mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2025-01-18 21:23:02 +00:00
Merge branch 'next' into tracking_conf_structure
This commit is contained in:
commit
267e9d95c6
@ -45,6 +45,7 @@ GalileoE1PcpsAmbiguousAcquisition::GalileoE1PcpsAmbiguousAcquisition(
|
||||
ConfigurationInterface* configuration, std::string role,
|
||||
unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams)
|
||||
{
|
||||
pcpsconf_t acq_parameters;
|
||||
configuration_ = configuration;
|
||||
std::string default_item_type = "gr_complex";
|
||||
std::string default_dump_filename = "./data/acquisition.dat";
|
||||
@ -55,32 +56,33 @@ GalileoE1PcpsAmbiguousAcquisition::GalileoE1PcpsAmbiguousAcquisition(
|
||||
|
||||
long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 4000000);
|
||||
fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
|
||||
acq_parameters.fs_in = fs_in_;
|
||||
if_ = configuration_->property(role + ".if", 0);
|
||||
acq_parameters.freq = if_;
|
||||
dump_ = configuration_->property(role + ".dump", false);
|
||||
acq_parameters.dump = dump_;
|
||||
blocking_ = configuration_->property(role + ".blocking", true);
|
||||
acq_parameters.blocking = blocking_;
|
||||
doppler_max_ = configuration_->property(role + ".doppler_max", 5000);
|
||||
if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max;
|
||||
sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 4);
|
||||
|
||||
if (sampled_ms_ % 4 != 0)
|
||||
{
|
||||
sampled_ms_ = static_cast<int>(sampled_ms_ / 4) * 4;
|
||||
LOG(WARNING) << "coherent_integration_time should be multiple of "
|
||||
<< "Galileo code length (4 ms). coherent_integration_time = "
|
||||
<< sampled_ms_ << " ms will be used.";
|
||||
}
|
||||
|
||||
acq_parameters.doppler_max = doppler_max_;
|
||||
sampled_ms_ = 4;
|
||||
acq_parameters.sampled_ms = sampled_ms_;
|
||||
bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
|
||||
acq_parameters.bit_transition_flag = bit_transition_flag_;
|
||||
use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true); //will be false in future versions
|
||||
acquire_pilot_ = configuration_->property(role + ".acquire_pilot", false); //will be true in future versions
|
||||
acq_parameters.use_CFAR_algorithm_flag = use_CFAR_algorithm_flag_;
|
||||
acquire_pilot_ = configuration_->property(role + ".acquire_pilot", false); //will be true in future versions
|
||||
|
||||
max_dwells_ = configuration_->property(role + ".max_dwells", 1);
|
||||
|
||||
acq_parameters.max_dwells = max_dwells_;
|
||||
dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename);
|
||||
|
||||
acq_parameters.dump_filename = dump_filename_;
|
||||
//--- Find number of samples per spreading code (4 ms) -----------------
|
||||
code_length_ = round(fs_in_ / (Galileo_E1_CODE_CHIP_RATE_HZ / Galileo_E1_B_CODE_LENGTH_CHIPS));
|
||||
int samples_per_ms = round(code_length_ / 4.0);
|
||||
code_length_ = static_cast<unsigned int>(std::round(static_cast<double>(fs_in_) / (Galileo_E1_CODE_CHIP_RATE_HZ / Galileo_E1_B_CODE_LENGTH_CHIPS)));
|
||||
acq_parameters.samples_per_code = code_length_;
|
||||
int samples_per_ms = static_cast<int>(std::round(static_cast<double>(fs_in_) * 0.001));
|
||||
acq_parameters.samples_per_ms = samples_per_ms;
|
||||
vector_length_ = sampled_ms_ * samples_per_ms;
|
||||
|
||||
if (bit_transition_flag_)
|
||||
@ -98,10 +100,11 @@ GalileoE1PcpsAmbiguousAcquisition::GalileoE1PcpsAmbiguousAcquisition(
|
||||
{
|
||||
item_size_ = sizeof(gr_complex);
|
||||
}
|
||||
acquisition_ = pcps_make_acquisition(sampled_ms_, max_dwells_,
|
||||
doppler_max_, if_, fs_in_, samples_per_ms, code_length_,
|
||||
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_,
|
||||
dump_filename_, item_size_);
|
||||
acq_parameters.it_size = item_size_;
|
||||
acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
|
||||
acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
|
||||
acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", false);
|
||||
acquisition_ = pcps_make_acquisition(acq_parameters);
|
||||
DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
|
||||
|
||||
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
|
||||
|
@ -44,6 +44,7 @@ using google::LogMessage;
|
||||
GalileoE5aPcpsAcquisition::GalileoE5aPcpsAcquisition(ConfigurationInterface* configuration,
|
||||
std::string role, unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams)
|
||||
{
|
||||
pcpsconf_t acq_parameters;
|
||||
configuration_ = configuration;
|
||||
std::string default_item_type = "gr_complex";
|
||||
std::string default_dump_filename = "../data/acquisition.dat";
|
||||
@ -54,6 +55,8 @@ GalileoE5aPcpsAcquisition::GalileoE5aPcpsAcquisition(ConfigurationInterface* con
|
||||
|
||||
long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 32000000);
|
||||
fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
|
||||
acq_parameters.fs_in = fs_in_;
|
||||
acq_parameters.freq = 0;
|
||||
acq_pilot_ = configuration_->property(role + ".acquire_pilot", false);
|
||||
acq_iq_ = configuration_->property(role + ".acquire_iq", false);
|
||||
if (acq_iq_)
|
||||
@ -61,17 +64,23 @@ GalileoE5aPcpsAcquisition::GalileoE5aPcpsAcquisition(ConfigurationInterface* con
|
||||
acq_pilot_ = false;
|
||||
}
|
||||
dump_ = configuration_->property(role + ".dump", false);
|
||||
acq_parameters.dump = dump_;
|
||||
doppler_max_ = configuration_->property(role + ".doppler_max", 5000);
|
||||
if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max;
|
||||
sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 1);
|
||||
acq_parameters.doppler_max = doppler_max_;
|
||||
sampled_ms_ = 1;
|
||||
max_dwells_ = configuration_->property(role + ".max_dwells", 1);
|
||||
acq_parameters.max_dwells = max_dwells_;
|
||||
dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename);
|
||||
acq_parameters.dump_filename = dump_filename_;
|
||||
bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
|
||||
acq_parameters.bit_transition_flag = bit_transition_flag_;
|
||||
use_CFAR_ = configuration_->property(role + ".use_CFAR_algorithm", false);
|
||||
acq_parameters.use_CFAR_algorithm_flag = use_CFAR_;
|
||||
blocking_ = configuration_->property(role + ".blocking", true);
|
||||
|
||||
acq_parameters.blocking = blocking_;
|
||||
//--- Find number of samples per spreading code (1ms)-------------------------
|
||||
code_length_ = round(static_cast<double>(fs_in_) / Galileo_E5a_CODE_CHIP_RATE_HZ * static_cast<double>(Galileo_E5a_CODE_LENGTH_CHIPS));
|
||||
code_length_ = static_cast<unsigned int>(std::round(static_cast<double>(fs_in_) / Galileo_E5a_CODE_CHIP_RATE_HZ * static_cast<double>(Galileo_E5a_CODE_LENGTH_CHIPS)));
|
||||
vector_length_ = code_length_ * sampled_ms_;
|
||||
|
||||
code_ = new gr_complex[vector_length_];
|
||||
@ -89,10 +98,14 @@ GalileoE5aPcpsAcquisition::GalileoE5aPcpsAcquisition(ConfigurationInterface* con
|
||||
item_size_ = sizeof(gr_complex);
|
||||
LOG(WARNING) << item_type_ << " unknown acquisition item type";
|
||||
}
|
||||
|
||||
acquisition_ = pcps_make_acquisition(sampled_ms_, max_dwells_, doppler_max_, 0, fs_in_,
|
||||
code_length_, code_length_, bit_transition_flag_, use_CFAR_, dump_, blocking_,
|
||||
dump_filename_, item_size_);
|
||||
acq_parameters.it_size = item_size_;
|
||||
acq_parameters.samples_per_code = code_length_;
|
||||
acq_parameters.samples_per_ms = code_length_;
|
||||
acq_parameters.sampled_ms = sampled_ms_;
|
||||
acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
|
||||
acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
|
||||
acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", false);
|
||||
acquisition_ = pcps_make_acquisition(acq_parameters);
|
||||
|
||||
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
|
||||
channel_ = 0;
|
||||
|
@ -46,6 +46,7 @@ GlonassL1CaPcpsAcquisition::GlonassL1CaPcpsAcquisition(
|
||||
ConfigurationInterface* configuration, std::string role,
|
||||
unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams)
|
||||
{
|
||||
pcpsconf_t acq_parameters;
|
||||
configuration_ = configuration;
|
||||
std::string default_item_type = "gr_complex";
|
||||
std::string default_dump_filename = "./data/acquisition.dat";
|
||||
@ -56,22 +57,28 @@ GlonassL1CaPcpsAcquisition::GlonassL1CaPcpsAcquisition(
|
||||
|
||||
long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000);
|
||||
fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
|
||||
acq_parameters.fs_in = fs_in_;
|
||||
if_ = configuration_->property(role + ".if", 0);
|
||||
acq_parameters.freq = if_;
|
||||
dump_ = configuration_->property(role + ".dump", false);
|
||||
acq_parameters.dump = dump_;
|
||||
blocking_ = configuration_->property(role + ".blocking", true);
|
||||
acq_parameters.blocking = blocking_;
|
||||
doppler_max_ = configuration_->property(role + ".doppler_max", 5000);
|
||||
if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max;
|
||||
acq_parameters.doppler_max = doppler_max_;
|
||||
sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 1);
|
||||
|
||||
acq_parameters.sampled_ms = sampled_ms_;
|
||||
bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
|
||||
acq_parameters.bit_transition_flag = bit_transition_flag_;
|
||||
use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true); //will be false in future versions
|
||||
|
||||
acq_parameters.use_CFAR_algorithm_flag = use_CFAR_algorithm_flag_;
|
||||
max_dwells_ = configuration_->property(role + ".max_dwells", 1);
|
||||
|
||||
acq_parameters.max_dwells = max_dwells_;
|
||||
dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename);
|
||||
|
||||
acq_parameters.dump_filename = dump_filename_;
|
||||
//--- Find number of samples per spreading code -------------------------
|
||||
code_length_ = round(fs_in_ / (GLONASS_L1_CA_CODE_RATE_HZ / GLONASS_L1_CA_CODE_LENGTH_CHIPS));
|
||||
code_length_ = static_cast<unsigned int>(std::round(static_cast<double>(fs_in_) / (GLONASS_L1_CA_CODE_RATE_HZ / GLONASS_L1_CA_CODE_LENGTH_CHIPS)));
|
||||
|
||||
vector_length_ = code_length_ * sampled_ms_;
|
||||
|
||||
@ -90,9 +97,14 @@ GlonassL1CaPcpsAcquisition::GlonassL1CaPcpsAcquisition(
|
||||
{
|
||||
item_size_ = sizeof(gr_complex);
|
||||
}
|
||||
acquisition_ = pcps_make_acquisition(sampled_ms_, max_dwells_,
|
||||
doppler_max_, if_, fs_in_, code_length_, code_length_,
|
||||
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_, dump_filename_, item_size_);
|
||||
acq_parameters.it_size = item_size_;
|
||||
acq_parameters.sampled_ms = sampled_ms_;
|
||||
acq_parameters.samples_per_ms = code_length_;
|
||||
acq_parameters.samples_per_code = code_length_;
|
||||
acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
|
||||
acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
|
||||
acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", false);
|
||||
acquisition_ = pcps_make_acquisition(acq_parameters);
|
||||
DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
|
||||
|
||||
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
|
||||
|
@ -45,6 +45,7 @@ GlonassL2CaPcpsAcquisition::GlonassL2CaPcpsAcquisition(
|
||||
ConfigurationInterface* configuration, std::string role,
|
||||
unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams)
|
||||
{
|
||||
pcpsconf_t acq_parameters;
|
||||
configuration_ = configuration;
|
||||
std::string default_item_type = "gr_complex";
|
||||
std::string default_dump_filename = "./data/acquisition.dat";
|
||||
@ -55,22 +56,28 @@ GlonassL2CaPcpsAcquisition::GlonassL2CaPcpsAcquisition(
|
||||
|
||||
long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000);
|
||||
fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
|
||||
acq_parameters.fs_in = fs_in_;
|
||||
if_ = configuration_->property(role + ".if", 0);
|
||||
acq_parameters.freq = if_;
|
||||
dump_ = configuration_->property(role + ".dump", false);
|
||||
acq_parameters.dump = dump_;
|
||||
blocking_ = configuration_->property(role + ".blocking", true);
|
||||
acq_parameters.blocking = blocking_;
|
||||
doppler_max_ = configuration_->property(role + ".doppler_max", 5000);
|
||||
if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max;
|
||||
acq_parameters.doppler_max = doppler_max_;
|
||||
sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 1);
|
||||
|
||||
bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
|
||||
acq_parameters.bit_transition_flag = bit_transition_flag_;
|
||||
use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true); //will be false in future versions
|
||||
|
||||
acq_parameters.use_CFAR_algorithm_flag = use_CFAR_algorithm_flag_;
|
||||
max_dwells_ = configuration_->property(role + ".max_dwells", 1);
|
||||
acq_parameters.max_dwells = max_dwells_;
|
||||
|
||||
dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename);
|
||||
|
||||
acq_parameters.dump_filename = dump_filename_;
|
||||
//--- Find number of samples per spreading code -------------------------
|
||||
code_length_ = round(fs_in_ / (GLONASS_L2_CA_CODE_RATE_HZ / GLONASS_L2_CA_CODE_LENGTH_CHIPS));
|
||||
code_length_ = static_cast<unsigned int>(std::round(static_cast<double>(fs_in_) / (GLONASS_L2_CA_CODE_RATE_HZ / GLONASS_L2_CA_CODE_LENGTH_CHIPS)));
|
||||
|
||||
vector_length_ = code_length_ * sampled_ms_;
|
||||
|
||||
@ -89,9 +96,14 @@ GlonassL2CaPcpsAcquisition::GlonassL2CaPcpsAcquisition(
|
||||
{
|
||||
item_size_ = sizeof(gr_complex);
|
||||
}
|
||||
acquisition_ = pcps_make_acquisition(sampled_ms_, max_dwells_,
|
||||
doppler_max_, if_, fs_in_, code_length_, code_length_,
|
||||
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_, dump_filename_, item_size_);
|
||||
acq_parameters.it_size = item_size_;
|
||||
acq_parameters.sampled_ms = sampled_ms_;
|
||||
acq_parameters.samples_per_ms = code_length_;
|
||||
acq_parameters.samples_per_code = code_length_;
|
||||
acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
|
||||
acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
|
||||
acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", false);
|
||||
acquisition_ = pcps_make_acquisition(acq_parameters);
|
||||
DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
|
||||
|
||||
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
|
||||
|
@ -48,6 +48,7 @@ GpsL1CaPcpsAcquisition::GpsL1CaPcpsAcquisition(
|
||||
ConfigurationInterface* configuration, std::string role,
|
||||
unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams)
|
||||
{
|
||||
pcpsconf_t acq_parameters;
|
||||
configuration_ = configuration;
|
||||
std::string default_item_type = "gr_complex";
|
||||
std::string default_dump_filename = "./data/acquisition.dat";
|
||||
@ -57,22 +58,31 @@ GpsL1CaPcpsAcquisition::GpsL1CaPcpsAcquisition(
|
||||
item_type_ = configuration_->property(role + ".item_type", default_item_type);
|
||||
long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000);
|
||||
fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
|
||||
acq_parameters.fs_in = fs_in_;
|
||||
if_ = configuration_->property(role + ".if", 0);
|
||||
acq_parameters.freq = if_;
|
||||
dump_ = configuration_->property(role + ".dump", false);
|
||||
acq_parameters.dump = dump_;
|
||||
blocking_ = configuration_->property(role + ".blocking", true);
|
||||
acq_parameters.blocking = blocking_;
|
||||
doppler_max_ = configuration_->property(role + ".doppler_max", 5000);
|
||||
if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max;
|
||||
acq_parameters.doppler_max = doppler_max_;
|
||||
sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 1);
|
||||
|
||||
acq_parameters.sampled_ms = sampled_ms_;
|
||||
bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
|
||||
acq_parameters.bit_transition_flag = bit_transition_flag_;
|
||||
use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true); //will be false in future versions
|
||||
|
||||
acq_parameters.use_CFAR_algorithm_flag = use_CFAR_algorithm_flag_;
|
||||
max_dwells_ = configuration_->property(role + ".max_dwells", 1);
|
||||
|
||||
acq_parameters.max_dwells = max_dwells_;
|
||||
dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename);
|
||||
|
||||
acq_parameters.dump_filename = dump_filename_;
|
||||
acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
|
||||
acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
|
||||
acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", false);
|
||||
//--- Find number of samples per spreading code -------------------------
|
||||
code_length_ = round(fs_in_ / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS));
|
||||
code_length_ = static_cast<unsigned int>(std::round(static_cast<double>(fs_in_) / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS)));
|
||||
|
||||
vector_length_ = code_length_ * sampled_ms_;
|
||||
|
||||
@ -91,9 +101,10 @@ GpsL1CaPcpsAcquisition::GpsL1CaPcpsAcquisition(
|
||||
{
|
||||
item_size_ = sizeof(gr_complex);
|
||||
}
|
||||
acquisition_ = pcps_make_acquisition(sampled_ms_, max_dwells_,
|
||||
doppler_max_, if_, fs_in_, code_length_, code_length_,
|
||||
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_, dump_filename_, item_size_);
|
||||
acq_parameters.samples_per_ms = code_length_;
|
||||
acq_parameters.samples_per_code = code_length_;
|
||||
acq_parameters.it_size = item_size_;
|
||||
acquisition_ = pcps_make_acquisition(acq_parameters);
|
||||
DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
|
||||
|
||||
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
|
||||
|
@ -46,6 +46,7 @@ GpsL2MPcpsAcquisition::GpsL2MPcpsAcquisition(
|
||||
ConfigurationInterface* configuration, std::string role,
|
||||
unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams)
|
||||
{
|
||||
pcpsconf_t acq_parameters;
|
||||
configuration_ = configuration;
|
||||
std::string default_item_type = "gr_complex";
|
||||
std::string default_dump_filename = "./data/acquisition.dat";
|
||||
@ -57,21 +58,26 @@ GpsL2MPcpsAcquisition::GpsL2MPcpsAcquisition(
|
||||
|
||||
long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000);
|
||||
fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
|
||||
acq_parameters.fs_in = fs_in_;
|
||||
if_ = configuration_->property(role + ".if", 0);
|
||||
acq_parameters.freq = if_;
|
||||
dump_ = configuration_->property(role + ".dump", false);
|
||||
acq_parameters.dump = dump_;
|
||||
blocking_ = configuration_->property(role + ".blocking", true);
|
||||
acq_parameters.blocking = blocking_;
|
||||
doppler_max_ = configuration->property(role + ".doppler_max", 5000);
|
||||
if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max;
|
||||
|
||||
acq_parameters.doppler_max = doppler_max_;
|
||||
bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
|
||||
acq_parameters.bit_transition_flag = bit_transition_flag_;
|
||||
use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true); //will be false in future versions
|
||||
|
||||
acq_parameters.use_CFAR_algorithm_flag = use_CFAR_algorithm_flag_;
|
||||
max_dwells_ = configuration_->property(role + ".max_dwells", 1);
|
||||
|
||||
acq_parameters.max_dwells = max_dwells_;
|
||||
dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename);
|
||||
|
||||
acq_parameters.dump_filename = dump_filename_;
|
||||
//--- Find number of samples per spreading code -------------------------
|
||||
code_length_ = round(static_cast<double>(fs_in_) / (GPS_L2_M_CODE_RATE_HZ / static_cast<double>(GPS_L2_M_CODE_LENGTH_CHIPS)));
|
||||
code_length_ = std::round(static_cast<double>(fs_in_) / (GPS_L2_M_CODE_RATE_HZ / static_cast<double>(GPS_L2_M_CODE_LENGTH_CHIPS)));
|
||||
|
||||
vector_length_ = code_length_;
|
||||
|
||||
@ -90,10 +96,14 @@ GpsL2MPcpsAcquisition::GpsL2MPcpsAcquisition(
|
||||
{
|
||||
item_size_ = sizeof(gr_complex);
|
||||
}
|
||||
acquisition_ = pcps_make_acquisition(1, max_dwells_,
|
||||
doppler_max_, if_, fs_in_, code_length_, code_length_,
|
||||
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_,
|
||||
dump_filename_, item_size_);
|
||||
acq_parameters.samples_per_ms = static_cast<int>(std::round(static_cast<double>(fs_in_) * 0.001));
|
||||
acq_parameters.samples_per_code = code_length_;
|
||||
acq_parameters.it_size = item_size_;
|
||||
acq_parameters.sampled_ms = 20;
|
||||
acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
|
||||
acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
|
||||
acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", true);
|
||||
acquisition_ = pcps_make_acquisition(acq_parameters);
|
||||
DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
|
||||
|
||||
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
|
||||
|
@ -46,6 +46,7 @@ GpsL5iPcpsAcquisition::GpsL5iPcpsAcquisition(
|
||||
ConfigurationInterface* configuration, std::string role,
|
||||
unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams)
|
||||
{
|
||||
pcpsconf_t acq_parameters;
|
||||
configuration_ = configuration;
|
||||
std::string default_item_type = "gr_complex";
|
||||
std::string default_dump_filename = "./data/acquisition.dat";
|
||||
@ -56,21 +57,26 @@ GpsL5iPcpsAcquisition::GpsL5iPcpsAcquisition(
|
||||
|
||||
long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000);
|
||||
fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
|
||||
acq_parameters.fs_in = fs_in_;
|
||||
if_ = configuration_->property(role + ".if", 0);
|
||||
acq_parameters.freq = if_;
|
||||
dump_ = configuration_->property(role + ".dump", false);
|
||||
acq_parameters.dump = dump_;
|
||||
blocking_ = configuration_->property(role + ".blocking", true);
|
||||
acq_parameters.blocking = blocking_;
|
||||
doppler_max_ = configuration->property(role + ".doppler_max", 5000);
|
||||
if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max;
|
||||
|
||||
acq_parameters.doppler_max = doppler_max_;
|
||||
bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
|
||||
acq_parameters.bit_transition_flag = bit_transition_flag_;
|
||||
use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true); //will be false in future versions
|
||||
|
||||
acq_parameters.use_CFAR_algorithm_flag = use_CFAR_algorithm_flag_;
|
||||
max_dwells_ = configuration_->property(role + ".max_dwells", 1);
|
||||
|
||||
acq_parameters.max_dwells = max_dwells_;
|
||||
dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename);
|
||||
|
||||
acq_parameters.dump_filename = dump_filename_;
|
||||
//--- Find number of samples per spreading code -------------------------
|
||||
code_length_ = round(static_cast<double>(fs_in_) / (GPS_L5i_CODE_RATE_HZ / static_cast<double>(GPS_L5i_CODE_LENGTH_CHIPS)));
|
||||
code_length_ = static_cast<unsigned int>(std::round(static_cast<double>(fs_in_) / (GPS_L5i_CODE_RATE_HZ / static_cast<double>(GPS_L5i_CODE_LENGTH_CHIPS))));
|
||||
|
||||
vector_length_ = code_length_;
|
||||
|
||||
@ -89,10 +95,14 @@ GpsL5iPcpsAcquisition::GpsL5iPcpsAcquisition(
|
||||
{
|
||||
item_size_ = sizeof(gr_complex);
|
||||
}
|
||||
acquisition_ = pcps_make_acquisition(1, max_dwells_,
|
||||
doppler_max_, if_, fs_in_, code_length_, code_length_,
|
||||
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_,
|
||||
dump_filename_, item_size_);
|
||||
acq_parameters.samples_per_code = code_length_;
|
||||
acq_parameters.samples_per_ms = code_length_;
|
||||
acq_parameters.it_size = item_size_;
|
||||
acq_parameters.sampled_ms = 1;
|
||||
acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
|
||||
acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
|
||||
acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", false);
|
||||
acquisition_ = pcps_make_acquisition(acq_parameters);
|
||||
DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
|
||||
|
||||
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
|
||||
|
@ -45,57 +45,34 @@
|
||||
|
||||
using google::LogMessage;
|
||||
|
||||
pcps_acquisition_sptr pcps_make_acquisition(
|
||||
unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
|
||||
bool dump, bool blocking,
|
||||
std::string dump_filename, size_t it_size)
|
||||
pcps_acquisition_sptr pcps_make_acquisition(pcpsconf_t conf_)
|
||||
{
|
||||
return pcps_acquisition_sptr(
|
||||
new pcps_acquisition(sampled_ms, max_dwells, doppler_max, freq, fs_in, samples_per_ms,
|
||||
samples_per_code, bit_transition_flag, use_CFAR_algorithm_flag, dump, blocking, dump_filename, it_size));
|
||||
return pcps_acquisition_sptr(new pcps_acquisition(conf_));
|
||||
}
|
||||
|
||||
|
||||
pcps_acquisition::pcps_acquisition(
|
||||
unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
|
||||
bool dump, bool blocking,
|
||||
std::string dump_filename,
|
||||
size_t it_size) : gr::block("pcps_acquisition",
|
||||
gr::io_signature::make(1, 1, it_size * sampled_ms * samples_per_ms * (bit_transition_flag ? 2 : 1)),
|
||||
gr::io_signature::make(0, 0, it_size * sampled_ms * samples_per_ms * (bit_transition_flag ? 2 : 1)))
|
||||
pcps_acquisition::pcps_acquisition(pcpsconf_t conf_) : gr::block("pcps_acquisition",
|
||||
gr::io_signature::make(1, 1, conf_.it_size * conf_.sampled_ms * conf_.samples_per_ms * (conf_.bit_transition_flag ? 2 : 1)),
|
||||
gr::io_signature::make(0, 0, conf_.it_size * conf_.sampled_ms * conf_.samples_per_ms * (conf_.bit_transition_flag ? 2 : 1)))
|
||||
{
|
||||
this->message_port_register_out(pmt::mp("events"));
|
||||
|
||||
acq_parameters = conf_;
|
||||
d_sample_counter = 0; // SAMPLE COUNTER
|
||||
d_active = false;
|
||||
d_state = 0;
|
||||
d_freq = freq;
|
||||
d_old_freq = freq;
|
||||
d_fs_in = fs_in;
|
||||
d_samples_per_ms = samples_per_ms;
|
||||
d_samples_per_code = samples_per_code;
|
||||
d_sampled_ms = sampled_ms;
|
||||
d_max_dwells = max_dwells;
|
||||
d_old_freq = conf_.freq;
|
||||
d_well_count = 0;
|
||||
d_doppler_max = doppler_max;
|
||||
d_fft_size = d_sampled_ms * d_samples_per_ms;
|
||||
d_fft_size = acq_parameters.sampled_ms * acq_parameters.samples_per_ms;
|
||||
d_mag = 0;
|
||||
d_input_power = 0.0;
|
||||
d_num_doppler_bins = 0;
|
||||
d_bit_transition_flag = bit_transition_flag;
|
||||
d_use_CFAR_algorithm_flag = use_CFAR_algorithm_flag;
|
||||
d_threshold = 0.0;
|
||||
d_doppler_step = 0;
|
||||
d_code_phase = 0;
|
||||
d_doppler_center_step_two = 0.0;
|
||||
d_test_statistics = 0.0;
|
||||
d_channel = 0;
|
||||
if (it_size == sizeof(gr_complex))
|
||||
if (conf_.it_size == sizeof(gr_complex))
|
||||
{
|
||||
d_cshort = false;
|
||||
}
|
||||
@ -114,10 +91,10 @@ pcps_acquisition::pcps_acquisition(
|
||||
//
|
||||
// We can avoid this by doing linear correlation, effectively doubling the
|
||||
// size of the input buffer and padding the code with zeros.
|
||||
if (d_bit_transition_flag)
|
||||
if (acq_parameters.bit_transition_flag)
|
||||
{
|
||||
d_fft_size *= 2;
|
||||
d_max_dwells = 1; //Activation of d_bit_transition_flag invalidates the value of d_max_dwells
|
||||
acq_parameters.max_dwells = 1; //Activation of acq_parameters.bit_transition_flag invalidates the value of acq_parameters.max_dwells
|
||||
}
|
||||
|
||||
d_fft_codes = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||
@ -129,12 +106,9 @@ pcps_acquisition::pcps_acquisition(
|
||||
// Inverse FFT
|
||||
d_ifft = new gr::fft::fft_complex(d_fft_size, false);
|
||||
|
||||
// For dumping samples into a file
|
||||
d_dump = dump;
|
||||
d_dump_filename = dump_filename;
|
||||
d_gnss_synchro = 0;
|
||||
d_grid_doppler_wipeoffs = 0;
|
||||
d_blocking = blocking;
|
||||
d_grid_doppler_wipeoffs = nullptr;
|
||||
d_grid_doppler_wipeoffs_step_two = nullptr;
|
||||
d_worker_active = false;
|
||||
d_data_buffer = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||
if (d_cshort)
|
||||
@ -146,6 +120,7 @@ pcps_acquisition::pcps_acquisition(
|
||||
d_data_buffer_sc = nullptr;
|
||||
}
|
||||
grid_ = arma::fmat();
|
||||
d_step_two = false;
|
||||
}
|
||||
|
||||
|
||||
@ -159,6 +134,14 @@ pcps_acquisition::~pcps_acquisition()
|
||||
}
|
||||
delete[] d_grid_doppler_wipeoffs;
|
||||
}
|
||||
if (acq_parameters.make_2_steps)
|
||||
{
|
||||
for (unsigned int i = 0; i < acq_parameters.num_doppler_bins_step2; i++)
|
||||
{
|
||||
volk_gnsssdr_free(d_grid_doppler_wipeoffs_step_two[i]);
|
||||
}
|
||||
delete[] d_grid_doppler_wipeoffs_step_two;
|
||||
}
|
||||
volk_gnsssdr_free(d_fft_codes);
|
||||
volk_gnsssdr_free(d_magnitude);
|
||||
delete d_ifft;
|
||||
@ -174,7 +157,7 @@ pcps_acquisition::~pcps_acquisition()
|
||||
void pcps_acquisition::set_local_code(std::complex<float>* code)
|
||||
{
|
||||
// reset the intermediate frequency
|
||||
d_freq = d_old_freq;
|
||||
acq_parameters.freq = d_old_freq;
|
||||
// This will check if it's fdma, if yes will update the intermediate frequency and the doppler grid
|
||||
if (is_fdma())
|
||||
{
|
||||
@ -185,7 +168,7 @@ void pcps_acquisition::set_local_code(std::complex<float>* code)
|
||||
// [ 0 0 0 ... 0 c_0 c_1 ... c_L]
|
||||
// where c_i is the local code and there are L zeros and L chips
|
||||
gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler
|
||||
if (d_bit_transition_flag)
|
||||
if (acq_parameters.bit_transition_flag)
|
||||
{
|
||||
int offset = d_fft_size / 2;
|
||||
std::fill_n(d_fft_if->get_inbuf(), offset, gr_complex(0.0, 0.0));
|
||||
@ -206,14 +189,14 @@ bool pcps_acquisition::is_fdma()
|
||||
// Dealing with FDMA system
|
||||
if (strcmp(d_gnss_synchro->Signal, "1G") == 0)
|
||||
{
|
||||
d_freq += DFRQ1_GLO * GLONASS_PRN.at(d_gnss_synchro->PRN);
|
||||
LOG(INFO) << "Trying to acquire SV PRN " << d_gnss_synchro->PRN << " with freq " << d_freq << " in Glonass Channel " << GLONASS_PRN.at(d_gnss_synchro->PRN) << std::endl;
|
||||
acq_parameters.freq += DFRQ1_GLO * GLONASS_PRN.at(d_gnss_synchro->PRN);
|
||||
LOG(INFO) << "Trying to acquire SV PRN " << d_gnss_synchro->PRN << " with freq " << acq_parameters.freq << " in Glonass Channel " << GLONASS_PRN.at(d_gnss_synchro->PRN) << std::endl;
|
||||
return true;
|
||||
}
|
||||
else if (strcmp(d_gnss_synchro->Signal, "2G") == 0)
|
||||
{
|
||||
d_freq += DFRQ2_GLO * GLONASS_PRN.at(d_gnss_synchro->PRN);
|
||||
LOG(INFO) << "Trying to acquire SV PRN " << d_gnss_synchro->PRN << " with freq " << d_freq << " in Glonass Channel " << GLONASS_PRN.at(d_gnss_synchro->PRN) << std::endl;
|
||||
acq_parameters.freq += DFRQ2_GLO * GLONASS_PRN.at(d_gnss_synchro->PRN);
|
||||
LOG(INFO) << "Trying to acquire SV PRN " << d_gnss_synchro->PRN << " with freq " << acq_parameters.freq << " in Glonass Channel " << GLONASS_PRN.at(d_gnss_synchro->PRN) << std::endl;
|
||||
return true;
|
||||
}
|
||||
else
|
||||
@ -225,7 +208,7 @@ bool pcps_acquisition::is_fdma()
|
||||
|
||||
void pcps_acquisition::update_local_carrier(gr_complex* carrier_vector, int correlator_length_samples, float freq)
|
||||
{
|
||||
float phase_step_rad = GPS_TWO_PI * freq / static_cast<float>(d_fs_in);
|
||||
float phase_step_rad = GPS_TWO_PI * freq / static_cast<float>(acq_parameters.fs_in);
|
||||
float _phase[1];
|
||||
_phase[0] = 0;
|
||||
volk_gnsssdr_s32f_sincos_32fc(carrier_vector, -phase_step_rad, _phase, correlator_length_samples);
|
||||
@ -245,22 +228,29 @@ void pcps_acquisition::init()
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
|
||||
d_num_doppler_bins = static_cast<unsigned int>(std::ceil(static_cast<double>(static_cast<int>(d_doppler_max) - static_cast<int>(-d_doppler_max)) / static_cast<double>(d_doppler_step)));
|
||||
d_num_doppler_bins = static_cast<unsigned int>(std::ceil(static_cast<double>(static_cast<int>(acq_parameters.doppler_max) - static_cast<int>(-acq_parameters.doppler_max)) / static_cast<double>(d_doppler_step)));
|
||||
|
||||
// Create the carrier Doppler wipeoff signals
|
||||
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
|
||||
|
||||
if (acq_parameters.make_2_steps)
|
||||
{
|
||||
d_grid_doppler_wipeoffs_step_two = new gr_complex*[acq_parameters.num_doppler_bins_step2];
|
||||
for (unsigned int doppler_index = 0; doppler_index < acq_parameters.num_doppler_bins_step2; doppler_index++)
|
||||
{
|
||||
d_grid_doppler_wipeoffs_step_two[doppler_index] = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||
}
|
||||
}
|
||||
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
|
||||
{
|
||||
d_grid_doppler_wipeoffs[doppler_index] = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||
int doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
|
||||
update_local_carrier(d_grid_doppler_wipeoffs[doppler_index], d_fft_size, d_freq + doppler);
|
||||
int doppler = -static_cast<int>(acq_parameters.doppler_max) + d_doppler_step * doppler_index;
|
||||
update_local_carrier(d_grid_doppler_wipeoffs[doppler_index], d_fft_size, acq_parameters.freq + doppler);
|
||||
}
|
||||
d_worker_active = false;
|
||||
|
||||
if (d_dump)
|
||||
if (acq_parameters.dump)
|
||||
{
|
||||
unsigned int effective_fft_size = (d_bit_transition_flag ? (d_fft_size / 2) : d_fft_size);
|
||||
unsigned int effective_fft_size = (acq_parameters.bit_transition_flag ? (d_fft_size / 2) : d_fft_size);
|
||||
grid_ = arma::fmat(effective_fft_size, d_num_doppler_bins, arma::fill::zeros);
|
||||
}
|
||||
}
|
||||
@ -270,12 +260,19 @@ void pcps_acquisition::update_grid_doppler_wipeoffs()
|
||||
{
|
||||
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
|
||||
{
|
||||
d_grid_doppler_wipeoffs[doppler_index] = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||
int doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
|
||||
update_local_carrier(d_grid_doppler_wipeoffs[doppler_index], d_fft_size, d_freq + doppler);
|
||||
int doppler = -static_cast<int>(acq_parameters.doppler_max) + d_doppler_step * doppler_index;
|
||||
update_local_carrier(d_grid_doppler_wipeoffs[doppler_index], d_fft_size, acq_parameters.freq + doppler);
|
||||
}
|
||||
}
|
||||
|
||||
void pcps_acquisition::update_grid_doppler_wipeoffs_step2()
|
||||
{
|
||||
for (unsigned int doppler_index = 0; doppler_index < acq_parameters.num_doppler_bins_step2; doppler_index++)
|
||||
{
|
||||
float doppler = (static_cast<float>(doppler_index) - static_cast<float>(acq_parameters.num_doppler_bins_step2) / 2.0) * acq_parameters.doppler_step2;
|
||||
update_local_carrier(d_grid_doppler_wipeoffs_step_two[doppler_index], d_fft_size, d_doppler_center_step_two + doppler);
|
||||
}
|
||||
}
|
||||
|
||||
void pcps_acquisition::set_state(int state)
|
||||
{
|
||||
@ -354,10 +351,17 @@ int pcps_acquisition::general_work(int noutput_items __attribute__((unused)),
|
||||
*/
|
||||
|
||||
gr::thread::scoped_lock lk(d_setlock);
|
||||
if (!d_active || d_worker_active)
|
||||
if (!d_active or d_worker_active)
|
||||
{
|
||||
d_sample_counter += d_fft_size * ninput_items[0];
|
||||
consume_each(ninput_items[0]);
|
||||
if (d_step_two)
|
||||
{
|
||||
d_doppler_center_step_two = static_cast<float>(d_gnss_synchro->Acq_doppler_hz);
|
||||
update_grid_doppler_wipeoffs_step2();
|
||||
d_state = 0;
|
||||
d_active = true;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -390,7 +394,7 @@ int pcps_acquisition::general_work(int noutput_items __attribute__((unused)),
|
||||
{
|
||||
memcpy(d_data_buffer, input_items[0], d_fft_size * sizeof(gr_complex));
|
||||
}
|
||||
if (d_blocking)
|
||||
if (acq_parameters.blocking)
|
||||
{
|
||||
lk.unlock();
|
||||
acquisition_core(d_sample_counter);
|
||||
@ -414,11 +418,10 @@ void pcps_acquisition::acquisition_core(unsigned long int samp_count)
|
||||
gr::thread::scoped_lock lk(d_setlock);
|
||||
|
||||
// initialize acquisition algorithm
|
||||
int doppler;
|
||||
uint32_t indext = 0;
|
||||
float magt = 0.0;
|
||||
const gr_complex* in = d_data_buffer; //Get the input samples pointer
|
||||
int effective_fft_size = (d_bit_transition_flag ? d_fft_size / 2 : d_fft_size);
|
||||
int effective_fft_size = (acq_parameters.bit_transition_flag ? d_fft_size / 2 : d_fft_size);
|
||||
if (d_cshort)
|
||||
{
|
||||
volk_gnsssdr_16ic_convert_32fc(d_data_buffer, d_data_buffer_sc, d_fft_size);
|
||||
@ -432,12 +435,12 @@ void pcps_acquisition::acquisition_core(unsigned long int samp_count)
|
||||
DLOG(INFO) << "Channel: " << d_channel
|
||||
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
|
||||
<< " ,sample stamp: " << samp_count << ", threshold: "
|
||||
<< d_threshold << ", doppler_max: " << d_doppler_max
|
||||
<< d_threshold << ", doppler_max: " << acq_parameters.doppler_max
|
||||
<< ", doppler_step: " << d_doppler_step
|
||||
<< ", use_CFAR_algorithm_flag: " << (d_use_CFAR_algorithm_flag ? "true" : "false");
|
||||
<< ", use_CFAR_algorithm_flag: " << (acq_parameters.use_CFAR_algorithm_flag ? "true" : "false");
|
||||
|
||||
lk.unlock();
|
||||
if (d_use_CFAR_algorithm_flag)
|
||||
if (acq_parameters.use_CFAR_algorithm_flag)
|
||||
{
|
||||
// 1- (optional) Compute the input signal power estimation
|
||||
volk_32fc_magnitude_squared_32f(d_magnitude, in, d_fft_size);
|
||||
@ -445,142 +448,241 @@ void pcps_acquisition::acquisition_core(unsigned long int samp_count)
|
||||
d_input_power /= static_cast<float>(d_fft_size);
|
||||
}
|
||||
// 2- Doppler frequency search loop
|
||||
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
|
||||
if (!d_step_two)
|
||||
{
|
||||
// doppler search steps
|
||||
doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
|
||||
|
||||
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
|
||||
|
||||
// 3- Perform the FFT-based convolution (parallel time search)
|
||||
// Compute the FFT of the carrier wiped--off incoming signal
|
||||
d_fft_if->execute();
|
||||
|
||||
// Multiply carrier wiped--off, Fourier transformed incoming signal
|
||||
// with the local FFT'd code reference using SIMD operations with VOLK library
|
||||
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
|
||||
|
||||
// compute the inverse FFT
|
||||
d_ifft->execute();
|
||||
|
||||
// Search maximum
|
||||
size_t offset = (d_bit_transition_flag ? effective_fft_size : 0);
|
||||
volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf() + offset, effective_fft_size);
|
||||
volk_gnsssdr_32f_index_max_32u(&indext, d_magnitude, effective_fft_size);
|
||||
magt = d_magnitude[indext];
|
||||
|
||||
if (d_use_CFAR_algorithm_flag)
|
||||
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
|
||||
{
|
||||
// Normalize the maximum value to correct the scale factor introduced by FFTW
|
||||
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
|
||||
}
|
||||
// 4- record the maximum peak and the associated synchronization parameters
|
||||
if (d_mag < magt)
|
||||
{
|
||||
d_mag = magt;
|
||||
// doppler search steps
|
||||
int doppler = -static_cast<int>(acq_parameters.doppler_max) + d_doppler_step * doppler_index;
|
||||
|
||||
if (!d_use_CFAR_algorithm_flag)
|
||||
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
|
||||
|
||||
// 3- Perform the FFT-based convolution (parallel time search)
|
||||
// Compute the FFT of the carrier wiped--off incoming signal
|
||||
d_fft_if->execute();
|
||||
|
||||
// Multiply carrier wiped--off, Fourier transformed incoming signal
|
||||
// with the local FFT'd code reference using SIMD operations with VOLK library
|
||||
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
|
||||
|
||||
// compute the inverse FFT
|
||||
d_ifft->execute();
|
||||
|
||||
// Search maximum
|
||||
size_t offset = (acq_parameters.bit_transition_flag ? effective_fft_size : 0);
|
||||
volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf() + offset, effective_fft_size);
|
||||
volk_gnsssdr_32f_index_max_32u(&indext, d_magnitude, effective_fft_size);
|
||||
magt = d_magnitude[indext];
|
||||
|
||||
if (acq_parameters.use_CFAR_algorithm_flag)
|
||||
{
|
||||
// Search grid noise floor approximation for this doppler line
|
||||
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size);
|
||||
d_input_power = (d_input_power - d_mag) / (effective_fft_size - 1);
|
||||
// Normalize the maximum value to correct the scale factor introduced by FFTW
|
||||
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
|
||||
}
|
||||
|
||||
// In case that d_bit_transition_flag = true, we compare the potentially
|
||||
// new maximum test statistics (d_mag/d_input_power) with the value in
|
||||
// d_test_statistics. When the second dwell is being processed, the value
|
||||
// of d_mag/d_input_power could be lower than d_test_statistics (i.e,
|
||||
// the maximum test statistics in the previous dwell is greater than
|
||||
// current d_mag/d_input_power). Note that d_test_statistics is not
|
||||
// restarted between consecutive dwells in multidwell operation.
