensionless]
double d_tau_n; //!< Correction to the nth satellite time (tn) relative to GLONASS time (te),
double d_Xn; //!< Earth-fixed coordinate x of the satellite in PZ-90.02 coordinate system [km].
@ -84,25 +81,25 @@ public:
double d_Delta_tau_n; //!< Time difference between navigation RF signal transmitted in L2 sub- band and aviation RF signal transmitted in L1 sub-band by nth satellite. [dimensionless]
double d_E_n; //!< Characterises "age" of a current information [days]
double d_P_1; //!< Flag of the immediate data updating [minutes]
bool d_P_2; //!< Flag of oddness ("1") or evenness ("0") of the value of (tb) [dimensionless]
bool d_P_3; //!< Flag indicating a number of satellites for which almanac is transmitted within given frame: "1" corresponds to 5 satellites and "0" corresponds to 4 satellites [dimensionless]
bool d_P_4; //!< Flag to show that ephemeris parameters are present. "1" indicates that updated ephemeris or frequency/time parameters have been uploaded by the control segment [dimensionless]
bool d_l3rd_n; //!< Health flag for nth satellite; ln = 0 indicates the n-th satellite is helthy, ln = 1 indicates malfunction of this nth satellite [dimensionless]
bool d_l5th_n; //!< Health flag for nth satellite; ln = 0 indicates the n-th satellite is helthy, ln = 1 indicates malfunction of this nth satellite [dimensionless]
bool d_P_2; //!< Flag of oddness ("1") or evenness ("0") of the value of (tb) [dimensionless]
bool d_P_3; //!< Flag indicating a number of satellites for which almanac is transmitted within given frame: "1" corresponds to 5 satellites and "0" corresponds to 4 satellites [dimensionless]
bool d_P_4; //!< Flag to show that ephemeris parameters are present. "1" indicates that updated ephemeris or frequency/time parameters have been uploaded by the control segment [dimensionless]
bool d_l3rd_n; //!< Health flag for nth satellite; ln = 0 indicates the n-th satellite is healthy, ln = 1 indicates malfunction of this nth satellite [dimensionless]
bool d_l5th_n; //!< Health flag for nth satellite; ln = 0 indicates the n-th satellite is healthy, ln = 1 indicates malfunction of this nth satellite [dimensionless]
// Inmediate deliverables of ephemeris information
// Satellite Identification Information
int i_satellite_freq_channel; //!< SV Frequency Channel Number
int i_satellite_freq_channel; //!< SV Frequency Channel Number
unsigned int i_satellite_PRN; //!< SV PRN Number, equivalent to slot number for compatibility with GPS
unsigned int i_satellite_slot_number; //!< SV Slot Number
double d_yr; //!< Current year
double d_satClkDrift; //!< GLONASS clock error
double d_dtr; //!< relativistic clock correction term
double d_iode; //!< Issue of data, ephemeris (Bit 0-6 of tb)
double d_tau_c; //!< GLONASST 2 UTC correction (todo) may be eliminated
double d_TOW; //!< GLONASST IN GPST seconds of week
double d_WN; //!< GLONASST IN GPST week number of the start of frame
double d_tod; //!< Time of Day since ephemeris where decoded
double d_tau_c; //!< GLONASST 2 UTC correction (todo) may be eliminated
double d_TOW; //!< GLONASST IN GPST seconds of week
double d_WN; //!< GLONASST IN GPST week number of the start of frame
double d_tod; //!< Time of Day since ephemeris where decoded
template<class Archive>
@ -137,14 +134,14 @@ public:
archive & make_nvp("d_N_T", d_N_T); //!< Current date, calendar number of day within four-year interval starting from the 1-st of January in a leap year [days]
archive & make_nvp("d_F_T", d_F_T); //!< Parameter that provides the predicted satellite user range accuracy at time tb [dimensionless]
archive & make_nvp("d_n", d_n); //!< Index of the satellite transmitting given navigation signal. It corresponds to a slot number within GLONASS constellation
archive & make_nvp("d_Delta_tau_n", d_Delta_tau_n);//!< Time difference between navigation RF signal transmitted in L2 sub- band and aviation RF signal transmitted in L1 sub-band by nth satellite. [dimensionless]
archive & make_nvp("d_Delta_tau_n", d_Delta_tau_n); //!< Time difference between navigation RF signal transmitted in L2 sub- band and aviation RF signal transmitted in L1 sub-band by nth satellite. [dimensionless]
archive & make_nvp("d_E_n", d_E_n); //!< Characterises "age" of a current information [days]
archive & make_nvp("d_P_1", d_P_1); //!< Flag of the immediate data updating.
archive & make_nvp("d_P_2", d_P_2); //!< Flag of oddness ("1") or evenness ("0") of the value of (tb) [dimensionless]
archive & make_nvp("d_P_3", d_P_3); //!< Flag indicating a number of satellites for which almanac is transmitted within given frame: "1" corresponds to 5 satellites and "0" corresponds to 4 satellites [dimensionless]
archive & make_nvp("d_P_4", d_P_4); //!< Flag to show that ephemeris parameters are present. "1" indicates that updated ephemeris or frequency/time parameters have been uploaded by the control segment [dimensionless]
archive & make_nvp("d_l3rd_n", d_l3rd_n); //!< Health flag for nth satellite; ln = 0 indicates the n-th satellite is helthy, ln = 1 indicates malfunction of this nth satellite [dimensionless]
archive & make_nvp("d_l5th_n", d_l5th_n); //!< Health flag for nth satellite; ln = 0 indicates the n-th satellite is helthy, ln = 1 indicates malfunction of this nth satellite [dimensionless]
archive & make_nvp("d_l3rd_n", d_l3rd_n); //!< Health flag for nth satellite; ln = 0 indicates the n-th satellite is helthy, ln = 1 indicates malfunction of this nth satellite [dimensionless]
archive & make_nvp("d_l5th_n", d_l5th_n); //!< Health flag for nth satellite; ln = 0 indicates the n-th satellite is helthy, ln = 1 indicates malfunction of this nth satellite [dimensionless]
}
/*!

