mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2025-03-28 14:27:03 +00:00
Artemisa tracking is almost working. Code cleaning, refactoring and renaming is in progress!
This commit is contained in:
parent
c2e254debc
commit
27588fa83b
346
conf/gnss-sdr_Hybrid_byte_sim.conf
Normal file
346
conf/gnss-sdr_Hybrid_byte_sim.conf
Normal file
@ -0,0 +1,346 @@
|
||||
; Default configuration file
|
||||
; You can define your own receiver and invoke it by doing
|
||||
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
|
||||
;
|
||||
|
||||
[GNSS-SDR]
|
||||
|
||||
;######### GLOBAL OPTIONS ##################
|
||||
;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz].
|
||||
GNSS-SDR.internal_fs_hz=2600000
|
||||
|
||||
;######### CONTROL_THREAD CONFIG ############
|
||||
ControlThread.wait_for_flowgraph=false
|
||||
|
||||
;######### SIGNAL_SOURCE CONFIG ############
|
||||
;#implementation: Use [File_Signal_Source] or [UHD_Signal_Source] or [GN3S_Signal_Source] (experimental)
|
||||
SignalSource.implementation=File_Signal_Source
|
||||
|
||||
;#filename: path to file with the captured GNSS signal samples to be processed
|
||||
SignalSource.filename=/home/javier/ClionProjects/gnss-sim/build/signal_out.bin
|
||||
|
||||
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
|
||||
SignalSource.item_type=byte
|
||||
|
||||
;#sampling_frequency: Original Signal sampling frequency in [Hz]
|
||||
SignalSource.sampling_frequency=2600000
|
||||
|
||||
;#freq: RF front-end center frequency in [Hz]
|
||||
SignalSource.freq=1575420000
|
||||
|
||||
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
|
||||
SignalSource.samples=0
|
||||
|
||||
;#repeat: Repeat the processing file. Disable this option in this version
|
||||
SignalSource.repeat=false
|
||||
|
||||
;#dump: Dump the Signal source data to a file. Disable this option in this version
|
||||
SignalSource.dump=false
|
||||
|
||||
SignalSource.dump_filename=../data/signal_source.dat
|
||||
|
||||
|
||||
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
|
||||
; it helps to not overload the CPU, but the processing time will be longer.
|
||||
SignalSource.enable_throttle_control=false
|
||||
|
||||
|
||||
;######### SIGNAL_CONDITIONER CONFIG ############
|
||||
;## It holds blocks to change data type, filter and resample input data.
|
||||
|
||||
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
|
||||
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
|
||||
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
|
||||
SignalConditioner.implementation=Signal_Conditioner
|
||||
|
||||
;######### DATA_TYPE_ADAPTER CONFIG ############
|
||||
;## Changes the type of input data. Please disable it in this version.
|
||||
;#implementation: [Pass_Through] disables this block
|
||||
DataTypeAdapter.implementation=Ibyte_To_Complex
|
||||
|
||||
;######### INPUT_FILTER CONFIG ############
|
||||
;## Filter the input data. Can be combined with frequency translation for IF signals
|
||||
|
||||
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
|
||||
;#[Pass_Through] disables this block
|
||||
;#[Fir_Filter] enables a FIR Filter
|
||||
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
|
||||
|
||||
;InputFilter.implementation=Fir_Filter
|
||||
;InputFilter.implementation=Freq_Xlating_Fir_Filter
|
||||
InputFilter.implementation=Pass_Through
|
||||
|
||||
;#dump: Dump the filtered data to a file.
|
||||
InputFilter.dump=false
|
||||
|
||||
;#dump_filename: Log path and filename.
|
||||
InputFilter.dump_filename=../data/input_filter.dat
|
||||
|
||||
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
|
||||
;#These options are based on parameters of gnuradio's function: gr_remez.
|
||||
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse reponse given a set of band edges, the desired reponse on those bands, and the weight given to the error in those bands.
|
||||
|
||||
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
|
||||
InputFilter.input_item_type=gr_complex
|
||||
|
||||
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
|
||||
InputFilter.output_item_type=gr_complex
|
||||
|
||||
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
|
||||
InputFilter.taps_item_type=float
|
||||
|
||||
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
|
||||
InputFilter.number_of_taps=5
|
||||
|
||||
;#number_of _bands: Number of frequency bands in the filter.