|
||||
|
||||
if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag)
|
||||
// 4- record the maximum peak and the associated synchronization parameters
|
||||
if (d_mag < magt)
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
|
||||
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
|
||||
d_gnss_synchro->Acq_samplestamp_samples = samp_count;
|
||||
d_mag = magt;
|
||||
|
||||
// 5- Compute the test statistics and compare to the threshold
|
||||
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
|
||||
d_test_statistics = d_mag / d_input_power;
|
||||
}
|
||||
}
|
||||
// Record results to file if required
|
||||
if (d_dump)
|
||||
{
|
||||
memcpy(grid_.colptr(doppler_index), d_magnitude, sizeof(float) * effective_fft_size);
|
||||
if (doppler_index == (d_num_doppler_bins - 1))
|
||||
{
|
||||
std::string filename = d_dump_filename;
|
||||
filename.append("_");
|
||||
filename.append(1, d_gnss_synchro->System);
|
||||
filename.append("_");
|
||||
filename.append(1, d_gnss_synchro->Signal[0]);
|
||||
filename.append(1, d_gnss_synchro->Signal[1]);
|
||||
filename.append("_sat_");
|
||||
filename.append(std::to_string(d_gnss_synchro->PRN));
|
||||
filename.append(".mat");
|
||||
mat_t* matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73);
|
||||
if (matfp == NULL)
|
||||
if (!acq_parameters.use_CFAR_algorithm_flag)
|
||||
{
|
||||
std::cout << "Unable to create or open Acquisition dump file" << std::endl;
|
||||
d_dump = false;
|
||||
// Search grid noise floor approximation for this doppler line
|
||||
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size);
|
||||
d_input_power = (d_input_power - d_mag) / (effective_fft_size - 1);
|
||||
}
|
||||
else
|
||||
|
||||
// In case that acq_parameters.bit_transition_flag = true, we compare the potentially
|
||||
// new maximum test statistics (d_mag/d_input_power) with the value in
|
||||
// d_test_statistics. When the second dwell is being processed, the value
|
||||
// of d_mag/d_input_power could be lower than d_test_statistics (i.e,
|
||||
// the maximum test statistics in the previous dwell is greater than
|
||||
// current d_mag/d_input_power). Note that d_test_statistics is not
|
||||
// restarted between consecutive dwells in multidwell operation.
|
||||
|
||||
if (d_test_statistics < (d_mag / d_input_power) or !acq_parameters.bit_transition_flag)
|
||||
{
|
||||
size_t dims[2] = {static_cast<size_t>(effective_fft_size), static_cast<size_t>(d_num_doppler_bins)};
|
||||
matvar_t* matvar = Mat_VarCreate("grid", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, grid_.memptr(), 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % acq_parameters.samples_per_code);
|
||||
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
|
||||
d_gnss_synchro->Acq_samplestamp_samples = samp_count;
|
||||
|
||||
dims[0] = static_cast<size_t>(1);
|
||||
dims[1] = static_cast<size_t>(1);
|
||||
matvar = Mat_VarCreate("doppler_max", MAT_C_SINGLE, MAT_T_UINT32, 1, dims, &d_doppler_max, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
// 5- Compute the test statistics and compare to the threshold
|
||||
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
|
||||
d_test_statistics = d_mag / d_input_power;
|
||||
}
|
||||
}
|
||||
// Record results to file if required
|
||||
if (acq_parameters.dump)
|
||||
{
|
||||
memcpy(grid_.colptr(doppler_index), d_magnitude, sizeof(float) * effective_fft_size);
|
||||
if (doppler_index == (d_num_doppler_bins - 1))
|
||||
{
|
||||
std::string filename = acq_parameters.dump_filename;
|
||||
filename.append("_");
|
||||
filename.append(1, d_gnss_synchro->System);
|
||||
filename.append("_");
|
||||
filename.append(1, d_gnss_synchro->Signal[0]);
|
||||
filename.append(1, d_gnss_synchro->Signal[1]);
|
||||
filename.append("_sat_");
|
||||
filename.append(std::to_string(d_gnss_synchro->PRN));
|
||||
filename.append(".mat");
|
||||
mat_t* matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73);
|
||||
if (matfp == NULL)
|
||||
{
|
||||
std::cout << "Unable to create or open Acquisition dump file" << std::endl;
|
||||
acq_parameters.dump = false;
|
||||
}
|
||||
else
|
||||
{
|
||||
size_t dims[2] = {static_cast<size_t>(effective_fft_size), static_cast<size_t>(d_num_doppler_bins)};
|
||||
matvar_t* matvar = Mat_VarCreate("grid", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, grid_.memptr(), 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("doppler_step", MAT_C_SINGLE, MAT_T_UINT32, 1, dims, &d_doppler_step, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
dims[0] = static_cast<size_t>(1);
|
||||
dims[1] = static_cast<size_t>(1);
|
||||
matvar = Mat_VarCreate("doppler_max", MAT_C_SINGLE, MAT_T_UINT32, 1, dims, &acq_parameters.doppler_max, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
Mat_Close(matfp);
|
||||
matvar = Mat_VarCreate("doppler_step", MAT_C_SINGLE, MAT_T_UINT32, 1, dims, &d_doppler_step, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
Mat_Close(matfp);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (unsigned int doppler_index = 0; doppler_index < acq_parameters.num_doppler_bins_step2; doppler_index++)
|
||||
{
|
||||
// doppler search steps
|
||||
float doppler = d_doppler_center_step_two + (static_cast<float>(doppler_index) - static_cast<float>(acq_parameters.num_doppler_bins_step2) / 2.0) * acq_parameters.doppler_step2;
|
||||
|
||||
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs_step_two[doppler_index], d_fft_size);
|
||||
|
||||
// 3- Perform the FFT-based convolution (parallel time search)
|
||||
// Compute the FFT of the carrier wiped--off incoming signal
|
||||
d_fft_if->execute();
|
||||
|
||||
// Multiply carrier wiped--off, Fourier transformed incoming signal
|
||||
// with the local FFT'd code reference using SIMD operations with VOLK library
|
||||
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
|
||||
|
||||
// compute the inverse FFT
|
||||
d_ifft->execute();
|
||||
|
||||
// Search maximum
|
||||
size_t offset = (acq_parameters.bit_transition_flag ? effective_fft_size : 0);
|
||||
volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf() + offset, effective_fft_size);
|
||||
volk_gnsssdr_32f_index_max_32u(&indext, d_magnitude, effective_fft_size);
|
||||
magt = d_magnitude[indext];
|
||||
|
||||
if (acq_parameters.use_CFAR_algorithm_flag)
|
||||
{
|
||||
// Normalize the maximum value to correct the scale factor introduced by FFTW
|
||||
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
|
||||
}
|
||||
// 4- record the maximum peak and the associated synchronization parameters
|
||||
if (d_mag < magt)
|
||||
{
|
||||
d_mag = magt;
|
||||
|
||||
if (!acq_parameters.use_CFAR_algorithm_flag)
|
||||
{
|
||||
// Search grid noise floor approximation for this doppler line
|
||||
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size);
|
||||
d_input_power = (d_input_power - d_mag) / (effective_fft_size - 1);
|
||||
}
|
||||
|
||||
// In case that acq_parameters.bit_transition_flag = true, we compare the potentially
|
||||
// new maximum test statistics (d_mag/d_input_power) with the value in
|
||||
// d_test_statistics. When the second dwell is being processed, the value
|
||||
// of d_mag/d_input_power could be lower than d_test_statistics (i.e,
|
||||
// the maximum test statistics in the previous dwell is greater than
|
||||
// current d_mag/d_input_power). Note that d_test_statistics is not
|
||||
// restarted between consecutive dwells in multidwell operation.
|
||||
|
||||
if (d_test_statistics < (d_mag / d_input_power) or !acq_parameters.bit_transition_flag)
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % acq_parameters.samples_per_code);
|
||||
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
|
||||
d_gnss_synchro->Acq_samplestamp_samples = samp_count;
|
||||
|
||||
// 5- Compute the test statistics and compare to the threshold
|
||||
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
|
||||
d_test_statistics = d_mag / d_input_power;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
lk.lock();
|
||||
if (!d_bit_transition_flag)
|
||||
if (!acq_parameters.bit_transition_flag)
|
||||
{
|
||||
if (d_test_statistics > d_threshold)
|
||||
{
|
||||
d_state = 0; // Positive acquisition
|
||||
d_active = false;
|
||||
send_positive_acquisition();
|
||||
if (acq_parameters.make_2_steps)
|
||||
{
|
||||
if (d_step_two)
|
||||
{
|
||||
send_positive_acquisition();
|
||||
d_step_two = false;
|
||||
d_state = 0; // Positive acquisition
|
||||
}
|
||||
else
|
||||
{
|
||||
d_step_two = true; // Clear input buffer and make small grid acquisition
|
||||
d_state = 0;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
send_positive_acquisition();
|
||||
d_state = 0; // Positive acquisition
|
||||
}
|
||||
}
|
||||
else if (d_well_count == d_max_dwells)
|
||||
else if (d_well_count == acq_parameters.max_dwells)
|
||||
{
|
||||
d_state = 0;
|
||||
d_active = false;
|
||||
d_step_two = false;
|
||||
send_negative_acquisition();
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (d_well_count == d_max_dwells) // d_max_dwells = 2
|
||||
d_active = false;
|
||||
if (d_test_statistics > d_threshold)
|
||||
{
|
||||
if (d_test_statistics > d_threshold)
|
||||
if (acq_parameters.make_2_steps)
|
||||
{
|
||||
d_state = 0; // Positive acquisition
|
||||
d_active = false;
|
||||
send_positive_acquisition();
|
||||
if (d_step_two)
|
||||
{
|
||||
send_positive_acquisition();
|
||||
d_step_two = false;
|
||||
d_state = 0; // Positive acquisition
|
||||
}
|
||||
else
|
||||
{
|
||||
d_step_two = true; // Clear input buffer and make small grid acquisition
|
||||
d_state = 0;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
d_state = 0; // Negative acquisition
|
||||
d_active = false;
|
||||
send_negative_acquisition();
|
||||
send_positive_acquisition();
|
||||
d_state = 0; // Positive acquisition
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
d_state = 0; // Negative acquisition
|
||||
d_step_two = false;
|
||||
send_negative_acquisition();
|
||||
}
|
||||
}
|
||||
d_worker_active = false;
|
||||
}
|
||||
|
@ -59,18 +59,33 @@
|
||||
#include <volk_gnsssdr/volk_gnsssdr.h>
|
||||
#include <string>
|
||||
|
||||
typedef struct
|
||||
{
|
||||
/* pcps acquisition configuration */
|
||||
unsigned int sampled_ms;
|
||||
unsigned int max_dwells;
|
||||
unsigned int doppler_max;
|
||||
unsigned int num_doppler_bins_step2;
|
||||
float doppler_step2;
|
||||
long freq;
|
||||
long fs_in;
|
||||
int samples_per_ms;
|
||||
int samples_per_code;
|
||||
bool bit_transition_flag;
|
||||
bool use_CFAR_algorithm_flag;
|
||||
bool dump;
|
||||
bool blocking;
|
||||
bool make_2_steps;
|
||||
std::string dump_filename;
|
||||
size_t it_size;
|
||||
} pcpsconf_t;
|
||||
|
||||
class pcps_acquisition;
|
||||
|
||||
typedef boost::shared_ptr<pcps_acquisition> pcps_acquisition_sptr;
|
||||
|
||||
pcps_acquisition_sptr
|
||||
pcps_make_acquisition(unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
|
||||
bool dump, bool blocking,
|
||||
std::string dump_filename, size_t it_size);
|
||||
pcps_make_acquisition(pcpsconf_t conf_);
|
||||
|
||||
/*!
|
||||
* \brief This class implements a Parallel Code Phase Search Acquisition.
|
||||
@ -82,22 +97,13 @@ class pcps_acquisition : public gr::block
|
||||
{
|
||||
private:
|
||||
friend pcps_acquisition_sptr
|
||||
pcps_make_acquisition(unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
|
||||
bool dump, bool blocking,
|
||||
std::string dump_filename, size_t it_size);
|
||||
pcps_make_acquisition(pcpsconf_t conf_);
|
||||
|
||||
pcps_acquisition(unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code,
|
||||
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
|
||||
bool dump, bool blocking,
|
||||
std::string dump_filename, size_t it_size);
|
||||
pcps_acquisition(pcpsconf_t conf_);
|
||||
|
||||
void update_local_carrier(gr_complex* carrier_vector, int correlator_length_samples, float freq);
|
||||
void update_grid_doppler_wipeoffs();
|
||||
void update_grid_doppler_wipeoffs_step2();
|
||||
bool is_fdma();
|
||||
|
||||
void acquisition_core(unsigned long int samp_count);
|
||||
@ -106,42 +112,33 @@ private:
|
||||
|
||||
void send_positive_acquisition();
|
||||
|
||||
bool d_bit_transition_flag;
|
||||
bool d_use_CFAR_algorithm_flag;
|
||||
pcpsconf_t acq_parameters;
|
||||
bool d_active;
|
||||
bool d_dump;
|
||||
bool d_worker_active;
|
||||
bool d_blocking;
|
||||
bool d_cshort;
|
||||
bool d_step_two;
|
||||
float d_threshold;
|
||||
float d_mag;
|
||||
float d_input_power;
|
||||
float d_test_statistics;
|
||||
float* d_magnitude;
|
||||
long d_fs_in;
|
||||
long d_freq;
|
||||
long d_old_freq;
|
||||
int d_samples_per_ms;
|
||||
int d_samples_per_code;
|
||||
int d_state;
|
||||
unsigned int d_channel;
|
||||
unsigned int d_doppler_max;
|
||||
unsigned int d_doppler_step;
|
||||
unsigned int d_sampled_ms;
|
||||
unsigned int d_max_dwells;
|
||||
float d_doppler_center_step_two;
|
||||
unsigned int d_well_count;
|
||||
unsigned int d_fft_size;
|
||||
unsigned int d_num_doppler_bins;
|
||||
unsigned int d_code_phase;
|
||||
unsigned long int d_sample_counter;
|
||||
gr_complex** d_grid_doppler_wipeoffs;
|
||||
gr_complex** d_grid_doppler_wipeoffs_step_two;
|
||||
gr_complex* d_fft_codes;
|
||||
gr_complex* d_data_buffer;
|
||||
lv_16sc_t* d_data_buffer_sc;
|
||||
gr::fft::fft_complex* d_fft_if;
|
||||
gr::fft::fft_complex* d_ifft;
|
||||
Gnss_Synchro* d_gnss_synchro;
|
||||
std::string d_dump_filename;
|
||||
arma::fmat grid_;
|
||||
|
||||
public:
|
||||
@ -223,7 +220,7 @@ public:
|
||||
inline void set_doppler_max(unsigned int doppler_max)
|
||||
{
|
||||
gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler
|
||||
d_doppler_max = doppler_max;
|
||||
acq_parameters.doppler_max = doppler_max;
|
||||
}
|
||||
|
||||
/*!