View File

@ -31,30 +31,25 @@
*/
#include "glonass_gnav_navigation_message.h"
#include <boost/crc.hpp>
#include <boost/dynamic_bitset.hpp>
#include <cmath>
#include <iostream>
#include <sstream>
#include <gnss_satellite.h>
#include <glog/logging.h>
void Glonass_Gnav_Navigation_Message::reset()
{
//!< Satellite Identification
// Satellite Identification
i_satellite_PRN = 0;
i_alm_satellite_slot_number = 0; //!< SV Orbit Slot Number
flag_update_slot_number = false;
//!< Ephmeris Flags
// Ephmeris Flags
flag_all_ephemeris = false;
flag_ephemeris_str_1 = false;
flag_ephemeris_str_2 = false;
flag_ephemeris_str_3 = false;
flag_ephemeris_str_4 = false;
//!< Almanac Flags
// Almanac Flags
flag_all_almanac = false;
flag_almanac_str_6 = false;
flag_almanac_str_7 = false;
@ -67,12 +62,12 @@ void Glonass_Gnav_Navigation_Message::reset()
flag_almanac_str_14 = false;
flag_almanac_str_15 = false;
//!< UTC and System Clocks Flags
// UTC and System Clocks Flags
flag_utc_model_valid = false; //!< If set, it indicates that the UTC model parameters are filled
flag_utc_model_str_5 = false; //!< Clock info send in string 5 of navigation data
flag_utc_model_str_15 = false; //!< Clock info send in string 15 of frame 5 of navigation data
//broadcast orbit 1
// broadcast orbit 1
flag_TOW_set = false;
flag_TOW_new = false;
@ -89,7 +84,7 @@ void Glonass_Gnav_Navigation_Message::reset()
// Data update information
d_previous_tb = 0.0;
for(unsigned int i = 0; i < GLONASS_L1_CA_NBR_SATS; i++)
d_previous_Na[i] = 0.0;
d_previous_Na[i] = 0.0;
std::map<int,std::string> satelliteBlock; //!< Map that stores to which block the PRN belongs http://www.navcen.uscg.gov/?Do=constellationStatus
@ -97,9 +92,9 @@ void Glonass_Gnav_Navigation_Message::reset()
std::string _system ("GLONASS");
//TODO SHould number of channels be hardcoded?
for(unsigned int i = 1; i < 14; i++)
{
satelliteBlock[i] = gnss_sat.what_block(_system, i);
}
{
satelliteBlock[i] = gnss_sat.what_block(_system, i);
}
}
@ -123,11 +118,11 @@ bool Glonass_Gnav_Navigation_Message::CRC_test(std::bitset<GLONASS_GNAV_STRING_B
int C_Sigma = 0;
std::vector<int> string_bits(GLONASS_GNAV_STRING_BITS);
//!< Populate data and hamming code vectors
for(int i = 0; i < static_cast<int>(GLONASS_GNAV_STRING_BITS); i++)
{
string_bits[i] = static_cast<int>(bits[i]);
}
//!< Populate data and hamming code vectors
for(int i = 0; i < static_cast<int>(GLONASS_GNAV_STRING_BITS); i++)
{
string_bits[i] = static_cast<int>(bits[i]);
}
//!< Compute C1 term
sum_bits = 0;
@ -210,7 +205,7 @@ bool Glonass_Gnav_Navigation_Message::CRC_test(std::bitset<GLONASS_GNAV_STRING_B
return true;
}
else
// All other conditions are assumed errors. TODO: Add correction for case B
// All other conditions are assumed errors. TODO: Add correction for case B
{
return false;
}
@ -258,14 +253,14 @@ signed long int Glonass_Gnav_Navigation_Message::read_navigation_signed(std::bit
signed long int sign = 0;
int num_of_slices = parameter.size();
// read the MSB and perform the sign extension
if (bits[GLONASS_GNAV_STRING_BITS - parameter[0].first] == 1)
{
sign = -1;
}
else
{
sign = 1;
}
if (bits[GLONASS_GNAV_STRING_BITS - parameter[0].first] == 1)
{
sign = -1;
}
else
{
sign = 1;
}
for (int i = 0; i < num_of_slices; i++)
{
for (int j = 1; j < parameter[i].second; j++)
@ -331,327 +326,332 @@ int Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
// Decode all 15 string messages
d_string_ID = static_cast<unsigned int>(read_navigation_unsigned(string_bits, STRING_ID));
switch (d_string_ID) {
case 1:
//--- It is string 1 -----------------------------------------------
gnav_ephemeris.d_P_1 = (static_cast<double>(read_navigation_unsigned(string_bits, P1)) + 1) * 15;
gnav_ephemeris.d_t_k = static_cast<double>(read_navigation_unsigned(string_bits, T_K_HR)) * 3600 +
static_cast<double>(read_navigation_unsigned(string_bits, T_K_MIN)) * 60 +
static_cast<double>(read_navigation_unsigned(string_bits, T_K_SEC)) * 30;
gnav_ephemeris.d_VXn = static_cast<double>(read_navigation_signed(string_bits, X_N_DOT)) * TWO_N20;
gnav_ephemeris.d_AXn = static_cast<double>(read_navigation_signed(string_bits, X_N_DOT_DOT)) * TWO_N30;
gnav_ephemeris.d_Xn = static_cast<double>(read_navigation_signed(string_bits, X_N)) * TWO_N11;
switch (d_string_ID)
{
case 1:
//--- It is string 1 -----------------------------------------------
gnav_ephemeris.d_P_1 = (static_cast<double>(read_navigation_unsigned(string_bits, P1)) + 1) * 15;
gnav_ephemeris.d_t_k = static_cast<double>(read_navigation_unsigned(string_bits, T_K_HR)) * 3600 +
static_cast<double>(read_navigation_unsigned(string_bits, T_K_MIN)) * 60 +
static_cast<double>(read_navigation_unsigned(string_bits, T_K_SEC)) * 30;
gnav_ephemeris.d_VXn = static_cast<double>(read_navigation_signed(string_bits, X_N_DOT)) * TWO_N20;
gnav_ephemeris.d_AXn = static_cast<double>(read_navigation_signed(string_bits, X_N_DOT_DOT)) * TWO_N30;
gnav_ephemeris.d_Xn = static_cast<double>(read_navigation_signed(string_bits, X_N)) * TWO_N11;
flag_ephemeris_str_1 = true;
flag_ephemeris_str_1 = true;
break;
break;
case 2:
//--- It is string 2 -----------------------------------------------
if (flag_ephemeris_str_1 == true)
{
gnav_ephemeris.d_B_n = static_cast<double>(read_navigation_unsigned(string_bits, B_N));
gnav_ephemeris.d_P_2 = static_cast<bool>(read_navigation_bool(string_bits, P2));
gnav_ephemeris.d_t_b = static_cast<double>(read_navigation_unsigned(string_bits, T_B)) * 15 * 60;
gnav_ephemeris.d_VYn = static_cast<double>(read_navigation_signed(string_bits, Y_N_DOT)) * TWO_N20;
gnav_ephemeris.d_AYn = static_cast<double>(read_navigation_signed(string_bits, Y_N_DOT_DOT)) * TWO_N30;
gnav_ephemeris.d_Yn = static_cast<double>(read_navigation_signed(string_bits, Y_N)) * TWO_N11;
case 2:
//--- It is string 2 -----------------------------------------------
if (flag_ephemeris_str_1 == true)
{
gnav_ephemeris.d_B_n = static_cast<double>(read_navigation_unsigned(string_bits, B_N));
gnav_ephemeris.d_P_2 = static_cast<bool>(read_navigation_bool(string_bits, P2));
gnav_ephemeris.d_t_b = static_cast<double>(read_navigation_unsigned(string_bits, T_B)) * 15 * 60;
gnav_ephemeris.d_VYn = static_cast<double>(read_navigation_signed(string_bits, Y_N_DOT)) * TWO_N20;
gnav_ephemeris.d_AYn = static_cast<double>(read_navigation_signed(string_bits, Y_N_DOT_DOT)) * TWO_N30;
gnav_ephemeris.d_Yn = static_cast<double>(read_navigation_signed(string_bits, Y_N)) * TWO_N11;
gnav_ephemeris.d_iode = read_navigation_unsigned(string_bits, T_B);
flag_ephemeris_str_2 = true;
}
gnav_ephemeris.d_iode = read_navigation_unsigned(string_bits, T_B);
flag_ephemeris_str_2 = true;
}
break;