|
||||
InputFilter.number_of_bands=2
|
||||
|
||||
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
|
||||
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
|
||||
;#The number of band_begin and band_end elements must match the number of bands
|
||||
|
||||
InputFilter.band1_begin=0.0
|
||||
InputFilter.band1_end=0.45
|
||||
InputFilter.band2_begin=0.55
|
||||
InputFilter.band2_end=1.0
|
||||
|
||||
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
|
||||
;#The number of ampl_begin and ampl_end elements must match the number of bands
|
||||
|
||||
InputFilter.ampl1_begin=1.0
|
||||
InputFilter.ampl1_end=1.0
|
||||
InputFilter.ampl2_begin=0.0
|
||||
InputFilter.ampl2_end=0.0
|
||||
|
||||
;#band_error: weighting applied to each band (usually 1).
|
||||
;#The number of band_error elements must match the number of bands
|
||||
InputFilter.band1_error=1.0
|
||||
InputFilter.band2_error=1.0
|
||||
|
||||
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
|
||||
InputFilter.filter_type=bandpass
|
||||
|
||||
;#grid_density: determines how accurately the filter will be constructed.
|
||||
;The minimum value is 16; higher values are slower to compute the filter.
|
||||
InputFilter.grid_density=16
|
||||
|
||||
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
|
||||
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
|
||||
|
||||
InputFilter.sampling_frequency=2600000
|
||||
InputFilter.IF=0
|
||||
|
||||
|
||||
|
||||
;######### RESAMPLER CONFIG ############
|
||||
;## Resamples the input data.
|
||||
|
||||
;#implementation: Use [Pass_Through] or [Direct_Resampler]
|
||||
;#[Pass_Through] disables this block
|
||||
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
|
||||
;Resampler.implementation=Direct_Resampler
|
||||
Resampler.implementation=Pass_Through
|
||||
|
||||
;#dump: Dump the resamplered data to a file.
|
||||
Resampler.dump=false
|
||||
;#dump_filename: Log path and filename.
|
||||
Resampler.dump_filename=../data/resampler.dat
|
||||
|
||||
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
|
||||
Resampler.item_type=gr_complex
|
||||
|
||||
;#sample_freq_in: the sample frequency of the input signal
|
||||
Resampler.sample_freq_in=2600000
|
||||
|
||||
;#sample_freq_out: the desired sample frequency of the output signal
|
||||
Resampler.sample_freq_out=2600000
|
||||
|
||||
|
||||
;######### CHANNELS GLOBAL CONFIG ############
|
||||
;#count: Number of available GPS satellite channels.
|
||||
Channels_1C.count=8
|
||||
;#count: Number of available Galileo satellite channels.
|
||||
Channels_1B.count=0
|
||||
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
|
||||
Channels.in_acquisition=1
|
||||
|
||||
;#signal:
|
||||
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
|
||||
Channel1.signal=1C
|
||||
Channel2.signal=1C
|
||||
Channel3.signal=1C
|
||||
Channel4.signal=1C
|
||||
Channel5.signal=1C
|
||||
Channel6.signal=1C
|
||||
Channel7.signal=1C
|
||||
Channel8.signal=1B
|
||||
Channel9.signal=1B
|
||||
Channel10.signal=1B
|
||||
Channel11.signal=1B
|
||||
Channel12.signal=1B
|
||||
Channel13.signal=1B
|
||||
Channel14.signal=1B
|
||||
Channel15.signal=1B
|
||||
|
||||
|
||||
;######### GPS ACQUISITION CONFIG ############
|
||||
|
||||
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
|
||||
Acquisition_1C.dump=false
|
||||
;#filename: Log path and filename
|
||||
Acquisition_1C.dump_filename=./acq_dump.dat
|
||||
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
|
||||
Acquisition_1C.item_type=gr_complex
|
||||
;#if: Signal intermediate frequency in [Hz]
|
||||
Acquisition_1C.if=0
|
||||
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
|
||||
Acquisition_1C.sampled_ms=1
|
||||
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
|
||||
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
|
||||
;#threshold: Acquisition threshold
|
||||
Acquisition_1C.threshold=0.035
|
||||
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
|
||||
;Acquisition_1C.pfa=0.01
|
||||
;#doppler_max: Maximum expected Doppler shift [Hz]
|
||||
Acquisition_1C.doppler_max=6000
|
||||
;#doppler_max: Doppler step in the grid search [Hz]
|
||||
Acquisition_1C.doppler_step=100
|
||||
|
||||
|
||||
;######### GALILEO ACQUISITION CONFIG ############
|
||||
|
||||
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
|
||||
Acquisition_1B.dump=false
|
||||
;#filename: Log path and filename
|
||||