|
||||
|
@ -29,6 +29,6 @@ if(${PACKAGE_FIND_VERSION_MAJOR} EQUAL ${MAJOR_VERSION})
|
||||
if(NOT ${PACKAGE_FIND_VERSION_PATCH} GREATER ${MAINT_VERSION})
|
||||
set(PACKAGE_VERSION_EXACT 1) # exact match for API version
|
||||
set(PACKAGE_VERSION_COMPATIBLE 1) # compat for minor/patch version
|
||||
endif(NOT ${PACKAGE_FIND_VERSION_PATCH} GREATER ${MINOR_VERSION})
|
||||
endif(${PACKAGE_FIND_VERSION_MINOR} EQUAL ${API_COMPAT})
|
||||
endif(NOT ${PACKAGE_FIND_VERSION_PATCH} GREATER ${MAINT_VERSION})
|
||||
endif(${PACKAGE_FIND_VERSION_MINOR} EQUAL ${MINOR_VERSION})
|
||||
endif(${PACKAGE_FIND_VERSION_MAJOR} EQUAL ${MAJOR_VERSION})
|
||||
|
@ -56,7 +56,6 @@ GalileoE5aDllPllTracking::GalileoE5aDllPllTracking(
|
||||
int fs_in_deprecated = configuration->property("GNSS-SDR.internal_fs_hz", 12000000);
|
||||
int fs_in = configuration->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
|
||||
bool dump = configuration->property(role + ".dump", false);
|
||||
unified_ = configuration->property(role + ".unified", false);
|
||||
float pll_bw_hz = configuration->property(role + ".pll_bw_hz", 20.0);
|
||||
if (FLAGS_pll_bw_hz != 0.0) pll_bw_hz = static_cast<float>(FLAGS_pll_bw_hz);
|
||||
float dll_bw_hz = configuration->property(role + ".dll_bw_hz", 20.0);
|
||||
@ -89,29 +88,18 @@ GalileoE5aDllPllTracking::GalileoE5aDllPllTracking(
|
||||
if (item_type.compare("gr_complex") == 0)
|
||||
{
|
||||
item_size_ = sizeof(gr_complex);
|
||||
if (unified_)
|
||||
{
|
||||
char sig_[3] = "5X";
|
||||
item_size_ = sizeof(gr_complex);
|
||||
tracking_unified_ = dll_pll_veml_make_tracking(
|
||||
fs_in, vector_length, dump, dump_filename,
|
||||
pll_bw_hz, dll_bw_hz,
|
||||
pll_bw_narrow_hz, dll_bw_narrow_hz,
|
||||
early_late_space_chips,
|
||||
early_late_space_chips,
|
||||
early_late_space_narrow_chips,
|
||||
early_late_space_narrow_chips,
|
||||
extend_correlation_symbols,
|
||||
track_pilot, 'E', sig_);
|
||||
}
|
||||
else
|
||||
{
|
||||
tracking_ = galileo_e5a_dll_pll_make_tracking_cc(
|
||||
0, fs_in, vector_length, dump, dump_filename,
|
||||
pll_bw_hz, dll_bw_hz, pll_bw_narrow_hz,
|
||||
dll_bw_narrow_hz, ti_ms,
|
||||
early_late_space_chips);
|
||||
}
|
||||
char sig_[3] = "5X";
|
||||
item_size_ = sizeof(gr_complex);
|
||||
tracking_ = dll_pll_veml_make_tracking(
|
||||
fs_in, vector_length, dump, dump_filename,
|
||||
pll_bw_hz, dll_bw_hz,
|
||||
pll_bw_narrow_hz, dll_bw_narrow_hz,
|
||||
early_late_space_chips,
|
||||
early_late_space_chips,
|
||||
early_late_space_narrow_chips,
|
||||
early_late_space_narrow_chips,
|
||||
extend_correlation_symbols,
|
||||
track_pilot, 'E', sig_);
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -130,33 +118,26 @@ GalileoE5aDllPllTracking::~GalileoE5aDllPllTracking()
|
||||
|
||||
void GalileoE5aDllPllTracking::start_tracking()
|
||||
{
|
||||
if (unified_)
|
||||
tracking_unified_->start_tracking();
|
||||
else
|
||||
tracking_->start_tracking();
|
||||
tracking_->start_tracking();
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Set tracking channel unique ID
|
||||
*/
|
||||
void GalileoE5aDllPllTracking::set_channel(unsigned int channel)
|
||||
{
|
||||
channel_ = channel;
|
||||
if (unified_)
|
||||
tracking_unified_->set_channel(channel);
|
||||
else
|
||||
tracking_->set_channel(channel);
|
||||
tracking_->set_channel(channel);
|
||||
}
|
||||
|
||||
|
||||
void GalileoE5aDllPllTracking::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
|
||||
{
|
||||
if (unified_)
|
||||
tracking_unified_->set_gnss_synchro(p_gnss_synchro);
|
||||
else
|
||||
tracking_->set_gnss_synchro(p_gnss_synchro);
|
||||
tracking_->set_gnss_synchro(p_gnss_synchro);
|
||||
}
|
||||
|
||||
|
||||
void GalileoE5aDllPllTracking::connect(gr::top_block_sptr top_block)
|
||||
{
|
||||
if (top_block)
|
||||
@ -165,6 +146,7 @@ void GalileoE5aDllPllTracking::connect(gr::top_block_sptr top_block)
|
||||
//nothing to connect, now the tracking uses gr_sync_decimator
|
||||
}
|
||||
|
||||
|
||||
void GalileoE5aDllPllTracking::disconnect(gr::top_block_sptr top_block)
|
||||
{
|
||||
if (top_block)
|
||||
@ -173,18 +155,14 @@ void GalileoE5aDllPllTracking::disconnect(gr::top_block_sptr top_block)
|
||||
//nothing to disconnect, now the tracking uses gr_sync_decimator
|
||||
}
|
||||
|
||||
|
||||
gr::basic_block_sptr GalileoE5aDllPllTracking::get_left_block()
|
||||
{
|
||||
if (unified_)
|
||||
return tracking_unified_;
|
||||
else
|
||||
return tracking_;
|
||||
return tracking_;
|
||||
}
|
||||
|
||||
|
||||
gr::basic_block_sptr GalileoE5aDllPllTracking::get_right_block()
|
||||
{
|
||||
if (unified_)
|
||||
return tracking_unified_;
|
||||
else
|
||||
return tracking_;
|
||||
return tracking_;
|
||||
}
|
||||
|
@ -40,7 +40,6 @@
|
||||
#define GNSS_SDR_GALILEO_E5A_DLL_PLL_TRACKING_H_
|
||||
|
||||
#include "tracking_interface.h"
|
||||
#include "galileo_e5a_dll_pll_tracking_cc.h"
|
||||
#include "dll_pll_veml_tracking.h"
|
||||
#include <string>
|
||||
|
||||
@ -94,14 +93,12 @@ public:
|
||||
void start_tracking() override;
|
||||
|
||||
private:
|
||||
galileo_e5a_dll_pll_tracking_cc_sptr tracking_;
|
||||
dll_pll_veml_tracking_sptr tracking_unified_;
|
||||
dll_pll_veml_tracking_sptr tracking_;
|
||||
size_t item_size_;
|
||||
unsigned int channel_;
|
||||
std::string role_;
|
||||
unsigned int in_streams_;
|
||||
unsigned int out_streams_;
|
||||
bool unified_;
|
||||
};
|
||||
|
||||
#endif /* GNSS_SDR_GALILEO_E5A_DLL_PLL_TRACKING_H_ */
|
||||
|
@ -65,7 +65,6 @@ GpsL2MDllPllTracking::GpsL2MDllPllTracking(
|
||||
float dll_bw_hz = configuration->property(role + ".dll_bw_hz", 0.75);
|
||||
if (FLAGS_dll_bw_hz != 0.0) dll_bw_hz = static_cast<float>(FLAGS_dll_bw_hz);
|
||||
trk_param.dll_bw_hz = dll_bw_hz;
|
||||
unified_ = configuration->property(role + ".unified", false);
|
||||
float early_late_space_chips = configuration->property(role + ".early_late_space_chips", 0.5);
|
||||
trk_param.early_late_space_chips = early_late_space_chips;
|
||||
trk_param.early_late_space_narrow_chips = 0.0;
|
||||
@ -97,18 +96,14 @@ GpsL2MDllPllTracking::GpsL2MDllPllTracking(
|
||||
if (item_type.compare("gr_complex") == 0)
|
||||
{
|
||||
item_size_ = sizeof(gr_complex);
|
||||
if (unified_)
|
||||
{
|
||||
item_size_ = sizeof(gr_complex);
|
||||
tracking_unified_ = dll_pll_veml_make_tracking(trk_param);
|
||||
}
|
||||
else
|
||||
{
|
||||
tracking_ = gps_l2_m_dll_pll_make_tracking_cc(
|
||||
0, fs_in, vector_length, dump,
|
||||
dump_filename, pll_bw_hz, dll_bw_hz,
|
||||
early_late_space_chips);
|
||||
}
|
||||
tracking_ = dll_pll_veml_make_tracking(
|
||||
fs_in, vector_length, dump, dump_filename,
|
||||
pll_bw_hz, dll_bw_hz, pll_bw_hz, dll_bw_hz,
|
||||
early_late_space_chips,
|
||||
early_late_space_chips,
|
||||
early_late_space_chips,
|
||||
early_late_space_chips,
|
||||
1, false, 'G', sig_);
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -127,33 +122,26 @@ GpsL2MDllPllTracking::~GpsL2MDllPllTracking()
|
||||
|
||||
void GpsL2MDllPllTracking::start_tracking()
|
||||
{
|
||||
if (unified_)
|
||||
tracking_unified_->start_tracking();
|
||||
else
|
||||
tracking_->start_tracking();
|
||||
tracking_->start_tracking();
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Set tracking channel unique ID
|
||||
*/
|
||||
void GpsL2MDllPllTracking::set_channel(unsigned int channel)
|
||||
{
|
||||
channel_ = channel;
|
||||
if (unified_)
|
||||
tracking_unified_->set_channel(channel);
|
||||
else
|
||||
tracking_->set_channel(channel);
|
||||
tracking_->set_channel(channel);
|
||||
}
|
||||
|
||||
|
||||
void GpsL2MDllPllTracking::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
|
||||
{
|
||||
if (unified_)
|
||||
tracking_unified_->set_gnss_synchro(p_gnss_synchro);
|
||||
else
|
||||
tracking_->set_gnss_synchro(p_gnss_synchro);
|
||||
tracking_->set_gnss_synchro(p_gnss_synchro);
|
||||
}
|
||||
|
||||
|
||||
void GpsL2MDllPllTracking::connect(gr::top_block_sptr top_block)
|
||||
{
|
||||
if (top_block)
|
||||
@ -162,6 +150,7 @@ void GpsL2MDllPllTracking::connect(gr::top_block_sptr top_block)
|
||||
//nothing to connect, now the tracking uses gr_sync_decimator
|
||||
}
|
||||
|
||||
|
||||
void GpsL2MDllPllTracking::disconnect(gr::top_block_sptr top_block)
|
||||
{
|
||||
if (top_block)
|
||||
@ -170,18 +159,14 @@ void GpsL2MDllPllTracking::disconnect(gr::top_block_sptr top_block)
|
||||
//nothing to disconnect, now the tracking uses gr_sync_decimator
|
||||
}
|
||||
|
||||
|
||||
gr::basic_block_sptr GpsL2MDllPllTracking::get_left_block()
|
||||
{
|
||||
if (unified_)
|
||||
return tracking_unified_;
|
||||
else
|
||||
return tracking_;
|
||||
return tracking_;
|
||||
}
|
||||
|
||||
|
||||
gr::basic_block_sptr GpsL2MDllPllTracking::get_right_block()
|
||||
{
|
||||
if (unified_)
|
||||
return tracking_unified_;
|
||||
else
|
||||
return tracking_;
|
||||
return tracking_;
|
||||
}
|
||||
|
@ -39,7 +39,6 @@
|
||||
#define GNSS_SDR_gps_l2_m_dll_pll_tracking_H_
|
||||
|
||||
#include "tracking_interface.h"
|
||||
#include "gps_l2_m_dll_pll_tracking_cc.h"
|
||||
#include "dll_pll_veml_tracking.h"
|
||||
#include <string>
|
||||
|
||||
@ -93,14 +92,12 @@ public:
|
||||
void start_tracking() override;
|
||||
|
||||
private:
|
||||
gps_l2_m_dll_pll_tracking_cc_sptr tracking_;
|
||||
dll_pll_veml_tracking_sptr tracking_unified_;
|
||||
dll_pll_veml_tracking_sptr tracking_;
|
||||
size_t item_size_;
|
||||
unsigned int channel_;
|
||||
std::string role_;
|
||||
unsigned int in_streams_;
|
||||
unsigned int out_streams_;
|
||||
bool unified_;
|
||||
};
|
||||
|
||||
#endif // GNSS_SDR_gps_l2_m_dll_pll_tracking_H_
|
||||
|
@ -59,7 +59,6 @@ GpsL5iDllPllTracking::GpsL5iDllPllTracking(
|
||||
trk_param.fs_in = fs_in;
|
||||
bool dump = configuration->property(role + ".dump", false);
|
||||
trk_param.dump = dump;
|
||||
unified_ = configuration->property(role + ".unified", false);
|
||||
float pll_bw_hz = configuration->property(role + ".pll_bw_hz", 50.0);
|
||||
if (FLAGS_pll_bw_hz != 0.0) pll_bw_hz = static_cast<float>(FLAGS_pll_bw_hz);
|
||||
trk_param.pll_bw_hz = pll_bw_hz;
|
||||
@ -106,18 +105,16 @@ GpsL5iDllPllTracking::GpsL5iDllPllTracking(
|
||||
if (item_type.compare("gr_complex") == 0)
|
||||
{
|
||||
item_size_ = sizeof(gr_complex);
|
||||
if (unified_)
|
||||
{
|
||||
item_size_ = sizeof(gr_complex);
|
||||
tracking_unified_ = dll_pll_veml_make_tracking(trk_param);
|
||||
}
|
||||
else
|
||||
{
|
||||
tracking_ = gps_l5i_dll_pll_make_tracking_cc(
|
||||
0, fs_in, vector_length, dump,
|
||||
dump_filename, pll_bw_hz, dll_bw_hz,
|
||||
early_late_space_chips);
|
||||
}
|
||||
tracking_ = dll_pll_veml_make_tracking(
|
||||
fs_in, vector_length, dump, dump_filename,
|
||||
pll_bw_hz, dll_bw_hz,
|
||||
pll_bw_narrow_hz, dll_bw_narrow_hz,
|
||||
early_late_space_chips,
|
||||
early_late_space_chips,
|
||||
early_late_space_narrow_chips,
|
||||
early_late_space_narrow_chips,
|
||||
extend_correlation_symbols,
|
||||
track_pilot, 'G', sig_);
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -136,33 +133,26 @@ GpsL5iDllPllTracking::~GpsL5iDllPllTracking()
|
||||
|
||||
void GpsL5iDllPllTracking::start_tracking()
|
||||
{
|
||||
if (unified_)
|
||||
tracking_unified_->start_tracking();
|
||||
else
|
||||
tracking_->start_tracking();
|
||||
tracking_->start_tracking();
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Set tracking channel unique ID
|
||||
*/
|
||||
void GpsL5iDllPllTracking::set_channel(unsigned int channel)
|
||||
{
|
||||
channel_ = channel;
|
||||
if (unified_)
|
||||
tracking_unified_->set_channel(channel);
|
||||
else
|
||||
tracking_->set_channel(channel);
|
||||
tracking_->set_channel(channel);
|
||||
}
|
||||
|
||||
|
||||
void GpsL5iDllPllTracking::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
|
||||
{
|
||||
if (unified_)
|
||||
tracking_unified_->set_gnss_synchro(p_gnss_synchro);
|
||||
else
|
||||
tracking_->set_gnss_synchro(p_gnss_synchro);
|
||||
tracking_->set_gnss_synchro(p_gnss_synchro);
|
||||
}
|
||||
|
||||
|
||||
void GpsL5iDllPllTracking::connect(gr::top_block_sptr top_block)
|
||||
{
|
||||
if (top_block)
|
||||
@ -171,6 +161,7 @@ void GpsL5iDllPllTracking::connect(gr::top_block_sptr top_block)
|
||||
//nothing to connect, now the tracking uses gr_sync_decimator
|
||||
}
|
||||
|
||||
|
||||
void GpsL5iDllPllTracking::disconnect(gr::top_block_sptr top_block)
|
||||
{
|
||||
if (top_block)
|
||||
@ -179,18 +170,14 @@ void GpsL5iDllPllTracking::disconnect(gr::top_block_sptr top_block)
|
||||
//nothing to disconnect, now the tracking uses gr_sync_decimator
|
||||
}
|
||||
|
||||
|
||||
gr::basic_block_sptr GpsL5iDllPllTracking::get_left_block()
|
||||
{
|
||||
if (unified_)
|
||||
return tracking_unified_;
|
||||
else
|
||||
return tracking_;
|
||||
return tracking_;
|
||||
}
|
||||
|
||||
|
||||
gr::basic_block_sptr GpsL5iDllPllTracking::get_right_block()
|
||||
{
|
||||
if (unified_)
|
||||
return tracking_unified_;
|
||||
else
|
||||
return tracking_;
|
||||
return tracking_;
|
||||
}
|
||||
|
@ -38,7 +38,6 @@
|
||||
#define GNSS_SDR_GPS_L5i_DLL_PLL_TRACKING_H_
|
||||
|
||||
#include "tracking_interface.h"
|
||||
#include "gps_l5i_dll_pll_tracking_cc.h"
|
||||
#include "dll_pll_veml_tracking.h"
|
||||
#include <string>
|
||||
|
||||
@ -92,14 +91,12 @@ public:
|
||||
void start_tracking() override;
|
||||
|
||||
private:
|
||||
gps_l5i_dll_pll_tracking_cc_sptr tracking_;
|
||||
dll_pll_veml_tracking_sptr tracking_unified_;
|
||||
dll_pll_veml_tracking_sptr tracking_;
|
||||
size_t item_size_;
|
||||
unsigned int channel_;
|
||||
std::string role_;
|
||||
unsigned int in_streams_;
|
||||
unsigned int out_streams_;
|
||||
bool unified_;
|
||||
};
|
||||
|
||||
#endif // GNSS_SDR_GPS_L5i_DLL_PLL_TRACKING_H_
|
||||
|
@ -29,9 +29,6 @@ endif(ENABLE_FPGA)
|
||||
set(TRACKING_GR_BLOCKS_SOURCES
|
||||
galileo_e1_tcp_connector_tracking_cc.cc
|
||||
gps_l1_ca_tcp_connector_tracking_cc.cc
|
||||
galileo_e5a_dll_pll_tracking_cc.cc
|
||||
gps_l2_m_dll_pll_tracking_cc.cc
|
||||
gps_l5i_dll_pll_tracking_cc.cc
|
||||
gps_l1_ca_dll_pll_c_aid_tracking_cc.cc
|
||||
gps_l1_ca_dll_pll_c_aid_tracking_sc.cc
|
||||
glonass_l1_ca_dll_pll_tracking_cc.cc
|
||||
|
@ -1047,7 +1047,7 @@ int dll_pll_veml_tracking::save_matfile()
|
||||
if (reinterpret_cast<long *>(matfp) != NULL)
|
||||
{
|
||||
size_t dims[2] = {1, static_cast<size_t>(num_epoch)};
|
||||
matvar = Mat_VarCreate("abs_VE", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_E, 0);
|
||||
matvar = Mat_VarCreate("abs_VE", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_VE, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
@ -1063,7 +1063,7 @@ int dll_pll_veml_tracking::save_matfile()
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("abs_VL", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_E, 0);
|
||||
matvar = Mat_VarCreate("abs_VL", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_VL, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
|
@ -1,977 +0,0 @@
|
||||
/*!
|
||||
* \file galileo_e5a_dll_pll_tracking_cc.h
|
||||
* \brief Implementation of a code DLL + carrier PLL
|
||||
* tracking block for Galileo E5a signals
|
||||
* \author Marc Sales, 2014. marcsales92(at)gmail.com
|
||||
* \based on work from:
|
||||
* <ul>
|
||||
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
|
||||
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
|
||||
* </ul>
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#include "galileo_e5a_dll_pll_tracking_cc.h"
|
||||
#include "galileo_e5_signal_processing.h"
|
||||
#include "tracking_discriminators.h"
|
||||
#include "lock_detectors.h"
|
||||
#include "Galileo_E5a.h"
|
||||
#include "Galileo_E1.h"
|
||||
#include "control_message_factory.h"
|
||||
#include "gnss_sdr_flags.h"
|
||||
#include <boost/lexical_cast.hpp>
|
||||
#include <gnuradio/io_signature.h>
|
||||
#include <glog/logging.h>
|
||||
#include <matio.h>
|
||||
#include <volk_gnsssdr/volk_gnsssdr.h>
|
||||
#include <cmath>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
|
||||
|
||||
using google::LogMessage;
|
||||
|
||||
galileo_e5a_dll_pll_tracking_cc_sptr
|
||||
galileo_e5a_dll_pll_make_tracking_cc(
|
||||
long if_freq,
|
||||
long fs_in,
|
||||
unsigned int vector_length,
|
||||
bool dump,
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float pll_bw_narrow_hz,
|
||||
float dll_bw_narrow_hz,
|
||||
int ti_ms,
|
||||
float early_late_space_chips)
|
||||
{
|
||||
return galileo_e5a_dll_pll_tracking_cc_sptr(new Galileo_E5a_Dll_Pll_Tracking_cc(if_freq,
|
||||
fs_in, vector_length, dump, dump_filename, pll_bw_hz, dll_bw_hz, pll_bw_narrow_hz, dll_bw_narrow_hz, ti_ms, early_late_space_chips));
|
||||
}
|
||||
|
||||
|
||||
void Galileo_E5a_Dll_Pll_Tracking_cc::forecast(int noutput_items, gr_vector_int &ninput_items_required)
|
||||
{
|
||||
if (noutput_items != 0)
|
||||
{
|
||||
ninput_items_required[0] = static_cast<int>(d_vector_length) * 2; //set the required available samples in each call
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Galileo_E5a_Dll_Pll_Tracking_cc::Galileo_E5a_Dll_Pll_Tracking_cc(
|
||||
long if_freq,
|
||||
long fs_in,
|
||||
unsigned int vector_length,
|
||||
bool dump,
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float pll_bw_narrow_hz,
|
||||
float dll_bw_narrow_hz,
|
||||
int ti_ms,
|
||||
float early_late_space_chips) : gr::block("Galileo_E5a_Dll_Pll_Tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||
{
|
||||
// Telemetry bit synchronization message port input
|
||||
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
|
||||
this->message_port_register_out(pmt::mp("events"));
|
||||
this->set_relative_rate(1.0 / vector_length);
|
||||
// initialize internal vars
|
||||
d_dump = dump;
|
||||
d_if_freq = if_freq;
|
||||
d_fs_in = fs_in;
|
||||
d_vector_length = vector_length;
|
||||
d_dump_filename = dump_filename;
|
||||
d_code_loop_filter = Tracking_2nd_DLL_filter(GALILEO_E5a_CODE_PERIOD);
|
||||
d_carrier_loop_filter = Tracking_2nd_PLL_filter(GALILEO_E5a_CODE_PERIOD);
|
||||
d_current_ti_ms = 1; // initializes with 1ms of integration time until secondary code lock
|
||||
d_ti_ms = ti_ms;
|
||||
d_dll_bw_hz = dll_bw_hz;
|
||||
d_pll_bw_hz = pll_bw_hz;
|
||||
d_dll_bw_narrow_hz = dll_bw_narrow_hz;
|
||||
d_pll_bw_narrow_hz = pll_bw_narrow_hz;
|
||||
|
||||
// Initialize tracking ==========================================
|
||||
d_code_loop_filter.set_DLL_BW(d_dll_bw_hz);
|
||||
d_carrier_loop_filter.set_PLL_BW(d_pll_bw_hz);
|
||||
|
||||
//--- DLL variables --------------------------------------------------------
|
||||
d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
|
||||
|
||||
// Initialization of local code replica
|
||||
// Get space for a vector with the E5a primary code replicas sampled 1x/chip
|
||||
d_codeQ = static_cast<gr_complex *>(volk_gnsssdr_malloc(Galileo_E5a_CODE_LENGTH_CHIPS * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||
d_codeI = static_cast<gr_complex *>(volk_gnsssdr_malloc(Galileo_E5a_CODE_LENGTH_CHIPS * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||
|
||||
// correlator Q outputs (scalar)
|
||||
d_n_correlator_taps = 3; // Early, Prompt, Late
|
||||
d_correlator_outs = static_cast<gr_complex *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||
for (int n = 0; n < d_n_correlator_taps; n++)
|
||||
{
|
||||
d_correlator_outs[n] = gr_complex(0, 0);
|
||||
}
|
||||
|
||||
// map memory pointers of correlator outputs
|
||||
d_Single_Early = &d_correlator_outs[0];
|
||||
d_Single_Prompt = &d_correlator_outs[1];
|
||||
d_Single_Late = &d_correlator_outs[2];
|
||||
|
||||
d_local_code_shift_chips = static_cast<float *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(float), volk_gnsssdr_get_alignment()));
|
||||
// Set TAPs delay values [chips]
|