break;
case 3:
// --- It is string 3 ----------------------------------------------
if (flag_ephemeris_str_2 == true)
{
gnav_ephemeris.d_P_3 = static_cast<bool>(read_navigation_bool(string_bits, P3));
gnav_ephemeris.d_gamma_n = static_cast<double>(read_navigation_signed(string_bits, GAMMA_N)) * TWO_N40;
gnav_ephemeris.d_P = static_cast<double>(read_navigation_unsigned(string_bits, P));
gnav_ephemeris.d_l3rd_n = static_cast<bool>(read_navigation_bool(string_bits, EPH_L_N));
gnav_ephemeris.d_VZn = static_cast<double>(read_navigation_signed(string_bits, Z_N_DOT)) * TWO_N20;
gnav_ephemeris.d_AZn = static_cast<double>(read_navigation_signed(string_bits, Z_N_DOT_DOT)) * TWO_N30;
gnav_ephemeris.d_Zn = static_cast<double>(read_navigation_signed(string_bits, Z_N)) * TWO_N11;
case 3:
// --- It is string 3 ----------------------------------------------
if (flag_ephemeris_str_2 == true)
{
gnav_ephemeris.d_P_3 = static_cast<bool>(read_navigation_bool(string_bits, P3));
gnav_ephemeris.d_gamma_n = static_cast<double>(read_navigation_signed(string_bits, GAMMA_N)) * TWO_N40;
gnav_ephemeris.d_P = static_cast<double>(read_navigation_unsigned(string_bits, P));
gnav_ephemeris.d_l3rd_n = static_cast<bool>(read_navigation_bool(string_bits, EPH_L_N));
gnav_ephemeris.d_VZn = static_cast<double>(read_navigation_signed(string_bits, Z_N_DOT)) * TWO_N20;
gnav_ephemeris.d_AZn = static_cast<double>(read_navigation_signed(string_bits, Z_N_DOT_DOT)) * TWO_N30;
gnav_ephemeris.d_Zn = static_cast<double>(read_navigation_signed(string_bits, Z_N)) * TWO_N11;
flag_ephemeris_str_3 = true;
}
flag_ephemeris_str_3 = true;
}
break;
break;
case 4:
// --- It is string 4 ----------------------------------------------
if (flag_ephemeris_str_3 == true)
{
gnav_ephemeris.d_tau_n = static_cast<double>(read_navigation_signed(string_bits, TAU_N)) * TWO_N30;
gnav_ephemeris.d_Delta_tau_n = static_cast<double>(read_navigation_signed(string_bits, DELTA_TAU_N)) * TWO_N30;
gnav_ephemeris.d_E_n = static_cast<double>(read_navigation_unsigned(string_bits, E_N));
gnav_ephemeris.d_P_4 = static_cast<bool>(read_navigation_bool(string_bits, P4));
gnav_ephemeris.d_F_T = static_cast<double>(read_navigation_unsigned(string_bits, F_T));
gnav_ephemeris.d_N_T = static_cast<double>(read_navigation_unsigned(string_bits, N_T));
gnav_ephemeris.d_n = static_cast<double>(read_navigation_unsigned(string_bits, N));
gnav_ephemeris.d_M = static_cast<double>(read_navigation_unsigned(string_bits, M));
case 4:
// --- It is string 4 ----------------------------------------------
if (flag_ephemeris_str_3 == true)
{
gnav_ephemeris.d_tau_n = static_cast<double>(read_navigation_signed(string_bits, TAU_N)) * TWO_N30;
gnav_ephemeris.d_Delta_tau_n = static_cast<double>(read_navigation_signed(string_bits, DELTA_TAU_N)) * TWO_N30;
gnav_ephemeris.d_E_n = static_cast<double>(read_navigation_unsigned(string_bits, E_N));
gnav_ephemeris.d_P_4 = static_cast<bool>(read_navigation_bool(string_bits, P4));
gnav_ephemeris.d_F_T = static_cast<double>(read_navigation_unsigned(string_bits, F_T));
gnav_ephemeris.d_N_T = static_cast<double>(read_navigation_unsigned(string_bits, N_T));
gnav_ephemeris.d_n = static_cast<double>(read_navigation_unsigned(string_bits, N));
gnav_ephemeris.d_M = static_cast<double>(read_navigation_unsigned(string_bits, M));
// Fill in ephemeris deliverables in the code
flag_update_slot_number = true;
gnav_ephemeris.i_satellite_slot_number = static_cast<unsigned int>(gnav_ephemeris.d_n);
gnav_ephemeris.i_satellite_PRN = static_cast<unsigned int>(gnav_ephemeris.d_n);
// Fill in ephemeris deliverables in the code
flag_update_slot_number = true;
gnav_ephemeris.i_satellite_slot_number = static_cast<unsigned int>(gnav_ephemeris.d_n);
gnav_ephemeris.i_satellite_PRN = static_cast<unsigned int>(gnav_ephemeris.d_n);
flag_ephemeris_str_4 = true;
}
flag_ephemeris_str_4 = true;
}
break;
break;
case 5:
// --- It is string 5 ----------------------------------------------
if (flag_ephemeris_str_4 == true)
{
gnav_utc_model.d_N_A = static_cast<double>(read_navigation_unsigned(string_bits, N_A));
gnav_utc_model.d_tau_c = static_cast<double>(read_navigation_signed(string_bits, TAU_C)) * TWO_N31;
gnav_utc_model.d_N_4 = static_cast<double>(read_navigation_unsigned(string_bits, N_4));
gnav_utc_model.d_tau_gps = static_cast<double>(read_navigation_signed(string_bits, TAU_GPS)) * TWO_N30;
gnav_ephemeris.d_l5th_n = static_cast<bool>(read_navigation_bool(string_bits, ALM_L_N));
case 5:
// --- It is string 5 ----------------------------------------------
if (flag_ephemeris_str_4 == true)
{
gnav_utc_model.d_N_A = static_cast<double>(read_navigation_unsigned(string_bits, N_A));
gnav_utc_model.d_tau_c = static_cast<double>(read_navigation_signed(string_bits, TAU_C)) * TWO_N31;
gnav_utc_model.d_N_4 = static_cast<double>(read_navigation_unsigned(string_bits, N_4));
gnav_utc_model.d_tau_gps = static_cast<double>(read_navigation_signed(string_bits, TAU_GPS)) * TWO_N30;
gnav_ephemeris.d_l5th_n = static_cast<bool>(read_navigation_bool(string_bits, ALM_L_N));
flag_utc_model_str_5 = true;
flag_utc_model_str_5 = true;
// Compute Year and DoY based on Algorithm A3.11 of GLONASS ICD
// 1). Current year number J in the four-year interval is calculated
if (gnav_ephemeris.d_N_T >= 1 && gnav_ephemeris.d_N_T <= 366)
{
J = 1;
}
else if (gnav_ephemeris.d_N_T >= 367 && gnav_ephemeris.d_N_T <= 731)
{
J = 2;
}
else if (gnav_ephemeris.d_N_T >= 732 && gnav_ephemeris.d_N_T <= 1096)
{
J = 3;
}
else if (gnav_ephemeris.d_N_T >= 1097 && gnav_ephemeris.d_N_T <= 1461)
{
J = 4;
}
// 2). Current year in common form is calculated by the following formula:
gnav_ephemeris.d_yr = 1996 + 4.0 * (gnav_utc_model.d_N_4 - 1.0) + (J - 1.0);
gnav_ephemeris.d_tau_c = gnav_utc_model.d_tau_c;
// Compute Year and DoY based on Algorithm A3.11 of GLONASS ICD
// 1). Current year number J in the four-year interval is calculated
if (gnav_ephemeris.d_N_T >= 1 && gnav_ephemeris.d_N_T <= 366)
{
J = 1;
}
else if (gnav_ephemeris.d_N_T >= 367 && gnav_ephemeris.d_N_T <= 731)
{
J = 2;
}
else if (gnav_ephemeris.d_N_T >= 732 && gnav_ephemeris.d_N_T <= 1096)
{
J = 3;
}
else if (gnav_ephemeris.d_N_T >= 1097 && gnav_ephemeris.d_N_T <= 1461)
{
J = 4;
}
// 2). Current year in common form is calculated by the following formula:
gnav_ephemeris.d_yr = 1996 + 4.0 * (gnav_utc_model.d_N_4 - 1.0) + (J - 1.0);
gnav_ephemeris.d_tau_c = gnav_utc_model.d_tau_c;
// 3). Set TOW once the year has been defined, it helps with leap second determination
if (flag_ephemeris_str_1 == true)
{
gnav_ephemeris.glot_to_gpst(gnav_ephemeris.d_t_k+10, gnav_utc_model.d_tau_c, gnav_utc_model.d_tau_gps, &gnav_ephemeris.d_WN, &gnav_ephemeris.d_TOW);