Acquisition_1B.dump_filename=./acq_dump.dat
|
||||
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
|
||||
Acquisition_1B.item_type=gr_complex
|
||||
;#if: Signal intermediate frequency in [Hz]
|
||||
Acquisition_1B.if=0
|
||||
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
|
||||
Acquisition_1B.sampled_ms=4
|
||||
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
|
||||
Acquisition_1B.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition
|
||||
;#threshold: Acquisition threshold
|
||||
;Acquisition_1B.threshold=0
|
||||
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
|
||||
Acquisition_1B.pfa=0.0000008
|
||||
;#doppler_max: Maximum expected Doppler shift [Hz]
|
||||
Acquisition_1B.doppler_max=15000
|
||||
;#doppler_max: Doppler step in the grid search [Hz]
|
||||
Acquisition_1B.doppler_step=125
|
||||
|
||||
;######### TRACKING GPS CONFIG ############
|
||||
|
||||
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking] or [GPS_L1_CA_TCP_CONNECTOR_Tracking] or [Galileo_E1_DLL_PLL_VEML_Tracking]
|
||||
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Artemisa_Tracking
|
||||
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
|
||||
Tracking_1C.item_type=gr_complex
|
||||
|
||||
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
|
||||
Tracking_1C.if=0
|
||||
|
||||
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
|
||||
Tracking_1C.dump=true
|
||||
|
||||
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
|
||||
Tracking_1C.dump_filename=../data/epl_tracking_ch_
|
||||
|
||||
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
|
||||
Tracking_1C.pll_bw_hz=45.0;
|
||||
|
||||
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
|
||||
Tracking_1C.dll_bw_hz=2.0;
|
||||
|
||||
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
|
||||
Tracking_1C.fll_bw_hz=10.0;
|
||||
|
||||
;#order: PLL/DLL loop filter order [2] or [3]
|
||||
Tracking_1C.order=3;
|
||||
|
||||
;######### TRACKING GALILEO CONFIG ############
|
||||
|
||||
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking] or [GPS_L1_CA_TCP_CONNECTOR_Tracking] or [Galileo_E1_DLL_PLL_VEML_Tracking]
|
||||
Tracking_1B.implementation=Galileo_E1_DLL_PLL_VEML_Tracking
|
||||
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
|
||||
Tracking_1B.item_type=gr_complex
|
||||
|
||||
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
|
||||
Tracking_1B.if=0
|
||||
|
||||
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
|
||||
Tracking_1B.dump=false
|
||||
|
||||
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
|
||||
Tracking_1B.dump_filename=../data/veml_tracking_ch_
|
||||
|
||||
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
|
||||
Tracking_1B.pll_bw_hz=15.0;
|
||||
|
||||
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
|
||||
Tracking_1B.dll_bw_hz=2.0;
|
||||
|
||||
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
|
||||
Tracking_1B.fll_bw_hz=10.0;
|
||||
|
||||
;#order: PLL/DLL loop filter order [2] or [3]
|
||||
Tracking_1B.order=3;
|
||||
|
||||
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo
|
||||
Tracking_1B.early_late_space_chips=0.15;
|
||||
|
||||
;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6]
|
||||
Tracking_1B.very_early_late_space_chips=0.6;
|
||||
|
||||
|
||||
;######### TELEMETRY DECODER GPS CONFIG ############
|
||||
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
|
||||
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
|
||||
TelemetryDecoder_1C.dump=false
|
||||
;#decimation factor
|
||||
TelemetryDecoder_1C.decimation_factor=1;
|
||||
|
||||
;######### TELEMETRY DECODER GALILEO CONFIG ############
|
||||
;#implementation: Use [Galileo_E1B_Telemetry_Decoder] for Galileo E1B
|
||||
TelemetryDecoder_1B.implementation=Galileo_E1B_Telemetry_Decoder
|
||||
TelemetryDecoder_1B.dump=false
|
||||
TelemetryDecoder_1B.decimation_factor=1;
|
||||
|
||||
;######### OBSERVABLES CONFIG ############
|
||||
;#implementation: Use [GPS_L1_CA_Observables] for GPS L1 C/A.
|
||||
Observables.implementation=GPS_L1_CA_Observables
|
||||
|
||||
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
|
||||
Observables.dump=true
|
||||
|
||||
;#dump_filename: Log path and filename.
|
||||
Observables.dump_filename=./observables.dat
|
||||
|
||||
|
||||
;######### PVT CONFIG ############
|
||||
;#implementation: Position Velocity and Time (PVT) implementation algorithm: Use [GPS_L1_CA_PVT] in this version.