||||
d_local_code_shift_chips[0] = -d_early_late_spc_chips;
|
||||
d_local_code_shift_chips[1] = 0.0;
|
||||
d_local_code_shift_chips[2] = d_early_late_spc_chips;
|
||||
|
||||
multicorrelator_cpu_Q.init(2 * d_vector_length, d_n_correlator_taps);
|
||||
|
||||
// correlator I single output for data (scalar)
|
||||
d_Single_Prompt_data = static_cast<gr_complex *>(volk_gnsssdr_malloc(sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||
*d_Single_Prompt_data = gr_complex(0, 0);
|
||||
multicorrelator_cpu_I.init(2 * d_vector_length, 1); // single correlator for data channel
|
||||
|
||||
//--- Perform initializations ------------------------------
|
||||
// define initial code frequency basis of NCO
|
||||
d_code_freq_chips = Galileo_E5a_CODE_CHIP_RATE_HZ;
|
||||
// define residual code phase (in chips)
|
||||
d_rem_code_phase_samples = 0.0;
|
||||
// define residual carrier phase
|
||||
d_rem_carr_phase_rad = 0.0;
|
||||
//Filter error vars
|
||||
d_code_error_filt_secs = 0.0;
|
||||
// sample synchronization
|
||||
d_sample_counter = 0;
|
||||
d_acq_sample_stamp = 0;
|
||||
d_first_transition = false;
|
||||
|
||||
d_secondary_lock = false;
|
||||
d_secondary_delay = 0;
|
||||
d_integration_counter = 0;
|
||||
|
||||
d_current_prn_length_samples = static_cast<int>(d_vector_length);
|
||||
|
||||
// CN0 estimation and lock detector buffers
|
||||
d_cn0_estimation_counter = 0;
|
||||
d_Prompt_buffer = new gr_complex[static_cast<unsigned int>(FLAGS_cn0_samples)];
|
||||
d_carrier_lock_test = 1;
|
||||
d_CN0_SNV_dB_Hz = 0;
|
||||
d_carrier_lock_fail_counter = 0;
|
||||
d_carrier_lock_threshold = FLAGS_carrier_lock_th;
|
||||
|
||||
d_acquisition_gnss_synchro = 0;
|
||||
d_channel = 0;
|
||||
tmp_E = 0;
|
||||
tmp_P = 0;
|
||||
tmp_L = 0;
|
||||
d_acq_code_phase_samples = 0;
|
||||
d_acq_carrier_doppler_hz = 0;
|
||||
d_carrier_doppler_hz = 0;
|
||||
d_acc_carrier_phase_rad = 0;
|
||||
d_code_phase_samples = 0;
|
||||
d_acc_code_phase_secs = 0;
|
||||
d_state = 0;
|
||||
|
||||
d_rem_code_phase_chips = 0.0;
|
||||
d_code_phase_step_chips = 0.0;
|
||||
d_carrier_phase_step_rad = 0.0;
|
||||
|
||||
systemName["E"] = std::string("Galileo");
|
||||
}
|
||||
|
||||
|
||||
Galileo_E5a_Dll_Pll_Tracking_cc::~Galileo_E5a_Dll_Pll_Tracking_cc()
|
||||
{
|
||||
if (d_dump_file.is_open())
|
||||
{
|
||||
try
|
||||
{
|
||||
d_dump_file.close();
|
||||
}
|
||||
catch (const std::exception &ex)
|
||||
{
|
||||
LOG(WARNING) << "Exception in destructor " << ex.what();
|
||||
}
|
||||
}
|
||||
|
||||
if (d_dump)
|
||||
{
|
||||
if (d_channel == 0)
|
||||
{
|
||||
std::cout << "Writing .mat files ...";
|
||||
}
|
||||
Galileo_E5a_Dll_Pll_Tracking_cc::save_matfile();
|
||||
if (d_channel == 0)
|
||||
{
|
||||
std::cout << " done." << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
try
|
||||
{
|
||||
delete[] d_codeI;
|
||||
delete[] d_codeQ;
|
||||
delete[] d_Prompt_buffer;
|
||||
volk_gnsssdr_free(d_local_code_shift_chips);
|
||||
volk_gnsssdr_free(d_correlator_outs);
|
||||
volk_gnsssdr_free(d_Single_Prompt_data);
|
||||
multicorrelator_cpu_Q.free();
|
||||
multicorrelator_cpu_I.free();
|
||||
}
|
||||
catch (const std::exception &ex)
|
||||
{
|
||||
LOG(WARNING) << "Exception in destructor " << ex.what();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void Galileo_E5a_Dll_Pll_Tracking_cc::start_tracking()
|
||||
{
|
||||
/*
|
||||
* correct the code phase according to the delay between acq and trk
|
||||
*/
|
||||
d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples;
|
||||
d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz;
|
||||
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
|
||||
|
||||
long int acq_trk_diff_samples;
|
||||
double acq_trk_diff_seconds;
|
||||
acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp); //-d_vector_length;
|
||||
LOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples;
|
||||
acq_trk_diff_seconds = static_cast<float>(acq_trk_diff_samples) / static_cast<float>(d_fs_in);
|
||||
//doppler effect
|
||||
// Fd=(C/(C+Vr))*F
|
||||
double radial_velocity;
|
||||
radial_velocity = (Galileo_E5a_FREQ_HZ + d_acq_carrier_doppler_hz) / Galileo_E5a_FREQ_HZ;
|
||||
// new chip and prn sequence periods based on acq Doppler
|
||||
double T_chip_mod_seconds;
|
||||
double T_prn_mod_seconds;
|
||||
double T_prn_mod_samples;
|
||||
d_code_freq_chips = radial_velocity * Galileo_E5a_CODE_CHIP_RATE_HZ;
|
||||
T_chip_mod_seconds = 1 / d_code_freq_chips;
|
||||
T_prn_mod_seconds = T_chip_mod_seconds * Galileo_E5a_CODE_LENGTH_CHIPS;
|
||||
T_prn_mod_samples = T_prn_mod_seconds * static_cast<float>(d_fs_in);
|
||||
|
||||
d_current_prn_length_samples = round(T_prn_mod_samples);
|
||||
|
||||
double T_prn_true_seconds = Galileo_E5a_CODE_LENGTH_CHIPS / Galileo_E5a_CODE_CHIP_RATE_HZ;
|
||||
double T_prn_true_samples = T_prn_true_seconds * static_cast<float>(d_fs_in);
|
||||
double T_prn_diff_seconds;
|
||||
T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds;
|
||||
double N_prn_diff;
|
||||
N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
|
||||
double corrected_acq_phase_samples, delay_correction_samples;
|
||||
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<float>(d_fs_in)), T_prn_true_samples);
|
||||
if (corrected_acq_phase_samples < 0)
|
||||
{
|
||||
corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples;
|
||||
}
|
||||
delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples;
|
||||
|
||||
d_acq_code_phase_samples = corrected_acq_phase_samples;
|
||||
|
||||
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
|
||||
|
||||
// DLL/PLL filter initialization
|
||||
d_carrier_loop_filter.initialize(); // initialize the carrier filter
|
||||
d_code_loop_filter.initialize(); // initialize the code filter
|
||||
|
||||
// generate local reference ALWAYS starting at chip 1 (1 sample per chip)
|
||||
char sig[3];
|
||||
strcpy(sig, "5Q");
|
||||
galileo_e5_a_code_gen_complex_primary(d_codeQ, d_acquisition_gnss_synchro->PRN, sig);
|
||||
|
||||
strcpy(sig, "5I");
|
||||
galileo_e5_a_code_gen_complex_primary(d_codeI, d_acquisition_gnss_synchro->PRN, sig);
|
||||
|
||||
d_carrier_lock_fail_counter = 0;
|
||||
d_rem_code_phase_samples = 0;
|
||||
d_rem_carr_phase_rad = 0;
|
||||
d_acc_carrier_phase_rad = 0;
|
||||
d_acc_code_phase_secs = 0;
|
||||
|
||||
d_code_phase_samples = d_acq_code_phase_samples;
|
||||
|
||||
std::string sys_ = &d_acquisition_gnss_synchro->System;
|
||||
sys = sys_.substr(0, 1);
|
||||
|
||||
// DEBUG OUTPUT
|
||||
std::cout << "Tracking of Galileo E5a signal started on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
|
||||
LOG(INFO) << "Galileo E5a starting tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel;
|
||||
|
||||
// enable tracking
|
||||
d_state = 1;
|
||||
|
||||
LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz
|
||||
<< " Code Phase correction [samples]=" << delay_correction_samples
|
||||
<< " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples;
|
||||
}
|
||||
|
||||
|
||||
void Galileo_E5a_Dll_Pll_Tracking_cc::acquire_secondary()
|
||||
{
|
||||
// 1. Transform replica to 1 and -1
|
||||
int sec_code_signed[Galileo_E5a_Q_SECONDARY_CODE_LENGTH];
|
||||
for (unsigned int i = 0; i < Galileo_E5a_Q_SECONDARY_CODE_LENGTH; i++)
|
||||
{
|
||||
if (Galileo_E5a_Q_SECONDARY_CODE[d_acquisition_gnss_synchro->PRN - 1].at(i) == '0')
|
||||
{
|
||||
sec_code_signed[i] = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
sec_code_signed[i] = -1;
|
||||
}
|
||||
}
|
||||
// 2. Transform buffer to 1 and -1
|
||||
int in_corr[static_cast<unsigned int>(FLAGS_cn0_samples)];
|
||||
for (unsigned int i = 0; i < static_cast<unsigned int>(FLAGS_cn0_samples); i++)
|
||||
{
|
||||
if (d_Prompt_buffer[i].real() > 0)
|
||||
{
|
||||
in_corr[i] = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
in_corr[i] = -1;
|
||||
}
|
||||
}
|
||||
// 3. Serial search
|
||||
int out_corr;
|
||||
int current_best_ = 0;
|
||||
for (unsigned int i = 0; i < Galileo_E5a_Q_SECONDARY_CODE_LENGTH; i++)
|
||||
{
|
||||
out_corr = 0;
|
||||
for (unsigned int j = 0; j < static_cast<unsigned int>(FLAGS_cn0_samples); j++)
|
||||
{
|
||||
//reverse replica sign since i*i=-1 (conjugated complex)
|
||||
out_corr += in_corr[j] * -sec_code_signed[(j + i) % Galileo_E5a_Q_SECONDARY_CODE_LENGTH];
|
||||
}
|
||||
if (abs(out_corr) > current_best_)
|
||||
{
|
||||
current_best_ = abs(out_corr);
|
||||
d_secondary_delay = i;
|
||||
}
|
||||
}
|
||||
if (current_best_ == FLAGS_cn0_samples) // all bits correlate
|
||||
{
|
||||
d_secondary_lock = true;
|
||||
d_secondary_delay = (d_secondary_delay + static_cast<unsigned int>(FLAGS_cn0_samples) - 1) % Galileo_E5a_Q_SECONDARY_CODE_LENGTH;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int Galileo_E5a_Dll_Pll_Tracking_cc::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)),
|
||||
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
|
||||
{
|
||||
// process vars
|
||||
double carr_error_hz;
|
||||
double carr_error_filt_hz;
|
||||
double code_error_chips;
|
||||
double code_error_filt_chips;
|
||||
|
||||
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
|
||||
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]); //block output streams pointer
|
||||
|
||||
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
|
||||
Gnss_Synchro current_synchro_data;
|
||||
// Fill the acquisition data
|
||||
current_synchro_data = *d_acquisition_gnss_synchro;
|
||||
|
||||
/* States: 0 Tracking not enabled
|
||||
* 1 Pull-in of primary code (alignment).
|
||||
* 3 Tracking algorithm. Correlates EPL each loop and accumulates the result
|
||||
* until it reaches integration time.
|
||||
*/
|
||||
switch (d_state)
|
||||
{
|
||||
case 0:
|
||||
{
|
||||
d_Early = gr_complex(0, 0);
|
||||
d_Prompt = gr_complex(0, 0);
|
||||
d_Late = gr_complex(0, 0);
|
||||
d_Prompt_data = gr_complex(0, 0);
|
||||
current_synchro_data.Tracking_sample_counter = d_sample_counter;
|
||||
break;
|
||||
}
|
||||
case 1:
|
||||
{
|
||||
int samples_offset;
|
||||
double acq_trk_shif_correction_samples;
|
||||
int acq_to_trk_delay_samples;
|
||||
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
|
||||
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
|
||||
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
|
||||
d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples
|
||||
DLOG(INFO) << " samples_offset=" << samples_offset;
|
||||
d_state = 2; // start in Ti = 1 code, until secondary code lock.
|
||||
|
||||
// make an output to not stop the rest of the processing blocks
|
||||
current_synchro_data.Prompt_I = 0.0;
|
||||
current_synchro_data.Prompt_Q = 0.0;
|
||||
current_synchro_data.Tracking_sample_counter = d_sample_counter;
|
||||
current_synchro_data.Carrier_phase_rads = 0.0;
|
||||
current_synchro_data.CN0_dB_hz = 0.0;
|
||||
current_synchro_data.fs = d_fs_in;
|
||||
consume_each(samples_offset); //shift input to perform alignment with local replica
|
||||
return 0;
|
||||
break;
|
||||
}
|
||||
case 2:
|
||||
{
|
||||
// Block input data and block output stream pointers
|
||||
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]); //PRN start block alignment
|
||||
gr_complex sec_sign_Q;
|
||||
gr_complex sec_sign_I;
|
||||
// Secondary code Chip
|
||||
if (d_secondary_lock)
|
||||
{
|
||||
sec_sign_Q = gr_complex((Galileo_E5a_Q_SECONDARY_CODE[d_acquisition_gnss_synchro->PRN - 1].at(d_secondary_delay) == '0' ? -1 : 1), 0);
|
||||
sec_sign_I = gr_complex((Galileo_E5a_I_SECONDARY_CODE.at(d_secondary_delay % Galileo_E5a_I_SECONDARY_CODE_LENGTH) == '0' ? -1 : 1), 0);
|
||||
}
|
||||
else
|
||||
{
|
||||
sec_sign_Q = gr_complex(1.0, 0.0);
|
||||
sec_sign_I = gr_complex(1.0, 0.0);
|
||||
}
|
||||
// Reset integration counter
|
||||
if (d_integration_counter == d_current_ti_ms)
|
||||
{
|
||||
d_integration_counter = 0;
|
||||
}
|
||||
//Generate local code and carrier replicas (using \hat{f}_d(k-1))
|
||||
if (d_integration_counter == 0)
|
||||
{
|
||||
// Reset accumulated values
|
||||
d_Early = gr_complex(0, 0);
|
||||
d_Prompt = gr_complex(0, 0);
|
||||
d_Late = gr_complex(0, 0);
|
||||
}
|
||||
|
||||
// perform carrier wipe-off and compute Early, Prompt and Late
|
||||
// correlation of 1 primary code
|
||||
|
||||
multicorrelator_cpu_Q.set_local_code_and_taps(Galileo_E5a_CODE_LENGTH_CHIPS, d_codeQ, d_local_code_shift_chips);
|
||||
multicorrelator_cpu_I.set_local_code_and_taps(Galileo_E5a_CODE_LENGTH_CHIPS, d_codeI, &d_local_code_shift_chips[1]);
|
||||
|
||||
// ################# CARRIER WIPEOFF AND CORRELATORS ##############################
|
||||
// perform carrier wipe-off and compute Early, Prompt and Late correlation
|
||||
multicorrelator_cpu_Q.set_input_output_vectors(d_correlator_outs, in);
|
||||
multicorrelator_cpu_I.set_input_output_vectors(d_Single_Prompt_data, in);
|
||||
|
||||
double carr_phase_step_rad = GALILEO_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
|
||||
double code_phase_step_chips = d_code_freq_chips / (static_cast<double>(d_fs_in));
|
||||
double rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / d_fs_in);
|
||||
multicorrelator_cpu_Q.Carrier_wipeoff_multicorrelator_resampler(
|
||||
d_rem_carr_phase_rad,
|
||||
carr_phase_step_rad,
|
||||
rem_code_phase_chips,
|
||||
code_phase_step_chips,
|
||||
d_current_prn_length_samples);
|
||||
|
||||
multicorrelator_cpu_I.Carrier_wipeoff_multicorrelator_resampler(
|
||||
d_rem_carr_phase_rad,
|
||||
carr_phase_step_rad,
|
||||
rem_code_phase_chips,
|
||||
code_phase_step_chips,
|
||||
d_current_prn_length_samples);
|
||||
|
||||
// Accumulate results (coherent integration since there are no bit transitions in pilot signal)
|
||||
d_Early += (*d_Single_Early) * sec_sign_Q;
|
||||
d_Prompt += (*d_Single_Prompt) * sec_sign_Q;
|
||||
d_Late += (*d_Single_Late) * sec_sign_Q;
|
||||
d_Prompt_data = (*d_Single_Prompt_data);
|
||||
d_Prompt_data *= sec_sign_I;
|
||||
d_integration_counter++;
|
||||
|
||||
// ################## PLL ##########################################################
|
||||
// PLL discriminator
|
||||
if (d_integration_counter == d_current_ti_ms)
|
||||
{
|
||||
if (d_secondary_lock == true)
|
||||
{
|
||||
carr_error_hz = pll_four_quadrant_atan(d_Prompt) / GALILEO_PI * 2.0;
|
||||
}
|
||||
else
|
||||
{
|
||||
carr_error_hz = pll_cloop_two_quadrant_atan(d_Prompt) / GALILEO_PI * 2.0;
|
||||
}
|
||||
|
||||
// Carrier discriminator filter
|
||||
carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz);
|
||||
// New carrier Doppler frequency estimation
|
||||
d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_error_filt_hz;
|
||||
// New code Doppler frequency estimation
|
||||
d_code_freq_chips = Galileo_E5a_CODE_CHIP_RATE_HZ + ((d_carrier_doppler_hz * Galileo_E5a_CODE_CHIP_RATE_HZ) / Galileo_E5a_FREQ_HZ);
|
||||
}
|
||||
// carrier phase accumulator for (K) doppler estimation
|
||||
d_acc_carrier_phase_rad -= 2.0 * GALILEO_PI * d_carrier_doppler_hz * GALILEO_E5a_CODE_PERIOD;
|
||||
// remnant carrier phase to prevent overflow in the code NCO
|
||||
d_rem_carr_phase_rad = d_rem_carr_phase_rad + 2.0 * GALILEO_PI * d_carrier_doppler_hz * GALILEO_E5a_CODE_PERIOD;
|
||||
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, 2.0 * GALILEO_PI);
|
||||
|
||||
// ################## DLL ##########################################################
|
||||
if (d_integration_counter == d_current_ti_ms)
|
||||
{
|
||||
// DLL discriminator
|
||||
code_error_chips = dll_nc_e_minus_l_normalized(d_Early, d_Late); //[chips/Ti]
|
||||
// Code discriminator filter
|
||||
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second]
|
||||
//Code phase accumulator
|
||||
d_code_error_filt_secs = (GALILEO_E5a_CODE_PERIOD * code_error_filt_chips) / Galileo_E5a_CODE_CHIP_RATE_HZ; //[seconds]
|
||||
}
|
||||
d_acc_code_phase_secs = d_acc_code_phase_secs + d_code_error_filt_secs;
|
||||
|
||||
// ################## CARRIER AND CODE NCO BUFFER ALIGNMENT #######################
|
||||
// keep alignment parameters for the next input buffer
|
||||
double T_chip_seconds;
|
||||
double T_prn_seconds;
|
||||
double T_prn_samples;
|
||||
double K_blk_samples;
|
||||
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
|
||||
T_chip_seconds = 1.0 / d_code_freq_chips;
|
||||
T_prn_seconds = T_chip_seconds * Galileo_E5a_CODE_LENGTH_CHIPS;
|
||||
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
|
||||
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + d_code_error_filt_secs * static_cast<double>(d_fs_in);
|
||||
d_current_prn_length_samples = round(K_blk_samples); //round to a discrete samples
|
||||
d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
|
||||
|
||||
// ####### CN0 ESTIMATION AND LOCK DETECTORS ######
|
||||
if (d_cn0_estimation_counter < FLAGS_cn0_samples - 1)
|
||||
{
|
||||
// fill buffer with prompt correlator output values
|
||||
d_Prompt_buffer[d_cn0_estimation_counter] = d_Prompt;
|
||||
d_cn0_estimation_counter++;
|
||||
}
|
||||
else
|
||||
{
|
||||
d_Prompt_buffer[d_cn0_estimation_counter] = d_Prompt;
|
||||
// ATTEMPT SECONDARY CODE ACQUISITION
|
||||
if (d_secondary_lock == false)
|
||||
{
|
||||
acquire_secondary(); // changes d_secondary_lock and d_secondary_delay
|
||||
if (d_secondary_lock == true)
|
||||
{
|
||||
std::cout << "Galileo E5a secondary code locked for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
|
||||
d_current_ti_ms = d_ti_ms;
|
||||
// Change loop parameters ==========================================
|
||||
d_code_loop_filter.set_pdi(d_current_ti_ms * GALILEO_E5a_CODE_PERIOD);
|
||||
d_carrier_loop_filter.set_pdi(d_current_ti_ms * GALILEO_E5a_CODE_PERIOD);
|
||||
d_code_loop_filter.set_DLL_BW(d_dll_bw_narrow_hz);
|
||||
d_carrier_loop_filter.set_PLL_BW(d_pll_bw_narrow_hz);
|
||||
}
|
||||
else
|
||||
{
|
||||
//std::cout << "Secondary code delay couldn't be resolved." << std::endl;
|
||||
d_carrier_lock_fail_counter++;
|
||||
if (d_carrier_lock_fail_counter > FLAGS_max_lock_fail)
|
||||
{
|
||||
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
|
||||
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
|
||||
this->message_port_pub(pmt::mp("events"), pmt::from_long(3)); //3 -> loss of lock
|
||||
d_carrier_lock_fail_counter = 0;
|
||||
d_state = 0; // TODO: check if disabling tracking is consistent with the channel state machine
|
||||
}
|
||||
}
|
||||
}
|
||||
else // Secondary lock achieved, monitor carrier lock.
|
||||
{
|
||||
// Code lock indicator
|
||||
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, static_cast<unsigned int>(FLAGS_cn0_samples), d_fs_in, d_current_ti_ms * Galileo_E5a_CODE_LENGTH_CHIPS);
|
||||
// Carrier lock indicator
|
||||
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, static_cast<unsigned int>(FLAGS_cn0_samples));
|
||||
// Loss of lock detection
|
||||
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < FLAGS_cn0_min)
|
||||
{
|
||||
d_carrier_lock_fail_counter++;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
|
||||
|
||||
if (d_carrier_lock_fail_counter > FLAGS_max_lock_fail)
|
||||
{
|
||||
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
|
||||
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
|
||||
this->message_port_pub(pmt::mp("events"), pmt::from_long(3)); //3 -> loss of lock
|
||||
d_carrier_lock_fail_counter = 0;
|
||||
d_state = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
d_cn0_estimation_counter = 0;
|
||||
}
|
||||
if (d_secondary_lock && (d_secondary_delay % Galileo_E5a_I_SECONDARY_CODE_LENGTH) == 0)
|
||||
{
|
||||
d_first_transition = true;
|
||||
}
|
||||
// ########### Output the tracking data to navigation and PVT ##########
|
||||
// The first Prompt output not equal to 0 is synchronized with the transition of a navigation data bit.