flag_TOW_set = true;
flag_TOW_new = true;
}
// 3). Set TOW once the year has been defined, it helps with leap second determination
if (flag_ephemeris_str_1 == true)
{
gnav_ephemeris.glot_to_gpst(gnav_ephemeris.d_t_k+10, gnav_utc_model.d_tau_c, gnav_utc_model.d_tau_gps, &gnav_ephemeris.d_WN, &gnav_ephemeris.d_TOW);
flag_TOW_set = true;
flag_TOW_new = true;
}
// 4) Set time of day (tod) when ephemeris data is complety decoded
gnav_ephemeris.d_tod = gnav_ephemeris.d_t_k + 2*d_string_ID;
}
// 4) Set time of day (tod) when ephemeris data is complety decoded
gnav_ephemeris.d_tod = gnav_ephemeris.d_t_k + 2*d_string_ID;
}
break;
break;
case 6:
// --- It is string 6 ----------------------------------------------
i_alm_satellite_slot_number = static_cast<unsigned int>(read_navigation_unsigned(string_bits, n_A));
d_frame_ID = get_frame_number(i_alm_satellite_slot_number);
// Make sure a valid frame_ID or satellite slot number is returned
if(d_frame_ID == 0)
return 0;
case 6:
// --- It is string 6 ----------------------------------------------
i_alm_satellite_slot_number = static_cast<unsigned int>(read_navigation_unsigned(string_bits, n_A));
d_frame_ID = get_frame_number(i_alm_satellite_slot_number);
// Make sure a valid frame_ID or satellite slot number is returned
if(d_frame_ID == 0)
return 0;
gnav_almanac[i_alm_satellite_slot_number - 1].d_C_n = static_cast<bool>(read_navigation_bool(string_bits, C_N));
gnav_almanac[i_alm_satellite_slot_number - 1].d_M_n_A = static_cast<double>(read_navigation_unsigned(string_bits, M_N_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A = static_cast<double>(read_navigation_unsigned(string_bits, n_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_tau_n_A = static_cast<double>(read_navigation_unsigned(string_bits, TAU_N_A)) * TWO_N18;
gnav_almanac[i_alm_satellite_slot_number - 1].d_lambda_n_A = static_cast<double>(read_navigation_signed(string_bits, LAMBDA_N_A)) * TWO_N20 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_i_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_I_N_A)) * TWO_N20 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_epsilon_n_A = static_cast<double>(read_navigation_unsigned(string_bits, EPSILON_N_A)) * TWO_N20;
gnav_almanac[i_alm_satellite_slot_number - 1].d_C_n = static_cast<bool>(read_navigation_bool(string_bits, C_N));
gnav_almanac[i_alm_satellite_slot_number - 1].d_M_n_A = static_cast<double>(read_navigation_unsigned(string_bits, M_N_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A = static_cast<double>(read_navigation_unsigned(string_bits, n_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_tau_n_A = static_cast<double>(read_navigation_unsigned(string_bits, TAU_N_A)) * TWO_N18;
gnav_almanac[i_alm_satellite_slot_number - 1].d_lambda_n_A = static_cast<double>(read_navigation_signed(string_bits, LAMBDA_N_A)) * TWO_N20 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_i_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_I_N_A)) * TWO_N20 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_epsilon_n_A = static_cast<double>(read_navigation_unsigned(string_bits, EPSILON_N_A)) * TWO_N20;
flag_almanac_str_6 = true;
flag_almanac_str_6 = true;
break;
break;
case 7:
// --- It is string 7 ----------------------------------------------
if (flag_almanac_str_6 == true)
{
gnav_almanac[i_alm_satellite_slot_number - 1].d_omega_n_A = static_cast<double>(read_navigation_signed(string_bits, OMEGA_N_A)) * TWO_N15 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_t_lambda_n_A = static_cast<double>(read_navigation_unsigned(string_bits, T_LAMBDA_N_A)) * TWO_N5;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_N_A)) * TWO_N9;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A_dot = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_DOT_N_A)) * TWO_N14;
gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A = static_cast<double>(read_navigation_unsigned(string_bits, H_N_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_l_n = static_cast<bool>(read_navigation_bool(string_bits, ALM_L_N));
case 7:
// --- It is string 7 ----------------------------------------------
if (flag_almanac_str_6 == true)
{
gnav_almanac[i_alm_satellite_slot_number - 1].d_omega_n_A = static_cast<double>(read_navigation_signed(string_bits, OMEGA_N_A)) * TWO_N15 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_t_lambda_n_A = static_cast<double>(read_navigation_unsigned(string_bits, T_LAMBDA_N_A)) * TWO_N5;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_N_A)) * TWO_N9;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A_dot = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_DOT_N_A)) * TWO_N14;
gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A = static_cast<double>(read_navigation_unsigned(string_bits, H_N_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_l_n = static_cast<bool>(read_navigation_bool(string_bits, ALM_L_N));
// Set satellite information for redundancy purposes
if (gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A > 24)
{
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_freq_channel = gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A - 32.0;
}
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_slot_number = gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A;
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_PRN = gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A;
// Set satellite information for redundancy purposes
if (gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A > 24)
{
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_freq_channel = gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A - 32.0;
}
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_slot_number = gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A;
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_PRN = gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A;
if (i_alm_satellite_slot_number == gnav_ephemeris.i_satellite_slot_number)
{
gnav_ephemeris.i_satellite_freq_channel = gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_freq_channel;
}
flag_almanac_str_7 = true;
}
if (i_alm_satellite_slot_number == gnav_ephemeris.i_satellite_slot_number)
{
gnav_ephemeris.i_satellite_freq_channel = gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_freq_channel;
}
flag_almanac_str_7 = true;
}
break;
break;
case 8:
// --- It is string 8 ----------------------------------------------
i_alm_satellite_slot_number = static_cast<unsigned int>(read_navigation_unsigned(string_bits, n_A));
d_frame_ID = get_frame_number(i_alm_satellite_slot_number);