|
||||
PVT.implementation=GPS_L1_CA_PVT
|
||||
|
||||
;#averaging_depth: Number of PVT observations in the moving average algorithm
|
||||
PVT.averaging_depth=10
|
||||
|
||||
;#flag_average: Enables the PVT averaging between output intervals (arithmetic mean) [true] or [false]
|
||||
PVT.flag_averaging=false
|
||||
|
||||
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
|
||||
PVT.output_rate_ms=100;
|
||||
|
||||
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
|
||||
PVT.display_rate_ms=500;
|
||||
|
||||
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
|
||||
PVT.dump=false
|
||||
|
||||
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
|
||||
PVT.dump_filename=./PVT
|
||||
|
||||
;######### OUTPUT_FILTER CONFIG ############
|
||||
;# Receiver output filter: Leave this block disabled in this version
|
||||
OutputFilter.implementation=Null_Sink_Output_Filter
|
||||
OutputFilter.filename=data/gnss-sdr.dat
|
||||
OutputFilter.item_type=gr_complex
|
@ -454,7 +454,7 @@ int Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::general_work (int noutput_items, gr_vecto
|
||||
/*
|
||||
* DLL and FLL+PLL filter and get current carrier Doppler and code frequency
|
||||
*/
|
||||
carr_nco_hz = d_carrier_loop_filter.get_carrier_error(d_FLL_discriminator_hz, PLL_discriminator_hz, correlation_time_s);
|
||||
carr_nco_hz = d_carrier_loop_filter.get_carrier_error(0.0, PLL_discriminator_hz, GPS_L1_CA_CODE_PERIOD);
|
||||
d_carrier_doppler_hz = d_if_freq + carr_nco_hz;
|
||||
|
||||
d_code_freq_hz = GPS_L1_CA_CODE_RATE_HZ + (((d_carrier_doppler_hz + d_if_freq) * GPS_L1_CA_CODE_RATE_HZ) / GPS_L1_FREQ_HZ);
|
||||
@ -528,11 +528,13 @@ int Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::general_work (int noutput_items, gr_vecto
|
||||
double T_prn_samples;
|
||||
double K_blk_samples;
|
||||
T_chip_seconds = 1 / static_cast<double>(d_code_freq_hz);
|
||||
T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
T_chip_seconds=GPS_L1_CA_CHIP_PERIOD;
|
||||
//T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
T_prn_seconds = GPS_L1_CA_CODE_PERIOD;
|
||||
T_prn_samples = T_prn_seconds * d_fs_in;
|
||||
|
||||
float code_error_filt_samples;
|
||||
code_error_filt_samples = T_prn_seconds * code_error_filt_chips * T_chip_seconds * static_cast<double>(d_fs_in); //[seconds]
|
||||
code_error_filt_samples = GPS_L1_CA_CODE_PERIOD * code_error_filt_chips * GPS_L1_CA_CHIP_PERIOD * static_cast<double>(d_fs_in); //[seconds]
|
||||
d_acc_code_phase_samples = d_acc_code_phase_samples + code_error_filt_samples;
|
||||
|
||||
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_samples;
|
||||
|
@ -105,7 +105,7 @@ gps_l1_ca_dll_pll_artemisa_tracking_cc::gps_l1_ca_dll_pll_artemisa_tracking_cc(
|
||||
|
||||
// Initialize tracking ==========================================
|
||||
d_code_loop_filter.set_DLL_BW(dll_bw_hz);
|
||||
d_carrier_loop_filter.set_PLL_BW(pll_bw_hz);
|
||||
d_carrier_loop_filter.set_params(10.0, pll_bw_hz,2);
|
||||
|
||||
//--- DLL variables --------------------------------------------------------
|
||||
d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
|
||||
@ -169,7 +169,8 @@ gps_l1_ca_dll_pll_artemisa_tracking_cc::gps_l1_ca_dll_pll_artemisa_tracking_cc(
|
||||
d_carrier_doppler_hz = 0.0;
|
||||
d_acc_carrier_phase_rad = 0.0;
|
||||
d_code_phase_samples = 0.0;
|
||||
d_acc_code_phase_secs = 0.0;
|
||||
|
||||
d_pll_to_dll_assist_secs_ti=0.0;
|
||||
//set_min_output_buffer((long int)300);
|
||||
}
|
||||
|
||||
@ -219,7 +220,7 @@ void gps_l1_ca_dll_pll_artemisa_tracking_cc::start_tracking()