|
||||
if (d_secondary_lock && d_first_transition)
|
||||
{
|
||||
current_synchro_data.Prompt_I = static_cast<double>(d_Prompt_data.real());
|
||||
current_synchro_data.Prompt_Q = static_cast<double>(d_Prompt_data.imag());
|
||||
current_synchro_data.Tracking_sample_counter = d_sample_counter + d_current_prn_length_samples;
|
||||
current_synchro_data.Code_phase_samples = d_rem_code_phase_samples;
|
||||
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
|
||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
||||
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
||||
current_synchro_data.Flag_valid_symbol_output = true;
|
||||
}
|
||||
else
|
||||
{
|
||||
// make an output to not stop the rest of the processing blocks
|
||||
current_synchro_data.Prompt_I = 0.0;
|
||||
current_synchro_data.Prompt_Q = 0.0;
|
||||
current_synchro_data.Tracking_sample_counter = d_sample_counter;
|
||||
current_synchro_data.Carrier_phase_rads = 0.0;
|
||||
current_synchro_data.CN0_dB_hz = 0.0;
|
||||
current_synchro_data.Flag_valid_symbol_output = false;
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
current_synchro_data.fs = d_fs_in;
|
||||
current_synchro_data.correlation_length_ms = GALILEO_E5a_CODE_PERIOD_MS;
|
||||
if (current_synchro_data.Flag_valid_symbol_output)
|
||||
{
|
||||
*out[0] = current_synchro_data;
|
||||
}
|
||||
|
||||
if (d_dump)
|
||||
{
|
||||
// MULTIPLEXED FILE RECORDING - Record results to file
|
||||
float prompt_I;
|
||||
float prompt_Q;
|
||||
double tmp_double;
|
||||
prompt_I = (d_Prompt_data).real();
|
||||
prompt_Q = (d_Prompt_data).imag();
|
||||
if (d_integration_counter == d_current_ti_ms)
|
||||
{
|
||||
tmp_E = std::abs<float>(d_Early);
|
||||
tmp_P = std::abs<float>(d_Prompt);
|
||||
tmp_L = std::abs<float>(d_Late);
|
||||
}
|
||||
try
|
||||
{
|
||||
// EPR
|
||||
d_dump_file.write(reinterpret_cast<char *>(&tmp_E), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char *>(&tmp_P), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char *>(&tmp_L), sizeof(float));
|
||||
// PROMPT I and Q (to analyze navigation symbols)
|
||||
d_dump_file.write(reinterpret_cast<char *>(&prompt_I), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char *>(&prompt_Q), sizeof(float));
|
||||
// PRN start sample stamp
|
||||
//tmp_float=(float)d_sample_counter;
|
||||
d_dump_file.write(reinterpret_cast<char *>(&d_sample_counter), sizeof(unsigned long int));
|
||||
// accumulated carrier phase
|
||||
d_dump_file.write(reinterpret_cast<char *>(&d_acc_carrier_phase_rad), sizeof(double));
|
||||
|
||||
// carrier and code frequency
|
||||
d_dump_file.write(reinterpret_cast<char *>(&d_carrier_doppler_hz), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char *>(&d_code_freq_chips), sizeof(double));
|
||||
|
||||
//PLL commands
|
||||
d_dump_file.write(reinterpret_cast<char *>(&carr_error_hz), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char *>(&carr_error_filt_hz), sizeof(double));
|
||||
|
||||
//DLL commands
|
||||
d_dump_file.write(reinterpret_cast<char *>(&code_error_chips), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char *>(&code_error_filt_chips), sizeof(double));
|
||||
|
||||
// CN0 and carrier lock test
|
||||
d_dump_file.write(reinterpret_cast<char *>(&d_CN0_SNV_dB_Hz), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char *>(&d_carrier_lock_test), sizeof(double));
|
||||
|
||||
// AUX vars (for debug purposes)
|
||||
tmp_double = d_rem_code_phase_samples;
|
||||
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
|
||||
tmp_double = static_cast<double>(d_sample_counter + d_current_prn_length_samples);
|
||||
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
|
||||
|
||||
// PRN
|
||||
unsigned int prn_ = d_acquisition_gnss_synchro->PRN;
|
||||
d_dump_file.write(reinterpret_cast<char *>(&prn_), sizeof(unsigned int));
|
||||
}
|
||||
catch (const std::ifstream::failure &e)
|
||||
{
|
||||
LOG(WARNING) << "Exception writing trk dump file " << e.what();
|
||||
}
|
||||
}
|
||||
|
||||
d_secondary_delay = (d_secondary_delay + 1) % Galileo_E5a_Q_SECONDARY_CODE_LENGTH;
|
||||
d_sample_counter += d_current_prn_length_samples;
|
||||
consume_each(d_current_prn_length_samples);
|
||||
|
||||
if (current_synchro_data.Flag_valid_symbol_output)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void Galileo_E5a_Dll_Pll_Tracking_cc::set_channel(unsigned int channel)
|
||||
{
|
||||
d_channel = channel;
|
||||
LOG(INFO) << "Tracking Channel set to " << d_channel;
|
||||
// ############# ENABLE DATA FILE LOG #################
|
||||
if (d_dump == true)
|
||||
{
|
||||
if (d_dump_file.is_open() == false)
|
||||
{
|
||||
try
|
||||
{
|
||||
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
|
||||
d_dump_filename.append(".dat");
|
||||
d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
|
||||
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
|
||||
LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str();
|
||||
}
|
||||
catch (const std::ifstream::failure &e)
|
||||
{
|
||||
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int Galileo_E5a_Dll_Pll_Tracking_cc::save_matfile()
|
||||
{
|
||||
// READ DUMP FILE
|
||||
std::ifstream::pos_type size;
|
||||
int number_of_double_vars = 11;
|
||||
int number_of_float_vars = 5;
|
||||
int epoch_size_bytes = sizeof(unsigned long int) + sizeof(double) * number_of_double_vars +
|
||||
sizeof(float) * number_of_float_vars + sizeof(unsigned int);
|
||||
std::ifstream dump_file;
|
||||
dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
|
||||
try
|
||||
{
|
||||
dump_file.open(d_dump_filename.c_str(), std::ios::binary | std::ios::ate);
|
||||
}
|
||||
catch (const std::ifstream::failure &e)
|
||||
{
|
||||
std::cerr << "Problem opening dump file:" << e.what() << std::endl;
|
||||
return 1;
|
||||
}
|
||||
// count number of epochs and rewind
|
||||
long int num_epoch = 0;
|
||||
if (dump_file.is_open())
|
||||
{
|
||||
size = dump_file.tellg();
|
||||
num_epoch = static_cast<long int>(size) / static_cast<long int>(epoch_size_bytes);
|
||||
dump_file.seekg(0, std::ios::beg);
|
||||
}
|
||||
else
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
float *abs_E = new float[num_epoch];
|
||||
float *abs_P = new float[num_epoch];
|
||||
float *abs_L = new float[num_epoch];
|
||||
float *Prompt_I = new float[num_epoch];
|
||||
float *Prompt_Q = new float[num_epoch];
|
||||
unsigned long int *PRN_start_sample_count = new unsigned long int[num_epoch];
|
||||
double *acc_carrier_phase_rad = new double[num_epoch];
|
||||
double *carrier_doppler_hz = new double[num_epoch];
|
||||
double *code_freq_chips = new double[num_epoch];
|
||||
double *carr_error_hz = new double[num_epoch];
|
||||
double *carr_error_filt_hz = new double[num_epoch];
|
||||
double *code_error_chips = new double[num_epoch];
|
||||
double *code_error_filt_chips = new double[num_epoch];
|
||||
double *CN0_SNV_dB_Hz = new double[num_epoch];
|
||||
double *carrier_lock_test = new double[num_epoch];
|
||||
double *aux1 = new double[num_epoch];
|
||||
double *aux2 = new double[num_epoch];
|
||||
unsigned int *PRN = new unsigned int[num_epoch];
|
||||
|
||||
try
|
||||
{
|
||||
if (dump_file.is_open())
|
||||
{
|
||||
for (long int i = 0; i < num_epoch; i++)
|
||||
{
|
||||
dump_file.read(reinterpret_cast<char *>(&abs_E[i]), sizeof(float));
|
||||
dump_file.read(reinterpret_cast<char *>(&abs_P[i]), sizeof(float));
|
||||
dump_file.read(reinterpret_cast<char *>(&abs_L[i]), sizeof(float));
|
||||
dump_file.read(reinterpret_cast<char *>(&Prompt_I[i]), sizeof(float));
|
||||
dump_file.read(reinterpret_cast<char *>(&Prompt_Q[i]), sizeof(float));
|
||||
dump_file.read(reinterpret_cast<char *>(&PRN_start_sample_count[i]), sizeof(unsigned long int));
|
||||
dump_file.read(reinterpret_cast<char *>(&acc_carrier_phase_rad[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&carrier_doppler_hz[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&code_freq_chips[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&carr_error_hz[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&carr_error_filt_hz[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&code_error_chips[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&code_error_filt_chips[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&CN0_SNV_dB_Hz[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&carrier_lock_test[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&aux1[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&aux2[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&PRN[i]), sizeof(unsigned int));
|
||||
}
|
||||
}
|
||||
dump_file.close();
|
||||
}
|
||||
catch (const std::ifstream::failure &e)
|
||||
{
|
||||
std::cerr << "Problem reading dump file:" << e.what() << std::endl;
|
||||
delete[] abs_E;
|
||||
delete[] abs_P;
|
||||
delete[] abs_L;
|
||||
delete[] Prompt_I;
|
||||
delete[] Prompt_Q;
|
||||
delete[] PRN_start_sample_count;
|
||||
delete[] acc_carrier_phase_rad;
|
||||
delete[] carrier_doppler_hz;
|
||||
delete[] code_freq_chips;
|
||||
delete[] carr_error_hz;
|
||||
delete[] carr_error_filt_hz;
|
||||
delete[] code_error_chips;
|
||||
delete[] code_error_filt_chips;
|
||||
delete[] CN0_SNV_dB_Hz;
|
||||
delete[] carrier_lock_test;
|
||||
delete[] aux1;
|
||||
delete[] aux2;
|
||||
delete[] PRN;
|
||||
return 1;
|
||||
}
|
||||
|
||||
// WRITE MAT FILE
|
||||
mat_t *matfp;
|
||||
matvar_t *matvar;
|
||||
std::string filename = d_dump_filename;
|
||||
filename.erase(filename.length() - 4, 4);
|
||||
filename.append(".mat");
|
||||
matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73);
|
||||
if (reinterpret_cast<long *>(matfp) != NULL)
|
||||
{
|
||||
size_t dims[2] = {1, static_cast<size_t>(num_epoch)};
|
||||
matvar = Mat_VarCreate("abs_E", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_E, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("abs_P", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_P, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("abs_L", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_L, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("Prompt_I", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_I, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("Prompt_Q", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_Q, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("PRN_start_sample_count", MAT_C_UINT64, MAT_T_UINT64, 2, dims, PRN_start_sample_count, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("acc_carrier_phase_rad", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, acc_carrier_phase_rad, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("carrier_doppler_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carrier_doppler_hz, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("code_freq_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_freq_chips, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("carr_error_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carr_error_hz, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("carr_error_filt_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carr_error_filt_hz, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("code_error_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_error_chips, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("code_error_filt_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_error_filt_chips, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("CN0_SNV_dB_Hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, CN0_SNV_dB_Hz, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("carrier_lock_test", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carrier_lock_test, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("aux1", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, aux1, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("aux2", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, aux2, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("PRN", MAT_C_UINT32, MAT_T_UINT32, 2, dims, PRN, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
}
|
||||
Mat_Close(matfp);
|
||||
delete[] abs_E;
|
||||
delete[] abs_P;
|
||||
delete[] abs_L;
|
||||
delete[] Prompt_I;
|
||||
delete[] Prompt_Q;
|
||||
delete[] PRN_start_sample_count;
|
||||
delete[] acc_carrier_phase_rad;
|
||||
delete[] carrier_doppler_hz;
|
||||
delete[] code_freq_chips;
|
||||
delete[] carr_error_hz;
|
||||
delete[] carr_error_filt_hz;
|
||||
delete[] code_error_chips;
|
||||
delete[] code_error_filt_chips;
|
||||
delete[] CN0_SNV_dB_Hz;
|
||||
delete[] carrier_lock_test;
|
||||
delete[] aux1;
|
||||
delete[] aux2;
|
||||
delete[] PRN;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
void Galileo_E5a_Dll_Pll_Tracking_cc::set_gnss_synchro(Gnss_Synchro *p_gnss_synchro)
|
||||
{
|
||||
d_acquisition_gnss_synchro = p_gnss_synchro;
|
||||
}
|
@ -1,207 +0,0 @@
|
||||
/*!
|
||||
* \file galileo_e5a_dll_pll_tracking_cc.h
|
||||
* \brief Implementation of a code DLL + carrier PLL
|
||||
* tracking block for Galileo E5a signals
|
||||
* \author Marc Sales, 2014. marcsales92(at)gmail.com
|
||||
* \based on work from:
|
||||
* <ul>
|
||||
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
|
||||
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
|
||||
* </ul>
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef GNSS_SDR_GALILEO_E5A_DLL_PLL_TRACKING_CC_H_
|
||||
#define GNSS_SDR_GALILEO_E5A_DLL_PLL_TRACKING_CC_H_
|
||||
|
||||
#include "gnss_synchro.h"
|
||||
#include "tracking_2nd_DLL_filter.h"
|
||||
#include "tracking_2nd_PLL_filter.h"
|
||||
#include "cpu_multicorrelator.h"
|
||||
#include <gnuradio/block.h>
|
||||
#include <fstream>
|
||||
#include <map>
|
||||
#include <string>
|
||||
|
||||
class Galileo_E5a_Dll_Pll_Tracking_cc;
|
||||
|
||||
typedef boost::shared_ptr<Galileo_E5a_Dll_Pll_Tracking_cc>
|
||||
galileo_e5a_dll_pll_tracking_cc_sptr;
|
||||
|
||||
galileo_e5a_dll_pll_tracking_cc_sptr
|
||||
galileo_e5a_dll_pll_make_tracking_cc(long if_freq,
|
||||
long fs_in, unsigned int vector_length,
|
||||
bool dump,
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float pll_bw_narrow_narrowhz,
|
||||
float dll_bw_narrow_hz,
|
||||
int ti_ms,
|
||||
float early_late_space_chips);
|
||||
|
||||
|
||||
/*!
|
||||
* \brief This class implements a DLL + PLL tracking loop block
|
||||
*/
|
||||
class Galileo_E5a_Dll_Pll_Tracking_cc : public gr::block
|
||||
{
|
||||
public:
|
||||
~Galileo_E5a_Dll_Pll_Tracking_cc();
|
||||
|
||||
void set_channel(unsigned int channel);
|
||||
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
|
||||
void start_tracking();
|
||||
|
||||
int general_work(int noutput_items, gr_vector_int& ninput_items,
|
||||
gr_vector_const_void_star& input_items, gr_vector_void_star& output_items);
|
||||
|
||||
void forecast(int noutput_items, gr_vector_int& ninput_items_required);
|
||||
|
||||
private:
|
||||
friend galileo_e5a_dll_pll_tracking_cc_sptr
|
||||
galileo_e5a_dll_pll_make_tracking_cc(long if_freq,
|
||||
long fs_in, unsigned int vector_length,
|
||||
bool dump,
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float pll_bw_narrow_hz,
|
||||
float dll_bw_narrow_hz,
|
||||
int ti_ms,
|
||||
float early_late_space_chips);
|
||||
|
||||
Galileo_E5a_Dll_Pll_Tracking_cc(long if_freq,
|
||||
long fs_in, unsigned int vector_length,
|
||||
bool dump,
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float pll_bw_narrow_hz,
|
||||
float dll_bw_narrow_hz,
|
||||
int ti_ms,
|
||||
float early_late_space_chips);
|
||||
void acquire_secondary();
|
||||
// tracking configuration vars
|
||||
unsigned int d_vector_length;
|
||||
int d_current_ti_ms;
|
||||
int d_ti_ms;
|
||||
bool d_dump;
|
||||
|
||||
|
||||
Gnss_Synchro* d_acquisition_gnss_synchro;
|
||||
unsigned int d_channel;
|
||||
long d_if_freq;
|
||||
long d_fs_in;
|
||||
|
||||
double d_early_late_spc_chips;
|
||||
double d_dll_bw_hz;
|
||||
double d_pll_bw_hz;
|
||||
double d_dll_bw_narrow_hz;
|
||||
double d_pll_bw_narrow_hz;
|
||||
|
||||
gr_complex* d_codeQ;
|
||||
gr_complex* d_codeI;
|
||||
|
||||
gr_complex d_Early;
|
||||
gr_complex d_Prompt;
|
||||
gr_complex d_Late;
|
||||
gr_complex d_Prompt_data;
|
||||
|
||||
gr_complex* d_Single_Early;
|
||||
gr_complex* d_Single_Prompt;
|
||||
gr_complex* d_Single_Late;
|
||||
gr_complex* d_Single_Prompt_data;
|
||||
|
||||
|
||||
float tmp_E;
|
||||
float tmp_P;
|
||||
float tmp_L;
|
||||
// remaining code phase and carrier phase between tracking loops
|
||||
double d_rem_code_phase_samples;
|
||||
double d_rem_code_phase_chips;
|
||||
double d_rem_carr_phase_rad;
|
||||
|
||||
// PLL and DLL filter library
|
||||
Tracking_2nd_DLL_filter d_code_loop_filter;
|
||||
Tracking_2nd_PLL_filter d_carrier_loop_filter;
|
||||
|
||||
// acquisition
|
||||
double d_acq_code_phase_samples;
|
||||
double d_acq_carrier_doppler_hz;
|
||||
// correlator
|
||||
int d_n_correlator_taps;
|
||||
float* d_local_code_shift_chips;
|
||||
gr_complex* d_correlator_outs;
|
||||
cpu_multicorrelator multicorrelator_cpu_I;
|
||||
cpu_multicorrelator multicorrelator_cpu_Q;
|
||||
|
||||
// tracking vars
|
||||
double d_code_freq_chips;
|
||||
double d_carrier_doppler_hz;
|
||||
double d_acc_carrier_phase_rad;
|
||||
double d_code_phase_samples;
|
||||
double d_acc_code_phase_secs;
|
||||
double d_code_error_filt_secs;
|
||||
double d_code_phase_step_chips;
|
||||
double d_carrier_phase_step_rad;
|
||||
|
||||
|
||||
//PRN period in samples
|
||||
int d_current_prn_length_samples;
|
||||
|
||||
//processing samples counters
|
||||
unsigned long int d_sample_counter;
|
||||
unsigned long int d_acq_sample_stamp;
|
||||
|
||||
// CN0 estimation and lock detector
|
||||
int d_cn0_estimation_counter;
|
||||
gr_complex* d_Prompt_buffer;
|
||||
double d_carrier_lock_test;
|
||||
double d_CN0_SNV_dB_Hz;
|
||||
double d_carrier_lock_threshold;
|
||||
int d_carrier_lock_fail_counter;
|
||||
|
||||
// control vars
|
||||
int d_state;
|
||||
bool d_first_transition;
|
||||
|
||||
// Secondary code acquisition
|
||||
bool d_secondary_lock;
|
||||
int d_secondary_delay;
|
||||
int d_integration_counter;
|
||||
|
||||
// file dump
|
||||
std::string d_dump_filename;
|
||||
std::ofstream d_dump_file;
|
||||
|
||||
std::map<std::string, std::string> systemName;
|
||||
std::string sys;
|
||||
|
||||
int save_matfile();
|
||||
};
|
||||
|
||||
#endif /* GNSS_SDR_GALILEO_E5A_DLL_PLL_TRACKING_CC_H_ */
|
@ -1,761 +0,0 @@
|
||||
/*!