// Make sure a valid frame_ID or satellite slot number is returned
if(d_frame_ID == 0)
return 0;
case 8:
// --- It is string 8 ----------------------------------------------
i_alm_satellite_slot_number = static_cast<unsigned int>(read_navigation_unsigned(string_bits, n_A));
d_frame_ID = get_frame_number(i_alm_satellite_slot_number);
// Make sure a valid frame_ID or satellite slot number is returned
if(d_frame_ID == 0)
return 0;
gnav_almanac[i_alm_satellite_slot_number - 1].d_C_n = static_cast<bool>(read_navigation_bool(string_bits, C_N));
gnav_almanac[i_alm_satellite_slot_number - 1].d_M_n_A = static_cast<double>(read_navigation_unsigned(string_bits, M_N_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A = static_cast<double>(read_navigation_unsigned(string_bits, n_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_tau_n_A = static_cast<double>(read_navigation_unsigned(string_bits, TAU_N_A)) * TWO_N18;
gnav_almanac[i_alm_satellite_slot_number - 1].d_lambda_n_A = static_cast<double>(read_navigation_signed(string_bits, LAMBDA_N_A)) * TWO_N20 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_i_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_I_N_A)) * TWO_N20 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_epsilon_n_A = static_cast<double>(read_navigation_unsigned(string_bits, EPSILON_N_A)) * TWO_N20;
gnav_almanac[i_alm_satellite_slot_number - 1].d_C_n = static_cast<bool>(read_navigation_bool(string_bits, C_N));
gnav_almanac[i_alm_satellite_slot_number - 1].d_M_n_A = static_cast<double>(read_navigation_unsigned(string_bits, M_N_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A = static_cast<double>(read_navigation_unsigned(string_bits, n_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_tau_n_A = static_cast<double>(read_navigation_unsigned(string_bits, TAU_N_A)) * TWO_N18;
gnav_almanac[i_alm_satellite_slot_number - 1].d_lambda_n_A = static_cast<double>(read_navigation_signed(string_bits, LAMBDA_N_A)) * TWO_N20 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_i_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_I_N_A)) * TWO_N20 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_epsilon_n_A = static_cast<double>(read_navigation_unsigned(string_bits, EPSILON_N_A)) * TWO_N20;
flag_almanac_str_8 = true;
flag_almanac_str_8 = true;
break;
case 9:
// --- It is string 9 ----------------------------------------------
if (flag_almanac_str_8 == true)
{
gnav_almanac[i_alm_satellite_slot_number - 1].d_omega_n_A = static_cast<double>(read_navigation_signed(string_bits, OMEGA_N_A)) * TWO_N15 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_t_lambda_n_A = static_cast<double>(read_navigation_unsigned(string_bits, T_LAMBDA_N_A)) * TWO_N5;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_N_A)) * TWO_N9;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A_dot = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_DOT_N_A)) * TWO_N14;
gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A = static_cast<double>(read_navigation_unsigned(string_bits, H_N_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_l_n = static_cast<bool>(read_navigation_bool(string_bits, ALM_L_N));
break;
// Set satellite information for redundancy purposes
if (gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A > 24)
{
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_freq_channel = gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A - 32.0;
}
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_slot_number = gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A;
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_PRN = gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A;
case 9:
// --- It is string 9 ----------------------------------------------
if (flag_almanac_str_8 == true)
{
gnav_almanac[i_alm_satellite_slot_number - 1].d_omega_n_A = static_cast<double>(read_navigation_signed(string_bits, OMEGA_N_A)) * TWO_N15 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_t_lambda_n_A = static_cast<double>(read_navigation_unsigned(string_bits, T_LAMBDA_N_A)) * TWO_N5;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_N_A)) * TWO_N9;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A_dot = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_DOT_N_A)) * TWO_N14;
gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A = static_cast<double>(read_navigation_unsigned(string_bits, H_N_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_l_n = static_cast<bool>(read_navigation_bool(string_bits, ALM_L_N));
flag_almanac_str_9 = true;
}
break;
case 10:
// --- It is string 10 ---------------------------------------------
i_alm_satellite_slot_number = static_cast<unsigned int>(read_navigation_unsigned(string_bits, n_A));
d_frame_ID = get_frame_number(i_alm_satellite_slot_number);
// Make sure a valid frame_ID or satellite slot number is returned
if(d_frame_ID == 0)
return 0;
// Set satellite information for redundancy purposes
if (gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A > 24)
{
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_freq_channel = gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A - 32.0;
}
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_slot_number = gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A;
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_PRN = gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A;
gnav_almanac[i_alm_satellite_slot_number - 1].d_C_n = static_cast<bool>(read_navigation_bool(string_bits, C_N));
gnav_almanac[i_alm_satellite_slot_number - 1].d_M_n_A = static_cast<double>(read_navigation_unsigned(string_bits, M_N_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A = static_cast<double>(read_navigation_unsigned(string_bits, n_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_tau_n_A = static_cast<double>(read_navigation_unsigned(string_bits, TAU_N_A)) * TWO_N18;
gnav_almanac[i_alm_satellite_slot_number - 1].d_lambda_n_A = static_cast<double>(read_navigation_signed(string_bits, LAMBDA_N_A)) * TWO_N20 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_i_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_I_N_A)) * TWO_N20 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_epsilon_n_A = static_cast<double>(read_navigation_unsigned(string_bits, EPSILON_N_A)) * TWO_N20;
flag_almanac_str_9 = true;
}
break;
flag_almanac_str_10 = true;
case 10:
// --- It is string 10 ---------------------------------------------
i_alm_satellite_slot_number = static_cast<unsigned int>(read_navigation_unsigned(string_bits, n_A));
d_frame_ID = get_frame_number(i_alm_satellite_slot_number);