|
||||
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
|
||||
|
||||
// DLL/PLL filter initialization
|
||||
d_carrier_loop_filter.initialize(); // initialize the carrier filter
|
||||
d_carrier_loop_filter.initialize(d_acq_carrier_doppler_hz);
|
||||
d_code_loop_filter.initialize(); // initialize the code filter
|
||||
|
||||
// generate local reference ALWAYS starting at chip 1 (1 sample per chip)
|
||||
@ -231,7 +232,6 @@ void gps_l1_ca_dll_pll_artemisa_tracking_cc::start_tracking()
|
||||
d_rem_code_phase_samples = 0;
|
||||
d_rem_carr_phase_rad = 0;
|
||||
d_acc_carrier_phase_rad = 0;
|
||||
d_acc_code_phase_secs = 0;
|
||||
|
||||
d_code_phase_samples = d_acq_code_phase_samples;
|
||||
|
||||
@ -247,6 +247,8 @@ void gps_l1_ca_dll_pll_artemisa_tracking_cc::start_tracking()
|
||||
d_pull_in = true;
|
||||
d_enable_tracking = true;
|
||||
|
||||
d_pll_to_dll_assist_secs_ti=0.0;
|
||||
|
||||
LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz
|
||||
<< " Code Phase correction [samples]=" << delay_correction_samples
|
||||
<< " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples;
|
||||
@ -317,8 +319,6 @@ void gps_l1_ca_dll_pll_artemisa_tracking_cc::update_local_carrier()
|
||||
d_carr_sign[i] = std::complex<float>(cos_f, -sin_f);
|
||||
phase_rad_i += phase_step_rad_i;
|
||||
}
|
||||
//d_rem_carr_phase_rad = fmod(phase_rad, GPS_TWO_PI);
|
||||
//d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + d_rem_carr_phase_rad;
|
||||
}
|
||||
|
||||
|
||||
@ -343,12 +343,6 @@ gps_l1_ca_dll_pll_artemisa_tracking_cc::~gps_l1_ca_dll_pll_artemisa_tracking_cc(
|
||||
int gps_l1_ca_dll_pll_artemisa_tracking_cc::general_work (int noutput_items, gr_vector_int &ninput_items,
|
||||
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
|
||||
{
|
||||
// process vars
|
||||
float carr_error_hz;
|
||||
float carr_error_filt_hz;
|
||||
float code_error_chips;
|
||||
float code_error_filt_chips;
|
||||
|
||||
// Block input data and block output stream pointers
|
||||
const gr_complex* in = (gr_complex*) input_items[0]; //PRN start block alignment
|
||||
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0];
|
||||
@ -356,6 +350,18 @@ int gps_l1_ca_dll_pll_artemisa_tracking_cc::general_work (int noutput_items, gr_
|
||||
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
|
||||
Gnss_Synchro current_synchro_data = Gnss_Synchro();
|
||||
|
||||
// process vars
|
||||
float code_error_chips=0.0;
|
||||
float code_error_secs=0.0;
|
||||
float code_error_filt_chips=0.0;
|
||||
float code_error_filt_secs=0.0;
|
||||
float INTEGRATION_TIME=0.0;
|
||||
INTEGRATION_TIME=GPS_L1_CA_CODE_PERIOD; // [Ti]
|
||||
float dll_delta_rho=0.0;
|
||||
float carr_phase_error_secs_ti=0.0;
|
||||
float carr_phase_error_filt_secs_ti=0.0;
|
||||
float pll_to_dll_assist_secs_ti=0.0;
|
||||
|
||||
if (d_enable_tracking == true)
|
||||
{
|
||||
// Receiver signal alignment
|
||||
@ -394,34 +400,35 @@ int gps_l1_ca_dll_pll_artemisa_tracking_cc::general_work (int noutput_items, gr_
|
||||
d_Prompt,
|
||||
d_Late);
|
||||
|
||||
|
||||
|
||||
// ################## DLL ##########################################################
|
||||
// DLL discriminator
|
||||
code_error_chips = dll_nc_e_minus_l_normalized(*d_Early, *d_Late); //[chips/Ti]
|
||||
code_error_secs = code_error_chips*GPS_L1_CA_CHIP_PERIOD;
|
||||
// Code discriminator filter
|
||||
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second]
|
||||
//Code phase accumulator
|
||||
float code_error_filt_secs;
|
||||
code_error_filt_secs = (GPS_L1_CA_CODE_PERIOD * code_error_filt_chips) / GPS_L1_CA_CODE_RATE_HZ; //[seconds]