|
||||
* \file gps_l2_m_dll_pll_tracking_cc.cc
|
||||
* \brief Implementation of a code DLL + carrier PLL tracking block for GPS L2C
|
||||
* \author Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com
|
||||
* Javier Arribas, 2011. jarribas(at)cttc.es
|
||||
*
|
||||
* Code DLL + carrier PLL according to the algorithms described in:
|
||||
* [1] K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
|
||||
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
|
||||
* Approach, Birkhauser, 2007
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#include "gps_l2_m_dll_pll_tracking_cc.h"
|
||||
#include "gps_l2c_signal.h"
|
||||
#include "tracking_discriminators.h"
|
||||
#include "lock_detectors.h"
|
||||
#include "GPS_L2C.h"
|
||||
#include "control_message_factory.h"
|
||||
#include "gnss_sdr_flags.h"
|
||||
#include <boost/lexical_cast.hpp>
|
||||
#include <gnuradio/io_signature.h>
|
||||
#include <glog/logging.h>
|
||||
#include <matio.h>
|
||||
#include <volk_gnsssdr/volk_gnsssdr.h>
|
||||
#include <cmath>
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
#include <sstream>
|
||||
|
||||
using google::LogMessage;
|
||||
|
||||
gps_l2_m_dll_pll_tracking_cc_sptr
|
||||
gps_l2_m_dll_pll_make_tracking_cc(
|
||||
long if_freq,
|
||||
long fs_in,
|
||||
unsigned int vector_length,
|
||||
bool dump,
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float early_late_space_chips)
|
||||
{
|
||||
return gps_l2_m_dll_pll_tracking_cc_sptr(new gps_l2_m_dll_pll_tracking_cc(if_freq,
|
||||
fs_in, vector_length, dump, dump_filename, pll_bw_hz, dll_bw_hz, early_late_space_chips));
|
||||
}
|
||||
|
||||
|
||||
void gps_l2_m_dll_pll_tracking_cc::forecast(int noutput_items,
|
||||
gr_vector_int &ninput_items_required)
|
||||
{
|
||||
if (noutput_items != 0)
|
||||
{
|
||||
ninput_items_required[0] = static_cast<int>(d_vector_length) * 2; //set the required available samples in each call
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
gps_l2_m_dll_pll_tracking_cc::gps_l2_m_dll_pll_tracking_cc(
|
||||
long if_freq,
|
||||
long fs_in,
|
||||
unsigned int vector_length,
|
||||
bool dump,
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float early_late_space_chips) : gr::block("gps_l2_m_dll_pll_tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||
{
|
||||
// Telemetry bit synchronization message port input
|
||||
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
|
||||
this->message_port_register_out(pmt::mp("events"));
|
||||
// initialize internal vars
|
||||
d_dump = dump;
|
||||
d_if_freq = if_freq;
|
||||
d_fs_in = fs_in;
|
||||
d_vector_length = vector_length;
|
||||
d_dump_filename = dump_filename;
|
||||
|
||||
d_current_prn_length_samples = static_cast<int>(d_vector_length);
|
||||
|
||||
// DLL/PLL filter initialization
|
||||
d_carrier_loop_filter = Tracking_2nd_PLL_filter(GPS_L2_M_PERIOD);
|
||||
d_code_loop_filter = Tracking_2nd_DLL_filter(GPS_L2_M_PERIOD);
|
||||
|
||||
// Initialize tracking ==========================================
|
||||
d_code_loop_filter.set_DLL_BW(dll_bw_hz);
|
||||
d_carrier_loop_filter.set_PLL_BW(pll_bw_hz);
|
||||
|
||||
//--- DLL variables --------------------------------------------------------
|
||||
d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
|
||||
|
||||
// Initialization of local code replica
|
||||
// Get space for a vector with the C/A code replica sampled 1x/chip
|
||||
d_ca_code = static_cast<gr_complex *>(volk_gnsssdr_malloc(static_cast<int>(GPS_L2_M_CODE_LENGTH_CHIPS) * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||
|
||||
// correlator outputs (scalar)
|
||||
d_n_correlator_taps = 3; // Early, Prompt, and Late
|
||||
d_correlator_outs = static_cast<gr_complex *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||
for (int n = 0; n < d_n_correlator_taps; n++)
|
||||
{
|
||||
d_correlator_outs[n] = gr_complex(0, 0);
|
||||
}
|
||||
d_local_code_shift_chips = static_cast<float *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(float), volk_gnsssdr_get_alignment()));
|
||||
// Set TAPs delay values [chips]
|
||||
d_local_code_shift_chips[0] = -d_early_late_spc_chips;
|
||||
d_local_code_shift_chips[1] = 0.0;
|
||||
d_local_code_shift_chips[2] = d_early_late_spc_chips;
|
||||
|
||||
multicorrelator_cpu.init(2 * d_current_prn_length_samples, d_n_correlator_taps);
|
||||
|
||||
//--- Perform initializations ------------------------------
|
||||
// define initial code frequency basis of NCO
|
||||
d_code_freq_chips = GPS_L2_M_CODE_RATE_HZ;
|
||||
// define residual code phase (in chips)
|
||||
d_rem_code_phase_samples = 0.0;
|
||||
// define residual carrier phase
|
||||
d_rem_carr_phase_rad = 0.0;
|
||||
|
||||
// sample synchronization
|
||||
d_sample_counter = 0;
|
||||
//d_sample_counter_seconds = 0;
|
||||
d_acq_sample_stamp = 0;
|
||||
|
||||
d_enable_tracking = false;
|
||||
d_pull_in = false;
|
||||
|
||||
// CN0 estimation and lock detector buffers
|
||||
d_cn0_estimation_counter = 0;
|
||||
d_Prompt_buffer = new gr_complex[FLAGS_cn0_samples];
|
||||
d_carrier_lock_test = 1;
|
||||
d_CN0_SNV_dB_Hz = 0;
|
||||
d_carrier_lock_fail_counter = 0;
|
||||
d_carrier_lock_threshold = FLAGS_carrier_lock_th;
|
||||
|
||||
systemName["G"] = std::string("GPS");
|
||||
|
||||
//set_min_output_buffer((long int)300);
|
||||
|
||||
d_acquisition_gnss_synchro = 0;
|
||||
d_channel = 0;
|
||||
d_acq_code_phase_samples = 0.0;
|
||||
d_acq_carrier_doppler_hz = 0.0;
|
||||
d_carrier_doppler_hz = 0.0;
|
||||
d_acc_carrier_phase_rad = 0.0;
|
||||
d_code_phase_samples = 0.0;
|
||||
|
||||
d_rem_code_phase_chips = 0.0;
|
||||
d_code_phase_step_chips = 0.0;
|
||||
d_carrier_phase_step_rad = 0.0;
|
||||
|
||||
set_relative_rate(1.0 / static_cast<double>(d_vector_length));
|
||||
}
|
||||
|
||||
|
||||
void gps_l2_m_dll_pll_tracking_cc::start_tracking()
|
||||
{
|
||||
/*
|
||||
* correct the code phase according to the delay between acq and trk
|
||||
*/
|
||||
d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples;
|
||||
d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz;
|
||||
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
|
||||
|
||||
long int acq_trk_diff_samples;
|
||||
double acq_trk_diff_seconds;
|
||||
acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp); //-d_vector_length;
|
||||
DLOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples;
|
||||
acq_trk_diff_seconds = static_cast<float>(acq_trk_diff_samples) / static_cast<float>(d_fs_in);
|
||||
// Doppler effect
|
||||
// Fd=(C/(C+Vr))*F
|
||||
double radial_velocity = (GPS_L2_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L2_FREQ_HZ;
|
||||
// new chip and prn sequence periods based on acq Doppler
|
||||
double T_chip_mod_seconds;
|
||||
double T_prn_mod_seconds;
|
||||
double T_prn_mod_samples;
|
||||
d_code_freq_chips = radial_velocity * GPS_L2_M_CODE_RATE_HZ;
|
||||
d_code_phase_step_chips = static_cast<double>(d_code_freq_chips) / static_cast<double>(d_fs_in);
|
||||
T_chip_mod_seconds = 1 / d_code_freq_chips;
|
||||
T_prn_mod_seconds = T_chip_mod_seconds * GPS_L2_M_CODE_LENGTH_CHIPS;
|
||||
T_prn_mod_samples = T_prn_mod_seconds * static_cast<double>(d_fs_in);
|
||||
|
||||
d_current_prn_length_samples = round(T_prn_mod_samples);
|
||||
|
||||
double T_prn_true_seconds = GPS_L2_M_CODE_LENGTH_CHIPS / GPS_L2_M_CODE_RATE_HZ;
|
||||
double T_prn_true_samples = T_prn_true_seconds * static_cast<double>(d_fs_in);
|
||||
double T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds;
|
||||
double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
|
||||
double corrected_acq_phase_samples, delay_correction_samples;
|
||||
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<double>(d_fs_in)), T_prn_true_samples);
|
||||
if (corrected_acq_phase_samples < 0)
|
||||
{
|
||||
corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples;
|
||||
}
|
||||
delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples;
|
||||
|
||||
d_acq_code_phase_samples = corrected_acq_phase_samples;
|
||||
|
||||
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
|
||||
d_carrier_phase_step_rad = GPS_L2_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
|
||||
|
||||
// DLL/PLL filter initialization
|
||||
d_carrier_loop_filter.initialize(); // initialize the carrier filter
|
||||
d_code_loop_filter.initialize(); // initialize the code filter
|
||||
|
||||
// generate local reference ALWAYS starting at chip 1 (1 sample per chip)
|
||||
gps_l2c_m_code_gen_complex(d_ca_code, d_acquisition_gnss_synchro->PRN);
|
||||
|
||||
multicorrelator_cpu.set_local_code_and_taps(static_cast<int>(GPS_L2_M_CODE_LENGTH_CHIPS), d_ca_code, d_local_code_shift_chips);
|
||||
for (int n = 0; n < d_n_correlator_taps; n++)
|
||||
{
|
||||
d_correlator_outs[n] = gr_complex(0, 0);
|
||||
}
|
||||
|
||||
d_carrier_lock_fail_counter = 0;
|
||||
d_rem_code_phase_samples = 0;
|
||||
d_rem_carr_phase_rad = 0.0;
|
||||
d_rem_code_phase_chips = 0.0;
|
||||
d_acc_carrier_phase_rad = 0.0;
|
||||
|
||||
d_code_phase_samples = d_acq_code_phase_samples;
|
||||
|
||||
std::string sys_ = &d_acquisition_gnss_synchro->System;
|
||||
sys = sys_.substr(0, 1);
|
||||
|
||||
// DEBUG OUTPUT
|
||||
std::cout << "Tracking of GPS L2CM signal started on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
|
||||
LOG(INFO) << "Starting GPS L2CM tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel;
|
||||
|
||||
// enable tracking
|
||||
d_pull_in = true;
|
||||
d_enable_tracking = true;
|
||||
|
||||
LOG(INFO) << "GPS L2CM PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz
|
||||
<< " Code Phase correction [samples]=" << delay_correction_samples
|
||||
<< " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples;
|
||||
}
|
||||
|
||||
|
||||
int gps_l2_m_dll_pll_tracking_cc::save_matfile()
|
||||
{
|
||||
// READ DUMP FILE
|
||||
std::ifstream::pos_type size;
|
||||
int number_of_double_vars = 11;
|
||||
int number_of_float_vars = 5;
|
||||
int epoch_size_bytes = sizeof(unsigned long int) + sizeof(double) * number_of_double_vars +
|
||||
sizeof(float) * number_of_float_vars + sizeof(unsigned int);
|
||||
std::ifstream dump_file;
|
||||
dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
|
||||
try
|
||||
{
|
||||
dump_file.open(d_dump_filename.c_str(), std::ios::binary | std::ios::ate);
|
||||
}
|
||||
catch (const std::ifstream::failure &e)
|
||||
{
|
||||
std::cerr << "Problem opening dump file:" << e.what() << std::endl;
|
||||
return 1;
|
||||
}
|
||||
// count number of epochs and rewind
|
||||
long int num_epoch = 0;
|
||||
if (dump_file.is_open())
|
||||
{
|
||||
size = dump_file.tellg();
|
||||
num_epoch = static_cast<long int>(size) / static_cast<long int>(epoch_size_bytes);
|
||||
dump_file.seekg(0, std::ios::beg);
|
||||
}
|
||||
else
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
float *abs_E = new float[num_epoch];
|
||||
float *abs_P = new float[num_epoch];
|
||||
float *abs_L = new float[num_epoch];
|
||||
float *Prompt_I = new float[num_epoch];
|
||||
float *Prompt_Q = new float[num_epoch];
|
||||
unsigned long int *PRN_start_sample_count = new unsigned long int[num_epoch];
|
||||
double *acc_carrier_phase_rad = new double[num_epoch];
|
||||
double *carrier_doppler_hz = new double[num_epoch];
|
||||
double *code_freq_chips = new double[num_epoch];
|
||||
double *carr_error_hz = new double[num_epoch];
|
||||
double *carr_error_filt_hz = new double[num_epoch];
|
||||
double *code_error_chips = new double[num_epoch];
|
||||
double *code_error_filt_chips = new double[num_epoch];
|
||||
double *CN0_SNV_dB_Hz = new double[num_epoch];
|
||||
double *carrier_lock_test = new double[num_epoch];
|
||||
double *aux1 = new double[num_epoch];
|
||||
double *aux2 = new double[num_epoch];
|
||||
unsigned int *PRN = new unsigned int[num_epoch];
|
||||
|
||||
try
|
||||
{
|
||||
if (dump_file.is_open())
|
||||
{
|
||||
for (long int i = 0; i < num_epoch; i++)
|
||||
{
|
||||
dump_file.read(reinterpret_cast<char *>(&abs_E[i]), sizeof(float));
|
||||
dump_file.read(reinterpret_cast<char *>(&abs_P[i]), sizeof(float));
|
||||
dump_file.read(reinterpret_cast<char *>(&abs_L[i]), sizeof(float));
|
||||
dump_file.read(reinterpret_cast<char *>(&Prompt_I[i]), sizeof(float));
|
||||
dump_file.read(reinterpret_cast<char *>(&Prompt_Q[i]), sizeof(float));
|
||||
dump_file.read(reinterpret_cast<char *>(&PRN_start_sample_count[i]), sizeof(unsigned long int));
|
||||
dump_file.read(reinterpret_cast<char *>(&acc_carrier_phase_rad[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&carrier_doppler_hz[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&code_freq_chips[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&carr_error_hz[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&carr_error_filt_hz[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&code_error_chips[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&code_error_filt_chips[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&CN0_SNV_dB_Hz[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&carrier_lock_test[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&aux1[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&aux2[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&PRN[i]), sizeof(unsigned int));
|
||||
}
|
||||
}
|
||||
dump_file.close();
|
||||
}
|
||||
catch (const std::ifstream::failure &e)
|
||||
{
|
||||
std::cerr << "Problem reading dump file:" << e.what() << std::endl;
|
||||
delete[] abs_E;
|
||||
delete[] abs_P;
|
||||
delete[] abs_L;
|
||||
delete[] Prompt_I;
|
||||
delete[] Prompt_Q;
|
||||
delete[] PRN_start_sample_count;
|
||||
delete[] acc_carrier_phase_rad;
|
||||
delete[] carrier_doppler_hz;
|
||||
delete[] code_freq_chips;
|
||||
delete[] carr_error_hz;
|
||||
delete[] carr_error_filt_hz;
|
||||
delete[] code_error_chips;
|
||||
delete[] code_error_filt_chips;
|
||||
delete[] CN0_SNV_dB_Hz;
|
||||
delete[] carrier_lock_test;
|
||||
delete[] aux1;
|
||||
delete[] aux2;
|
||||
delete[] PRN;
|
||||
return 1;
|
||||
}
|
||||
|
||||
// WRITE MAT FILE
|
||||
mat_t *matfp;
|
||||
matvar_t *matvar;
|
||||
std::string filename = d_dump_filename;
|
||||
filename.erase(filename.length() - 4, 4);
|
||||
filename.append(".mat");
|
||||
matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73);
|
||||
if (reinterpret_cast<long *>(matfp) != NULL)
|
||||
{
|
||||
size_t dims[2] = {1, static_cast<size_t>(num_epoch)};
|
||||
matvar = Mat_VarCreate("abs_E", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_E, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("abs_P", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_P, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("abs_L", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_L, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("Prompt_I", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_I, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("Prompt_Q", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_Q, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("PRN_start_sample_count", MAT_C_UINT64, MAT_T_UINT64, 2, dims, PRN_start_sample_count, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("acc_carrier_phase_rad", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, acc_carrier_phase_rad, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("carrier_doppler_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carrier_doppler_hz, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("code_freq_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_freq_chips, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("carr_error_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carr_error_hz, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("carr_error_filt_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carr_error_filt_hz, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("code_error_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_error_chips, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("code_error_filt_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_error_filt_chips, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("CN0_SNV_dB_Hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, CN0_SNV_dB_Hz, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("carrier_lock_test", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carrier_lock_test, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("aux1", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, aux1, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("aux2", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, aux2, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("PRN", MAT_C_UINT32, MAT_T_UINT32, 2, dims, PRN, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
}
|
||||
Mat_Close(matfp);
|
||||
delete[] abs_E;
|
||||
delete[] abs_P;
|
||||
delete[] abs_L;
|
||||
delete[] Prompt_I;
|
||||
delete[] Prompt_Q;
|
||||
delete[] PRN_start_sample_count;
|
||||
delete[] acc_carrier_phase_rad;
|
||||
delete[] carrier_doppler_hz;
|
||||
delete[] code_freq_chips;
|
||||
delete[] carr_error_hz;
|
||||
delete[] carr_error_filt_hz;
|
||||
delete[] code_error_chips;
|
||||
delete[] code_error_filt_chips;
|
||||
delete[] CN0_SNV_dB_Hz;
|
||||
delete[] carrier_lock_test;
|
||||
delete[] aux1;
|
||||
delete[] aux2;
|
||||
delete[] PRN;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
gps_l2_m_dll_pll_tracking_cc::~gps_l2_m_dll_pll_tracking_cc()
|
||||
{
|
||||
if (d_dump_file.is_open())
|
||||
{
|
||||
try
|
||||
{
|
||||
d_dump_file.close();
|
||||
}
|
||||
catch (const std::exception &ex)
|
||||
{
|
||||
LOG(WARNING) << "Exception in destructor " << ex.what();
|
||||
}
|
||||
}
|
||||
if (d_dump)
|
||||
{
|
||||
if (d_channel == 0)
|
||||
{
|
||||
std::cout << "Writing .mat files ...";
|
||||
}
|
||||
gps_l2_m_dll_pll_tracking_cc::save_matfile();
|
||||
if (d_channel == 0)
|
||||
{
|
||||
std::cout << " done." << std::endl;
|
||||
}
|
||||
}
|
||||
try
|
||||
{
|
||||
volk_gnsssdr_free(d_local_code_shift_chips);
|
||||
volk_gnsssdr_free(d_correlator_outs);
|
||||
volk_gnsssdr_free(d_ca_code);
|
||||
delete[] d_Prompt_buffer;
|
||||
multicorrelator_cpu.free();
|
||||
}
|
||||
catch (const std::exception &ex)
|
||||
{
|
||||
LOG(WARNING) << "Exception in destructor " << ex.what();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int gps_l2_m_dll_pll_tracking_cc::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)),
|
||||
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
|
||||
{
|
||||
// process vars
|
||||
double carr_error_hz = 0;
|
||||
double carr_error_filt_hz = 0;
|
||||
double code_error_chips = 0;
|
||||
double code_error_filt_chips = 0;
|
||||
|
||||
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
|
||||
Gnss_Synchro current_synchro_data = Gnss_Synchro();
|
||||
|
||||
// Block input data and block output stream pointers
|
||||
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]);
|
||||
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
|
||||
|
||||
if (d_enable_tracking == true)
|
||||
{
|
||||
// Fill the acquisition data
|
||||
current_synchro_data = *d_acquisition_gnss_synchro;
|
||||
// Receiver signal alignment
|
||||
if (d_pull_in == true)
|
||||
{
|
||||
int samples_offset;
|
||||
double acq_trk_shif_correction_samples;
|
||||
int acq_to_trk_delay_samples;
|
||||
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
|
||||
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
|
||||
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
|
||||
current_synchro_data.Tracking_sample_counter = d_sample_counter + samples_offset;
|
||||
d_sample_counter = d_sample_counter + samples_offset; // count for the processed samples
|
||||
d_pull_in = false;
|
||||
// take into account the carrier cycles accumulated in the pull in signal alignment
|
||||
d_acc_carrier_phase_rad -= d_carrier_phase_step_rad * samples_offset;
|
||||
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
|
||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
||||
current_synchro_data.fs = d_fs_in;
|
||||
current_synchro_data.correlation_length_ms = 20;
|
||||
consume_each(samples_offset); // shift input to perform alignment with local replica
|
||||
return 0;
|
||||
}
|
||||
|
||||
// ################# CARRIER WIPEOFF AND CORRELATORS ##############################
|
||||
// perform carrier wipe-off and compute Early, Prompt and Late correlation
|
||||
multicorrelator_cpu.set_input_output_vectors(d_correlator_outs, in);
|
||||
multicorrelator_cpu.Carrier_wipeoff_multicorrelator_resampler(d_rem_carr_phase_rad,
|
||||
d_carrier_phase_step_rad,
|
||||
d_rem_code_phase_chips,
|
||||
d_code_phase_step_chips,
|
||||
d_current_prn_length_samples);
|
||||
|
||||
// ################## PLL ##########################################################
|
||||