// Make sure a valid frame_ID or satellite slot number is returned
if(d_frame_ID == 0)
return 0;
break;
gnav_almanac[i_alm_satellite_slot_number - 1].d_C_n = static_cast<bool>(read_navigation_bool(string_bits, C_N));
gnav_almanac[i_alm_satellite_slot_number - 1].d_M_n_A = static_cast<double>(read_navigation_unsigned(string_bits, M_N_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A = static_cast<double>(read_navigation_unsigned(string_bits, n_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_tau_n_A = static_cast<double>(read_navigation_unsigned(string_bits, TAU_N_A)) * TWO_N18;
gnav_almanac[i_alm_satellite_slot_number - 1].d_lambda_n_A = static_cast<double>(read_navigation_signed(string_bits, LAMBDA_N_A)) * TWO_N20 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_i_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_I_N_A)) * TWO_N20 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_epsilon_n_A = static_cast<double>(read_navigation_unsigned(string_bits, EPSILON_N_A)) * TWO_N20;
case 11:
// --- It is string 11 ---------------------------------------------
if (flag_almanac_str_10 == true)
{
gnav_almanac[i_alm_satellite_slot_number - 1].d_omega_n_A = static_cast<double>(read_navigation_signed(string_bits, OMEGA_N_A)) * TWO_N15 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_t_lambda_n_A = static_cast<double>(read_navigation_unsigned(string_bits, T_LAMBDA_N_A)) * TWO_N5;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_N_A)) * TWO_N9;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A_dot = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_DOT_N_A)) * TWO_N14;
gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A = static_cast<double>(read_navigation_unsigned(string_bits, H_N_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_l_n = static_cast<bool>(read_navigation_bool(string_bits, ALM_L_N));
flag_almanac_str_10 = true;
// Set satellite information for redundancy purposes
if (gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A > 24)
{
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_freq_channel = gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A - 32.0;
}
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_slot_number = gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A;
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_PRN = gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A;
break;
flag_almanac_str_11 = true;
}
break;
case 12:
// --- It is string 12 ---------------------------------------------
i_alm_satellite_slot_number = static_cast<unsigned int>(read_navigation_unsigned(string_bits, n_A));
d_frame_ID = get_frame_number(i_alm_satellite_slot_number);
// Make sure a valid frame_ID or satellite slot number is returned
if(d_frame_ID == 0)
return 0;
gnav_almanac[i_alm_satellite_slot_number - 1].d_C_n = static_cast<bool>(read_navigation_bool(string_bits, C_N));
gnav_almanac[i_alm_satellite_slot_number - 1].d_M_n_A = static_cast<double>(read_navigation_unsigned(string_bits, M_N_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A = static_cast<double>(read_navigation_unsigned(string_bits, n_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_tau_n_A = static_cast<double>(read_navigation_unsigned(string_bits, TAU_N_A)) * TWO_N18;
gnav_almanac[i_alm_satellite_slot_number - 1].d_lambda_n_A = static_cast<double>(read_navigation_signed(string_bits, LAMBDA_N_A)) * TWO_N20 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_i_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_I_N_A)) * TWO_N20 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_epsilon_n_A = static_cast<double>(read_navigation_unsigned(string_bits, EPSILON_N_A)) * TWO_N20;
case 11:
// --- It is string 11 ---------------------------------------------
if (flag_almanac_str_10 == true)
{
gnav_almanac[i_alm_satellite_slot_number - 1].d_omega_n_A = static_cast<double>(read_navigation_signed(string_bits, OMEGA_N_A)) * TWO_N15 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_t_lambda_n_A = static_cast<double>(read_navigation_unsigned(string_bits, T_LAMBDA_N_A)) * TWO_N5;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_N_A)) * TWO_N9;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A_dot = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_DOT_N_A)) * TWO_N14;
gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A = static_cast<double>(read_navigation_unsigned(string_bits, H_N_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_l_n = static_cast<bool>(read_navigation_bool(string_bits, ALM_L_N));
flag_almanac_str_12 = true;
// Set satellite information for redundancy purposes
if (gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A > 24)
{
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_freq_channel = gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A - 32.0;
}
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_slot_number = gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A;
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_PRN = gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A;
break;
flag_almanac_str_11 = true;
}
break;
case 13:
// --- It is string 13 ---------------------------------------------
if (flag_almanac_str_12 == true)
{
gnav_almanac[i_alm_satellite_slot_number - 1].d_omega_n_A = static_cast<double>(read_navigation_signed(string_bits, OMEGA_N_A)) * TWO_N15 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_t_lambda_n_A = static_cast<double>(read_navigation_unsigned(string_bits, T_LAMBDA_N_A)) * TWO_N5;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_N_A)) * TWO_N9;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A_dot = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_DOT_N_A)) * TWO_N14;
gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A = static_cast<double>(read_navigation_unsigned(string_bits, H_N_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_l_n = static_cast<bool>(read_navigation_bool(string_bits, ALM_L_N));
case 12:
// --- It is string 12 ---------------------------------------------
i_alm_satellite_slot_number = static_cast<unsigned int>(read_navigation_unsigned(string_bits, n_A));
d_frame_ID = get_frame_number(i_alm_satellite_slot_number);
// Make sure a valid frame_ID or satellite slot number is returned
if(d_frame_ID == 0)
return 0;
gnav_almanac[i_alm_satellite_slot_number - 1].d_C_n = static_cast<bool>(read_navigation_bool(string_bits, C_N));
gnav_almanac[i_alm_satellite_slot_number - 1].d_M_n_A = static_cast<double>(read_navigation_unsigned(string_bits, M_N_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A = static_cast<double>(read_navigation_unsigned(string_bits, n_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_tau_n_A = static_cast<double>(read_navigation_unsigned(string_bits, TAU_N_A)) * TWO_N18;