|
||||
d_acc_code_phase_secs = d_acc_code_phase_secs + code_error_filt_secs;
|
||||
code_error_filt_secs = code_error_filt_chips*GPS_L1_CA_CHIP_PERIOD*GPS_L1_CA_CODE_PERIOD;
|
||||
// DLL code error estimation [s/Ti]
|
||||
dll_delta_rho=-code_error_filt_secs+d_pll_to_dll_assist_secs_ti;
|
||||
|
||||
// ################## PLL ##########################################################
|
||||
// PLL discriminator
|
||||
carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / static_cast<float>(GPS_TWO_PI);
|
||||
// PLL discriminator [rads/Ti -> Secs/Ti]
|
||||
carr_phase_error_secs_ti = pll_cloop_two_quadrant_atan(*d_Prompt)/GPS_TWO_PI;
|
||||
// Carrier discriminator filter
|
||||
carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz);
|
||||
//d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_phase_error_filt_secs_ti/INTEGRATION_TIME;
|
||||
d_carrier_doppler_hz = d_carrier_loop_filter.get_carrier_error(0.0, carr_phase_error_secs_ti, INTEGRATION_TIME);
|
||||
// PLL to DLL assistance [Secs/Ti]
|
||||
pll_to_dll_assist_secs_ti = d_carrier_doppler_hz*GPS_L1_CA_CODE_PERIOD;
|
||||
d_pll_to_dll_assist_secs_ti = pll_to_dll_assist_secs_ti/GPS_L1_FREQ_HZ;
|
||||
// New carrier Doppler frequency estimation
|
||||
d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_error_filt_hz;
|
||||
//PLL COMMAND
|
||||
d_rem_carr_phase_rad = d_rem_carr_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * GPS_L1_CA_CODE_PERIOD;//GPS_TWO_PI*carr_phase_error_filt_secs_ti;
|
||||
// New code Doppler frequency estimation
|
||||
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L1_CA_CODE_RATE_HZ) / GPS_L1_FREQ_HZ);
|
||||
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ;// + ((d_carrier_doppler_hz * GPS_L1_CA_CODE_RATE_HZ) / GPS_L1_FREQ_HZ);
|
||||
//carrier phase accumulator for (K) doppler estimation
|
||||
d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * GPS_L1_CA_CODE_PERIOD;
|
||||
//remanent carrier phase to prevent overflow in the code NCO
|
||||
d_rem_carr_phase_rad = d_rem_carr_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * GPS_L1_CA_CODE_PERIOD;
|
||||
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_TWO_PI);
|
||||
d_acc_carrier_phase_rad += GPS_TWO_PI*d_carrier_doppler_hz*INTEGRATION_TIME;
|
||||
|
||||
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT #######################
|
||||
//DLL COMMAND
|
||||
// keep alignment parameters for the next input buffer
|
||||
double T_chip_seconds;
|
||||
double T_prn_seconds;
|
||||
@ -431,11 +438,10 @@ int gps_l1_ca_dll_pll_artemisa_tracking_cc::general_work (int noutput_items, gr_
|
||||
T_chip_seconds = 1 / static_cast<double>(d_code_freq_chips);
|
||||
T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
|
||||
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast<double>(d_fs_in);
|
||||
K_blk_samples = T_prn_samples + d_rem_code_phase_samples - static_cast<double>(dll_delta_rho) * static_cast<double>(d_fs_in);
|
||||
d_current_prn_length_samples = round(K_blk_samples); //round to a discrete samples
|
||||
|
||||
|
||||
|
||||
d_rem_code_phase_samples = K_blk_samples - static_cast<double>(d_current_prn_length_samples); //rounding error < 1 sample
|
||||
|
||||
// ####### CN0 ESTIMATION AND LOCK DETECTORS ######
|
||||
if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES)
|
||||
@ -481,8 +487,6 @@ int gps_l1_ca_dll_pll_artemisa_tracking_cc::general_work (int noutput_items, gr_
|
||||
|
||||
// Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!, but some glitches??)