gnav_almanac[i_alm_satellite_slot_number - 1].d_lambda_n_A = static_cast<double>(read_navigation_signed(string_bits, LAMBDA_N_A)) * TWO_N20 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_i_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_I_N_A)) * TWO_N20 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_epsilon_n_A = static_cast<double>(read_navigation_unsigned(string_bits, EPSILON_N_A)) * TWO_N20;
// Set satellite information for redundancy purposes
if (gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A > 24)
{
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_freq_channel = gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A - 32.0;
}
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_slot_number = gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A;
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_PRN = gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A;
flag_almanac_str_12 = true;
flag_almanac_str_13 = true;
}
break;
case 14:
// --- It is string 14 ---------------------------------------------
if (d_frame_ID == 5)
{
gnav_utc_model.d_B1 = static_cast<double>(read_navigation_unsigned(string_bits, B1));
gnav_utc_model.d_B2 = static_cast<double>(read_navigation_unsigned(string_bits, B2));
}
else
{
i_alm_satellite_slot_number = static_cast<unsigned int>(read_navigation_unsigned(string_bits, n_A));
d_frame_ID = get_frame_number(i_alm_satellite_slot_number);
// Make sure a valid frame_ID or satellite slot number is returned
if(d_frame_ID == 0)
return 0;
gnav_almanac[i_alm_satellite_slot_number - 1].d_C_n = static_cast<bool>(read_navigation_bool(string_bits, C_N));
gnav_almanac[i_alm_satellite_slot_number - 1].d_M_n_A = static_cast<double>(read_navigation_unsigned(string_bits, M_N_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A = static_cast<double>(read_navigation_unsigned(string_bits, n_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_tau_n_A = static_cast<double>(read_navigation_unsigned(string_bits, TAU_N_A)) * TWO_N18;
gnav_almanac[i_alm_satellite_slot_number - 1].d_lambda_n_A = static_cast<double>(read_navigation_signed(string_bits, LAMBDA_N_A)) * TWO_N20 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_i_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_I_N_A)) * TWO_N20 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_epsilon_n_A = static_cast<double>(read_navigation_unsigned(string_bits, EPSILON_N_A)) * TWO_N20;
break;
flag_almanac_str_14 = true;
}
break;
case 13:
// --- It is string 13 ---------------------------------------------
if (flag_almanac_str_12 == true)
{
gnav_almanac[i_alm_satellite_slot_number - 1].d_omega_n_A = static_cast<double>(read_navigation_signed(string_bits, OMEGA_N_A)) * TWO_N15 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_t_lambda_n_A = static_cast<double>(read_navigation_unsigned(string_bits, T_LAMBDA_N_A)) * TWO_N5;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_N_A)) * TWO_N9;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A_dot = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_DOT_N_A)) * TWO_N14;
gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A = static_cast<double>(read_navigation_unsigned(string_bits, H_N_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_l_n = static_cast<bool>(read_navigation_bool(string_bits, ALM_L_N));
case 15:
// --- It is string 15 ----------------------------------------------
if (d_frame_ID != 5 and flag_almanac_str_14 == true) {
// Set satellite information for redundancy purposes
if (gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A > 24)
{
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_freq_channel = gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A - 32.0;
}
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_slot_number = gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A;
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_PRN = gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A;
flag_almanac_str_13 = true;
}
break;
case 14:
// --- It is string 14 ---------------------------------------------
if (d_frame_ID == 5)
{
gnav_utc_model.d_B1 = static_cast<double>(read_navigation_unsigned(string_bits, B1));
gnav_utc_model.d_B2 = static_cast<double>(read_navigation_unsigned(string_bits, B2));
}
else
{
i_alm_satellite_slot_number = static_cast<unsigned int>(read_navigation_unsigned(string_bits, n_A));
d_frame_ID = get_frame_number(i_alm_satellite_slot_number);
// Make sure a valid frame_ID or satellite slot number is returned
if(d_frame_ID == 0)
return 0;
gnav_almanac[i_alm_satellite_slot_number - 1].d_C_n = static_cast<bool>(read_navigation_bool(string_bits, C_N));
gnav_almanac[i_alm_satellite_slot_number - 1].d_M_n_A = static_cast<double>(read_navigation_unsigned(string_bits, M_N_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A = static_cast<double>(read_navigation_unsigned(string_bits, n_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_tau_n_A = static_cast<double>(read_navigation_unsigned(string_bits, TAU_N_A)) * TWO_N18;
gnav_almanac[i_alm_satellite_slot_number - 1].d_lambda_n_A = static_cast<double>(read_navigation_signed(string_bits, LAMBDA_N_A)) * TWO_N20 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_i_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_I_N_A)) * TWO_N20 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_epsilon_n_A = static_cast<double>(read_navigation_unsigned(string_bits, EPSILON_N_A)) * TWO_N20;
flag_almanac_str_14 = true;
}
break;
case 15:
// --- It is string 15 ----------------------------------------------
if (d_frame_ID != 5 and flag_almanac_str_14 == true) {
gnav_almanac[i_alm_satellite_slot_number - 1].d_omega_n_A = static_cast<double>(read_navigation_signed(string_bits, OMEGA_N_A)) * TWO_N15 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_t_lambda_n_A = static_cast<double>(read_navigation_unsigned(string_bits, T_LAMBDA_N_A)) * TWO_N5;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_N_A)) * TWO_N9;
@ -668,14 +668,14 @@ int Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_PRN = gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A;
flag_almanac_str_15 = true;
}
break;
default:
LOG(INFO) << "GLONASS GNAV: Invalid String ID of received. Received " << d_string_ID
<< ", but acceptable range is from 1-15";
}
break;
default:
LOG(INFO) << "GLONASS GNAV: Invalid String ID of received. Received " << d_string_ID
<< ", but acceptable range is from 1-15";
break;
} // switch string ID ...