|
||||
current_synchro_data.Tracking_timestamp_secs = (static_cast<double>(d_sample_counter) + static_cast<double>(d_rem_code_phase_samples)) / static_cast<double>(d_fs_in);
|
||||
//compute remnant code phase samples AFTER the Tracking timestamp
|
||||
d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
|
||||
|
||||
// This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0
|
||||
current_synchro_data.Code_phase_secs = 0;
|
||||
@ -580,8 +584,8 @@ int gps_l1_ca_dll_pll_artemisa_tracking_cc::general_work (int noutput_items, gr_
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
|
||||
|
||||
//PLL commands
|
||||
d_dump_file.write(reinterpret_cast<char*>(&carr_error_hz), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&carr_error_filt_hz), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&carr_phase_error_secs_ti), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&carr_phase_error_filt_secs_ti), sizeof(float));
|
||||
|
||||
//DLL commands
|
||||
d_dump_file.write(reinterpret_cast<char*>(&code_error_chips), sizeof(float));
|
||||
|
@ -49,7 +49,7 @@
|
||||
#include "gps_sdr_signal_processing.h"
|
||||
#include "gnss_synchro.h"
|
||||
#include "tracking_2nd_DLL_filter.h"
|
||||
#include "tracking_2nd_PLL_filter.h"
|
||||
#include "tracking_FLL_PLL_filter.h"
|
||||
#include "correlator.h"
|
||||
|
||||
class gps_l1_ca_dll_pll_artemisa_tracking_cc;
|
||||
@ -143,7 +143,7 @@ private:
|
||||
|
||||
// PLL and DLL filter library
|
||||
Tracking_2nd_DLL_filter d_code_loop_filter;
|
||||
Tracking_2nd_PLL_filter d_carrier_loop_filter;
|
||||
Tracking_FLL_PLL_filter d_carrier_loop_filter;
|
||||
|
||||
// acquisition
|
||||
float d_acq_code_phase_samples;
|
||||
@ -156,7 +156,7 @@ private:
|
||||
float d_carrier_doppler_hz;
|
||||
float d_acc_carrier_phase_rad;
|
||||
float d_code_phase_samples;
|
||||
float d_acc_code_phase_secs;
|
||||
float d_pll_to_dll_assist_secs_ti;
|
||||
|
||||
//PRN period in samples
|
||||
int d_current_prn_length_samples;
|
||||
|
@ -116,41 +116,32 @@ Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc(
|
||||
//--- DLL variables --------------------------------------------------------
|
||||
d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
|
||||
|
||||
// Initialization of local code replica
|
||||
// Get space for a vector with the C/A code replica sampled 1x/chip
|
||||
//d_ca_code = static_cast<gr_complex*>(volk_malloc((GPS_L1_CA_CODE_LENGTH_CHIPS + 2) * sizeof(gr_complex), volk_get_alignment()));
|
||||
d_ca_code = static_cast<gr_complex*>(volk_malloc((GPS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(gr_complex), volk_get_alignment()));
|
||||
|
||||
multicorrelator_gpu = new cuda_multicorrelator();
|
||||
int N_CORRELATORS=3;
|
||||
//local code resampler on CPU (old)
|
||||
//multicorrelator_gpu->init_cuda(0, NULL, 2 * d_vector_length , 2 * d_vector_length , N_CORRELATORS);
|
||||
|
||||
//local code resampler on GPU (new)
|
||||
multicorrelator_gpu->init_cuda_integrated_resampler(0, NULL, 2 * d_vector_length , GPS_L1_CA_CODE_LENGTH_CHIPS , N_CORRELATORS);
|
||||
|
||||
// Get space for the resampled early / prompt / late local replicas
|
||||
cudaHostAlloc((void**)&d_local_code_shift_chips, N_CORRELATORS * sizeof(float), cudaHostAllocMapped );
|
||||
|
||||
|
||||
// Set GPU flags
|
||||
cudaSetDeviceFlags(cudaDeviceMapHost);
|
||||
//allocate host memory
|
||||
//pinned memory mode - use special function to get OS-pinned memory
|
||||
cudaHostAlloc((void**)&in_gpu, 2 * d_vector_length * sizeof(gr_complex), cudaHostAllocMapped );
|
||||
|
||||
//old local codes vector
|
||||
// (cudaHostAlloc((void**)&d_local_codes_gpu, (V_LEN * sizeof(gr_complex))*N_CORRELATORS, cudaHostAllocWriteCombined ));
|
||||
|
||||
//new integrated shifts
|
||||
// (cudaHostAlloc((void**)&d_local_codes_gpu, (2 * d_vector_length * sizeof(gr_complex)), cudaHostAllocWriteCombined ));
|
||||
|
||||
int N_CORRELATORS=3;
|
||||
// Get space for a vector with the C/A code replica sampled 1x/chip
|
||||
cudaHostAlloc((void**)&d_ca_code, (GPS_L1_CA_CODE_LENGTH_CHIPS* sizeof(gr_complex)), cudaHostAllocMapped || cudaHostAllocWriteCombined);
|
||||
// Get space for the resampled early / prompt / late local replicas
|
||||
cudaHostAlloc((void**)&d_local_code_shift_chips, N_CORRELATORS * sizeof(float), cudaHostAllocMapped || cudaHostAllocWriteCombined);
|
||||
cudaHostAlloc((void**)&in_gpu, 2 * d_vector_length * sizeof(gr_complex), cudaHostAllocMapped || cudaHostAllocWriteCombined);
|
||||
// correlator outputs (scalar)
|
||||
cudaHostAlloc((void**)&d_corr_outs_gpu ,sizeof(gr_complex)*N_CORRELATORS, cudaHostAllocWriteCombined );
|
||||
cudaHostAlloc((void**)&d_corr_outs_gpu ,sizeof(gr_complex)*N_CORRELATORS, cudaHostAllocMapped || cudaHostAllocWriteCombined );
|
||||
|
||||
//map to EPL pointers
|
||||
d_Early = &d_corr_outs_gpu[0];
|
||||
d_Prompt = &d_corr_outs_gpu[1];
|
||||
d_Late = &d_corr_outs_gpu[2];
|
||||
|
||||
//--- Perform initializations ------------------------------
|
||||
multicorrelator_gpu = new cuda_multicorrelator();
|
||||
//local code resampler on GPU
|
||||
multicorrelator_gpu->init_cuda_integrated_resampler(2 * d_vector_length,GPS_L1_CA_CODE_LENGTH_CHIPS,3);
|
||||
multicorrelator_gpu->set_input_output_vectors(
|
||||
d_corr_outs_gpu,
|
||||
in_gpu
|
||||
);
|
||||
// define initial code frequency basis of NCO
|
||||
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ;
|
||||
// define residual code phase (in chips)
|
||||
@ -251,7 +242,12 @@ void Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::start_tracking()
|
||||
d_local_code_shift_chips[1]=0.0;
|
||||
d_local_code_shift_chips[2]=d_early_late_spc_chips;
|
||||
|
||||
multicorrelator_gpu->set_local_code_and_taps(GPS_L1_CA_CODE_LENGTH_CHIPS,d_ca_code, d_local_code_shift_chips,3);
|
||||
multicorrelator_gpu->set_local_code_and_taps(
|
||||
GPS_L1_CA_CODE_LENGTH_CHIPS,
|
||||
d_ca_code,
|
||||
d_local_code_shift_chips,
|
||||
3
|
||||
);
|
||||
|
||||
d_carrier_lock_fail_counter = 0;
|
||||
d_rem_code_phase_samples = 0;
|
||||
@ -284,15 +280,12 @@ Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::~Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc()
|
||||
d_dump_file.close();
|
||||
|
||||
cudaFreeHost(in_gpu);
|
||||
cudaFreeHost(d_carr_sign_gpu);
|
||||
cudaFreeHost(d_corr_outs_gpu);
|
||||
cudaFreeHost(d_local_code_shift_chips);
|
||||
cudaFreeHost(d_ca_code);
|
||||
|
||||
multicorrelator_gpu->free_cuda();
|
||||
delete(multicorrelator_gpu);
|
||||
|
||||
volk_free(d_ca_code);
|
||||
|
||||
delete[] d_Prompt_buffer;
|
||||
}
|
||||
|
||||
@ -342,10 +335,9 @@ int Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::general_work (int noutput_items, gr_vecto
|
||||
float code_phase_step_chips = static_cast<float>(d_code_freq_chips) / static_cast<float>(d_fs_in);
|
||||
float rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / d_fs_in);
|
||||
|
||||
memcpy(in_gpu,in,sizeof(gr_complex)*d_current_prn_length_samples);
|
||||
cudaProfilerStart();
|
||||
multicorrelator_gpu->Carrier_wipeoff_multicorrelator_resampler_cuda(
|
||||
d_corr_outs_gpu,
|
||||
in,
|
||||
d_rem_carr_phase_rad,
|
||||
phase_step_rad,
|
||||
code_phase_step_chips,
|
||||
|
@ -101,7 +101,7 @@ float dll_nc_e_minus_l_normalized(gr_complex early_s1, gr_complex late_s1)
|
||||
float P_early, P_late;
|
||||
P_early = std::abs(early_s1);
|
||||
P_late = std::abs(late_s1);
|
||||
return (P_early - P_late) / ((P_early + P_late));
|
||||
return 0.5*(P_early - P_late) / ((P_early + P_late));
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -53,6 +53,7 @@ const double GPS_L1_FREQ_HZ = 1.57542e9; //!< L1 [Hz]
|
||||
const double GPS_L1_CA_CODE_RATE_HZ = 1.023e6; //!< GPS L1 C/A code rate [chips/s]
|
||||
const double GPS_L1_CA_CODE_LENGTH_CHIPS = 1023.0; //!< GPS L1 C/A code length [chips]
|
||||
const double GPS_L1_CA_CODE_PERIOD = 0.001; //!< GPS L1 C/A code period [seconds]
|
||||
const double GPS_L1_CA_CHIP_PERIOD = 1.0e-6; //!< GPS L1 C/A chip period [seconds]
|
||||
|
||||
/*!
|
||||
* \brief Maximum Time-Of-Arrival (TOA) difference between satellites for a receiver operated on Earth surface is 20 ms
|
||||
|
Loading…
x
Reference in New Issue
Block a user