break;
} // switch string ID
return d_string_ID;
}
@ -704,8 +704,8 @@ bool Glonass_Gnav_Navigation_Message::have_new_ephemeris() //Check if we have a
bool new_eph = false;
// We need to make sure we have received the ephemeris info plus the time info
if ((flag_ephemeris_str_1 == true) and (flag_ephemeris_str_2 == true) and
(flag_ephemeris_str_3 == true) and (flag_ephemeris_str_4 == true) and
(flag_utc_model_str_5 == true))
(flag_ephemeris_str_3 == true) and (flag_ephemeris_str_4 == true) and
(flag_utc_model_str_5 == true))
{
if(d_previous_tb != gnav_ephemeris.d_t_b)
{
@ -729,7 +729,7 @@ bool Glonass_Gnav_Navigation_Message::have_new_utc_model() // Check if we have a
{
if (flag_utc_model_str_5 == true)
{
flag_utc_model_str_5 = false; // clear the flag
flag_utc_model_str_5 = false; // clear the flag
return true;
}
else

View File

@ -36,10 +36,6 @@
#include <bitset>
#include <map>
#include <string>
#include <utility>
#include <vector>
#include "GLONASS_L1_CA.h"
#include "glonass_gnav_ephemeris.h"
#include "glonass_gnav_almanac.h"
@ -70,16 +66,16 @@ public:
Glonass_Gnav_Ephemeris gnav_ephemeris; //!< Ephemeris information decoded
Glonass_Gnav_Utc_Model gnav_utc_model; //!< UTC model information
Glonass_Gnav_Almanac gnav_almanac[GLONASS_L1_CA_NBR_SATS]; //!< Almanac information for all 24 satellites
Glonass_Gnav_Almanac gnav_almanac[GLONASS_L1_CA_NBR_SATS]; //!< Almanac information for all 24 satellites
//!< Ephmeris Flags and control variables
// Ephemeris Flags and control variables
bool flag_all_ephemeris; //!< Flag indicating that all strings containing ephemeris have been received
bool flag_ephemeris_str_1; //!< Flag indicating that ephemeris 1/4 (string 1) have been received
bool flag_ephemeris_str_2; //!< Flag indicating that ephemeris 2/4 (string 2) have been received
bool flag_ephemeris_str_3; //!< Flag indicating that ephemeris 3/4 (string 3) have been received
bool flag_ephemeris_str_4; //!< Flag indicating that ephemeris 4/4 (string 4) have been received
//!< Almanac Flags
// Almanac Flags
bool flag_all_almanac; //!< Flag indicating that all almanac have been received
bool flag_almanac_str_6; //!< Flag indicating that almanac of string 6 have been received
bool flag_almanac_str_7; //!< Flag indicating that almanac of string 7 have been received
@ -91,23 +87,22 @@ public:
bool flag_almanac_str_13; //!< Flag indicating that almanac of string 13 have been received
bool flag_almanac_str_14; //!< Flag indicating that almanac of string 14 have been received
bool flag_almanac_str_15; //!< Flag indicating that almanac of string 15 have been received
unsigned int i_alm_satellite_slot_number; //!< SV Orbit Slot Number
unsigned int i_alm_satellite_slot_number; //!< SV Orbit Slot Number
//!< UTC and System Clocks Flags
bool flag_utc_model_valid; //!< If set, it indicates that the UTC model parameters are filled
bool flag_utc_model_str_5; //!< Clock info send in string 5 of navigation data
bool flag_utc_model_str_15; //!< Clock info send in string 15 of frame 5 of navigation data
// UTC and System Clocks Flags
bool flag_utc_model_valid; //!< If set, it indicates that the UTC model parameters are filled
bool flag_utc_model_str_5; //!< Clock info send in string 5 of navigation data
bool flag_utc_model_str_15; //!< Clock info send in string 15 of frame 5 of navigation data
bool flag_TOW_set; //!< Flag indicating when the TOW has been set
bool flag_TOW_new; //!< Flag indicating when a new TOW has been computed
double d_satClkCorr; //!< Satellite clock error
double d_dtr; //!< Relativistic clock correction term
double d_satClkDrift; //!< Satellite clock drift
double d_previous_tb; //!< Previous iode for the Glonass_Gnav_Ephemeris object. Used to determine when new data arrives
double d_previous_Na[GLONASS_L1_CA_NBR_SATS]; //!< Previous time for almanac of the Glonass_Gnav_Almanac object
double d_satClkCorr; //!< Satellite clock error
double d_dtr; //!< Relativistic clock correction term
double d_satClkDrift; //!< Satellite clock drift
double d_previous_tb; //!< Previous iode for the Glonass_Gnav_Ephemeris object. Used to determine when new data arrives
double d_previous_Na[GLONASS_L1_CA_NBR_SATS]; //!< Previous time for almanac of the Glonass_Gnav_Almanac object
/*!
* \brief Compute CRC for GLONASS GNAV strings
@ -116,10 +111,10 @@ public:
bool CRC_test(std::bitset<GLONASS_GNAV_STRING_BITS> bits);
/*!
* \brief Computes the frame number being decoded given the satellite slot number
* \param satellite_slot_number [in] Satellite slot number identifier
* \returns Frame number being decoded, 0 if operation was not successful.
*/
* \brief Computes the frame number being decoded given the satellite slot number
* \param satellite_slot_number [in] Satellite slot number identifier
* \returns Frame number being decoded, 0 if operation was not successful.
*/
unsigned int get_frame_number(unsigned int satellite_slot_number);
/*!