// PLL discriminator
|
||||
// Update PLL discriminator [rads/Ti -> Secs/Ti]
|
||||
carr_error_hz = pll_cloop_two_quadrant_atan(d_correlator_outs[1]) / GPS_L2_TWO_PI;
|
||||
// Carrier discriminator filter
|
||||
carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz);
|
||||
// New carrier Doppler frequency estimation
|
||||
d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_error_filt_hz;
|
||||
// New code Doppler frequency estimation
|
||||
d_code_freq_chips = GPS_L2_M_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L2_M_CODE_RATE_HZ) / GPS_L2_FREQ_HZ);
|
||||
|
||||
// ################## DLL ##########################################################
|
||||
// DLL discriminator
|
||||
code_error_chips = dll_nc_e_minus_l_normalized(d_correlator_outs[0], d_correlator_outs[2]); // [chips/Ti]
|
||||
// Code discriminator filter
|
||||
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second]
|
||||
double T_chip_seconds = 1.0 / static_cast<double>(d_code_freq_chips);
|
||||
double T_prn_seconds = T_chip_seconds * GPS_L2_M_CODE_LENGTH_CHIPS;
|
||||
double code_error_filt_secs = (T_prn_seconds * code_error_filt_chips * T_chip_seconds); //[seconds]
|
||||
//double code_error_filt_secs = (GPS_L2_M_PERIOD * code_error_filt_chips) / GPS_L2_M_CODE_RATE_HZ; //[seconds]
|
||||
|
||||
// ################## CARRIER AND CODE NCO BUFFER ALIGNMENT #######################
|
||||
// keep alignment parameters for the next input buffer
|
||||
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
|
||||
double T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
|
||||
double K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast<double>(d_fs_in);
|
||||
d_current_prn_length_samples = round(K_blk_samples); // round to a discrete number of samples
|
||||
|
||||
//################### PLL COMMANDS #################################################
|
||||
// carrier phase step (NCO phase increment per sample) [rads/sample]
|
||||
d_carrier_phase_step_rad = GPS_L2_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
|
||||
// remnant carrier phase to prevent overflow in the code NCO
|
||||
d_rem_carr_phase_rad = d_rem_carr_phase_rad + d_carrier_phase_step_rad * d_current_prn_length_samples;
|
||||
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_L2_TWO_PI);
|
||||
// carrier phase accumulator
|
||||
d_acc_carrier_phase_rad -= d_carrier_phase_step_rad * d_current_prn_length_samples;
|
||||
|
||||
//################### DLL COMMANDS #################################################
|
||||
// code phase step (Code resampler phase increment per sample) [chips/sample]
|
||||
d_code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
|
||||
// remnant code phase [chips]
|
||||
d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; // rounding error < 1 sample
|
||||
d_rem_code_phase_chips = d_code_freq_chips * (d_rem_code_phase_samples / static_cast<double>(d_fs_in));
|
||||
|
||||
// ####### CN0 ESTIMATION AND LOCK DETECTORS ######
|
||||
if (d_cn0_estimation_counter < FLAGS_cn0_samples)
|
||||
{
|
||||
// fill buffer with prompt correlator output values
|
||||
d_Prompt_buffer[d_cn0_estimation_counter] = d_correlator_outs[1];
|
||||
d_cn0_estimation_counter++;
|
||||
}
|
||||
else
|
||||
{
|
||||
d_cn0_estimation_counter = 0;
|
||||
// Code lock indicator
|
||||
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, FLAGS_cn0_samples, d_fs_in, GPS_L2_M_CODE_LENGTH_CHIPS);
|
||||
// Carrier lock indicator
|
||||
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, FLAGS_cn0_samples);
|
||||
// Loss of lock detection
|
||||
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < FLAGS_cn0_min)
|
||||
{
|
||||
d_carrier_lock_fail_counter++;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
|
||||
}
|
||||
if (d_carrier_lock_fail_counter > FLAGS_max_lock_fail)
|
||||
{
|
||||
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
|
||||
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
|
||||
this->message_port_pub(pmt::mp("events"), pmt::from_long(3)); //3 -> loss of lock
|
||||
d_carrier_lock_fail_counter = 0;
|
||||
d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
|
||||
}
|
||||
}
|
||||
// ########### Output the tracking data to navigation and PVT ##########
|
||||
current_synchro_data.Prompt_I = static_cast<double>(d_correlator_outs[1].real());
|
||||
current_synchro_data.Prompt_Q = static_cast<double>(d_correlator_outs[1].imag());
|
||||
current_synchro_data.Tracking_sample_counter = d_sample_counter + d_current_prn_length_samples;
|
||||
current_synchro_data.Code_phase_samples = d_rem_code_phase_samples;
|
||||
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
|
||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
||||
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
||||
current_synchro_data.Flag_valid_symbol_output = true;
|
||||
current_synchro_data.correlation_length_ms = 20;
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int n = 0; n < d_n_correlator_taps; n++)
|
||||
{
|
||||
d_correlator_outs[n] = gr_complex(0, 0);
|
||||
}
|
||||
current_synchro_data.Tracking_sample_counter = d_sample_counter + d_current_prn_length_samples;
|
||||
current_synchro_data.correlation_length_ms = 20;
|
||||
}
|
||||
//assign the GNURadio block output data
|
||||
current_synchro_data.fs = d_fs_in;
|
||||
*out[0] = current_synchro_data;
|
||||
|
||||
if (d_dump)
|
||||
{
|
||||
// MULTIPLEXED FILE RECORDING - Record results to file
|
||||
float prompt_I;
|
||||
float prompt_Q;
|
||||
float tmp_E, tmp_P, tmp_L;
|
||||
double tmp_double;
|
||||
prompt_I = d_correlator_outs[1].real();
|
||||
prompt_Q = d_correlator_outs[1].imag();
|
||||
tmp_E = std::abs<float>(d_correlator_outs[0]);
|
||||
tmp_P = std::abs<float>(d_correlator_outs[1]);
|
||||
tmp_L = std::abs<float>(d_correlator_outs[2]);
|
||||
try
|
||||
{
|
||||
// EPR
|
||||
d_dump_file.write(reinterpret_cast<char *>(&tmp_E), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char *>(&tmp_P), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char *>(&tmp_L), sizeof(float));
|
||||
// PROMPT I and Q (to analyze navigation symbols)
|
||||
d_dump_file.write(reinterpret_cast<char *>(&prompt_I), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char *>(&prompt_Q), sizeof(float));
|
||||
// PRN start sample stamp
|
||||
//tmp_float=(float)d_sample_counter;
|
||||
d_dump_file.write(reinterpret_cast<char *>(&d_sample_counter), sizeof(unsigned long int));
|
||||
// accumulated carrier phase
|
||||
d_dump_file.write(reinterpret_cast<char *>(&d_acc_carrier_phase_rad), sizeof(double));
|
||||
|
||||
// carrier and code frequency
|
||||
d_dump_file.write(reinterpret_cast<char *>(&d_carrier_doppler_hz), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char *>(&d_code_freq_chips), sizeof(double));
|
||||
|
||||
//PLL commands
|
||||
d_dump_file.write(reinterpret_cast<char *>(&carr_error_hz), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char *>(&d_carrier_doppler_hz), sizeof(double));
|
||||
|
||||
//DLL commands
|
||||
d_dump_file.write(reinterpret_cast<char *>(&code_error_chips), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char *>(&code_error_filt_chips), sizeof(double));
|
||||
|
||||
// CN0 and carrier lock test
|
||||
d_dump_file.write(reinterpret_cast<char *>(&d_CN0_SNV_dB_Hz), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char *>(&d_carrier_lock_test), sizeof(double));
|
||||
|
||||
// AUX vars (for debug purposes)
|
||||
tmp_double = d_rem_code_phase_samples;
|
||||
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
|
||||
tmp_double = static_cast<double>(d_sample_counter + d_current_prn_length_samples);
|
||||
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
|
||||
|
||||
// PRN
|
||||
unsigned int prn_ = d_acquisition_gnss_synchro->PRN;
|
||||
d_dump_file.write(reinterpret_cast<char *>(&prn_), sizeof(unsigned int));
|
||||
}
|
||||
catch (std::ifstream::failure &e)
|
||||
{
|
||||
LOG(WARNING) << "Exception writing trk dump file " << e.what();
|
||||
}
|
||||
}
|
||||
consume_each(d_current_prn_length_samples);
|
||||
d_sample_counter += d_current_prn_length_samples;
|
||||
if (current_synchro_data.Flag_valid_symbol_output)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void gps_l2_m_dll_pll_tracking_cc::set_channel(unsigned int channel)
|
||||
{
|
||||
d_channel = channel;
|
||||
LOG(INFO) << "Tracking Channel set to " << d_channel;
|
||||
// ############# ENABLE DATA FILE LOG #################
|
||||
if (d_dump == true)
|
||||
{
|
||||
if (d_dump_file.is_open() == false)
|
||||
{
|
||||
try
|
||||
{
|
||||
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
|
||||
d_dump_filename.append(".dat");
|
||||
d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
|
||||
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
|
||||
LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str();
|
||||
}
|
||||
catch (std::ifstream::failure &e)
|
||||
{
|
||||
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void gps_l2_m_dll_pll_tracking_cc::set_gnss_synchro(Gnss_Synchro *p_gnss_synchro)
|
||||
{
|
||||
d_acquisition_gnss_synchro = p_gnss_synchro;
|
||||
}
|
@ -1,165 +0,0 @@
|
||||
/*!
|
||||
* \file gps_l2_m_dll_pll_tracking_cc.h
|
||||
* \brief Interface of a code DLL + carrier PLL tracking block for GPS L2C
|
||||
* \author Javier Arribas, 2015. jarribas(at)cttc.es
|
||||
*
|
||||
* Code DLL + carrier PLL according to the algorithms described in:
|
||||
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
|
||||
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency Approach,
|
||||
* Birkhauser, 2007
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef GNSS_SDR_GPS_L2_M_DLL_PLL_TRACKING_CC_H
|
||||
#define GNSS_SDR_GPS_L2_M_DLL_PLL_TRACKING_CC_H
|
||||
|
||||
#include "gnss_synchro.h"
|
||||
#include "tracking_2nd_DLL_filter.h"
|
||||
#include "tracking_2nd_PLL_filter.h"
|
||||
#include "cpu_multicorrelator.h"
|
||||
#include <gnuradio/block.h>
|
||||
#include <fstream>
|
||||
#include <map>
|
||||
#include <string>
|
||||
|
||||
class gps_l2_m_dll_pll_tracking_cc;
|
||||
|
||||
typedef boost::shared_ptr<gps_l2_m_dll_pll_tracking_cc>
|
||||
gps_l2_m_dll_pll_tracking_cc_sptr;
|
||||
|
||||
gps_l2_m_dll_pll_tracking_cc_sptr
|
||||
gps_l2_m_dll_pll_make_tracking_cc(long if_freq,
|
||||
long fs_in, unsigned int vector_length,
|
||||
bool dump,
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float early_late_space_chips);
|
||||
|
||||
|
||||
/*!
|
||||
* \brief This class implements a DLL + PLL tracking loop block
|
||||
*/
|
||||
class gps_l2_m_dll_pll_tracking_cc : public gr::block
|
||||
{
|
||||
public:
|
||||
~gps_l2_m_dll_pll_tracking_cc();
|
||||
|
||||
void set_channel(unsigned int channel);
|
||||
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
|
||||
void start_tracking();
|
||||
|
||||
int general_work(int noutput_items, gr_vector_int& ninput_items,
|
||||
gr_vector_const_void_star& input_items, gr_vector_void_star& output_items);
|
||||
|
||||
void forecast(int noutput_items, gr_vector_int& ninput_items_required);
|
||||
|
||||
private:
|
||||
friend gps_l2_m_dll_pll_tracking_cc_sptr
|
||||
gps_l2_m_dll_pll_make_tracking_cc(long if_freq,
|
||||
long fs_in, unsigned int vector_length,
|
||||
bool dump,
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float early_late_space_chips);
|
||||
|
||||
gps_l2_m_dll_pll_tracking_cc(long if_freq,
|
||||
long fs_in, unsigned int vector_length,
|
||||
bool dump,
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float early_late_space_chips);
|
||||
|
||||
// tracking configuration vars
|
||||
unsigned int d_vector_length;
|
||||
bool d_dump;
|
||||
|
||||
Gnss_Synchro* d_acquisition_gnss_synchro;
|
||||
unsigned int d_channel;
|
||||
long d_if_freq;
|
||||
long d_fs_in;
|
||||
|
||||
double d_early_late_spc_chips;
|
||||
|
||||
// remaining code phase and carrier phase between tracking loops
|
||||
double d_rem_code_phase_samples;
|
||||
double d_rem_code_phase_chips;
|
||||
double d_rem_carr_phase_rad;
|
||||
|
||||
// PLL and DLL filter library
|
||||
Tracking_2nd_DLL_filter d_code_loop_filter;
|
||||
Tracking_2nd_PLL_filter d_carrier_loop_filter;
|
||||
|
||||
// acquisition
|
||||
double d_acq_code_phase_samples;
|
||||
double d_acq_carrier_doppler_hz;
|
||||
// correlator
|
||||
int d_n_correlator_taps;
|
||||
gr_complex* d_ca_code;
|
||||
float* d_local_code_shift_chips;
|
||||
gr_complex* d_correlator_outs;
|
||||
cpu_multicorrelator multicorrelator_cpu;
|
||||
|
||||
// tracking vars
|
||||
double d_code_freq_chips;
|
||||
double d_code_phase_step_chips;
|
||||
double d_carrier_doppler_hz;
|
||||
double d_carrier_phase_step_rad;
|
||||
double d_acc_carrier_phase_rad;
|
||||
double d_code_phase_samples;
|
||||
|
||||
// PRN period in samples
|
||||
int d_current_prn_length_samples;
|
||||
|
||||
// processing samples counters
|
||||
unsigned long int d_sample_counter;
|
||||
unsigned long int d_acq_sample_stamp;
|
||||
|
||||
// CN0 estimation and lock detector
|
||||
int d_cn0_estimation_counter;
|
||||
gr_complex* d_Prompt_buffer;
|
||||
double d_carrier_lock_test;
|
||||
double d_CN0_SNV_dB_Hz;
|
||||
double d_carrier_lock_threshold;
|
||||
int d_carrier_lock_fail_counter;
|
||||
|
||||
// control vars
|
||||
bool d_enable_tracking;
|
||||
bool d_pull_in;
|
||||
|
||||
// file dump
|
||||
std::string d_dump_filename;
|
||||
std::ofstream d_dump_file;
|
||||
|
||||
std::map<std::string, std::string> systemName;
|
||||
std::string sys;
|
||||
|
||||
int save_matfile();
|
||||
};
|
||||
|
||||
#endif //GNSS_SDR_GPS_L2_M_DLL_PLL_TRACKING_CC_H
|
@ -1,762 +0,0 @@
|
||||
/*!
|
||||
* \file gps_l5i_dll_pll_tracking_cc.cc
|
||||
* \brief Implementation of a code DLL + carrier PLL tracking block for GPS L2C
|
||||
* \author Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com
|
||||
* Javier Arribas, 2011. jarribas(at)cttc.es
|
||||
*
|
||||
* Code DLL + carrier PLL according to the algorithms described in:
|
||||
* [1] K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
|
||||
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
|
||||
* Approach, Birkhauser, 2007
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#include "gps_l5i_dll_pll_tracking_cc.h"
|
||||
#include "gps_l5_signal.h"
|
||||
#include "tracking_discriminators.h"
|
||||
#include "lock_detectors.h"
|
||||
#include "GPS_L5.h"
|
||||
#include "control_message_factory.h"
|
||||
#include "gnss_sdr_flags.h"
|
||||
#include <boost/lexical_cast.hpp>
|
||||
#include <gnuradio/io_signature.h>
|
||||
#include <glog/logging.h>
|
||||
#include <matio.h>
|
||||
#include <volk_gnsssdr/volk_gnsssdr.h>
|
||||
#include <cmath>
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
#include <sstream>
|
||||
|
||||
|
||||
using google::LogMessage;
|
||||
|
||||
gps_l5i_dll_pll_tracking_cc_sptr
|
||||
gps_l5i_dll_pll_make_tracking_cc(
|
||||
long if_freq,
|
||||
long fs_in,
|
||||
unsigned int vector_length,
|
||||
bool dump,
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float early_late_space_chips)
|
||||
{
|
||||
return gps_l5i_dll_pll_tracking_cc_sptr(new gps_l5i_dll_pll_tracking_cc(if_freq,
|
||||
fs_in, vector_length, dump, dump_filename, pll_bw_hz, dll_bw_hz, early_late_space_chips));
|
||||
}
|
||||
|
||||
|
||||
void gps_l5i_dll_pll_tracking_cc::forecast(int noutput_items,
|
||||
gr_vector_int &ninput_items_required)
|
||||
{
|
||||
if (noutput_items != 0)
|
||||
{
|
||||
ninput_items_required[0] = static_cast<int>(d_vector_length) * 2; //set the required available samples in each call
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
gps_l5i_dll_pll_tracking_cc::gps_l5i_dll_pll_tracking_cc(
|
||||
long if_freq,
|
||||
long fs_in,
|
||||
unsigned int vector_length,
|
||||
bool dump,
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float early_late_space_chips) : gr::block("gps_l5i_dll_pll_tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
|
||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||
{
|
||||
// Telemetry bit synchronization message port input
|
||||
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
|
||||
this->message_port_register_out(pmt::mp("events"));
|
||||
// initialize internal vars
|
||||
d_dump = dump;
|
||||
d_if_freq = if_freq;
|
||||
d_fs_in = fs_in;
|
||||
d_vector_length = vector_length;
|
||||
d_dump_filename = dump_filename;
|
||||
|
||||
d_current_prn_length_samples = static_cast<int>(d_vector_length);
|
||||
|
||||
// DLL/PLL filter initialization
|
||||
d_carrier_loop_filter = Tracking_2nd_PLL_filter(GPS_L5i_PERIOD);
|
||||
d_code_loop_filter = Tracking_2nd_DLL_filter(GPS_L5i_PERIOD);
|
||||
|
||||
// Initialize tracking ==========================================
|
||||
d_code_loop_filter.set_DLL_BW(dll_bw_hz);
|
||||
d_carrier_loop_filter.set_PLL_BW(pll_bw_hz);
|
||||
|
||||
//--- DLL variables --------------------------------------------------------
|
||||
d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
|
||||
|
||||
// Initialization of local code replica
|
||||
// Get space for a vector with the C/A code replica sampled 1x/chip
|
||||
d_ca_code = static_cast<gr_complex *>(volk_gnsssdr_malloc(static_cast<int>(GPS_L5i_CODE_LENGTH_CHIPS) * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||
|
||||
// correlator outputs (scalar)
|
||||
d_n_correlator_taps = 3; // Early, Prompt, and Late
|
||||
d_correlator_outs = static_cast<gr_complex *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||
for (int n = 0; n < d_n_correlator_taps; n++)
|
||||
{
|
||||
d_correlator_outs[n] = gr_complex(0, 0);
|
||||
}
|
||||
d_local_code_shift_chips = static_cast<float *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(float), volk_gnsssdr_get_alignment()));
|
||||
// Set TAPs delay values [chips]
|
||||
d_local_code_shift_chips[0] = -d_early_late_spc_chips;
|
||||
d_local_code_shift_chips[1] = 0.0;
|
||||
d_local_code_shift_chips[2] = d_early_late_spc_chips;
|
||||
|
||||
multicorrelator_cpu.init(2 * d_current_prn_length_samples, d_n_correlator_taps);
|
||||
|
||||
//--- Perform initializations ------------------------------
|
||||
// define initial code frequency basis of NCO
|
||||
d_code_freq_chips = GPS_L5i_CODE_RATE_HZ;
|
||||
// define residual code phase (in chips)
|
||||
d_rem_code_phase_samples = 0.0;
|
||||
// define residual carrier phase
|
||||
d_rem_carr_phase_rad = 0.0;
|
||||
|
||||
// sample synchronization
|
||||
d_sample_counter = 0;
|
||||
//d_sample_counter_seconds = 0;
|
||||
d_acq_sample_stamp = 0;
|
||||
|
||||
d_enable_tracking = false;
|
||||
d_pull_in = false;
|
||||
|
||||
// CN0 estimation and lock detector buffers
|
||||
d_cn0_estimation_counter = 0;
|
||||
d_Prompt_buffer = new gr_complex[FLAGS_cn0_samples];
|
||||
d_carrier_lock_test = 1;
|
||||
d_CN0_SNV_dB_Hz = 0;
|
||||
d_carrier_lock_fail_counter = 0;
|
||||
d_carrier_lock_threshold = FLAGS_carrier_lock_th;
|
||||
|
||||
systemName["G"] = std::string("GPS");
|
||||
|
||||
//set_min_output_buffer((long int)300);
|
||||
|
||||
d_acquisition_gnss_synchro = 0;
|
||||
d_channel = 0;
|
||||
d_acq_code_phase_samples = 0.0;
|
||||
d_acq_carrier_doppler_hz = 0.0;
|
||||
d_carrier_doppler_hz = 0.0;
|
||||
d_acc_carrier_phase_rad = 0.0;
|
||||
d_code_phase_samples = 0.0;
|
||||
|
||||
d_rem_code_phase_chips = 0.0;
|
||||
d_code_phase_step_chips = 0.0;
|
||||
d_carrier_phase_step_rad = 0.0;
|
||||
|
||||
set_relative_rate(1.0 / static_cast<double>(d_vector_length));
|
||||
}
|
||||
|
||||
|
||||
void gps_l5i_dll_pll_tracking_cc::start_tracking()
|
||||
{
|
||||
/*
|
||||
* correct the code phase according to the delay between acq and trk
|
||||
*/
|
||||
d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples;
|
||||
d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz;
|
||||
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
|
||||
|
||||
long int acq_trk_diff_samples;
|
||||
double acq_trk_diff_seconds;
|
||||
acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp); //-d_vector_length;
|
||||
DLOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples;
|
||||
acq_trk_diff_seconds = static_cast<float>(acq_trk_diff_samples) / static_cast<float>(d_fs_in);
|
||||
// Doppler effect
|
||||
// Fd=(C/(C+Vr))*F
|
||||
double radial_velocity = (GPS_L5_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L5_FREQ_HZ;
|
||||
// new chip and prn sequence periods based on acq Doppler
|
||||
double T_chip_mod_seconds;
|
||||
double T_prn_mod_seconds;
|
||||
double T_prn_mod_samples;
|
||||
d_code_freq_chips = radial_velocity * GPS_L5i_CODE_RATE_HZ;
|
||||
d_code_phase_step_chips = static_cast<double>(d_code_freq_chips) / static_cast<double>(d_fs_in);
|
||||
T_chip_mod_seconds = 1 / d_code_freq_chips;
|
||||
T_prn_mod_seconds = T_chip_mod_seconds * GPS_L5i_CODE_LENGTH_CHIPS;
|
||||
T_prn_mod_samples = T_prn_mod_seconds * static_cast<double>(d_fs_in);
|
||||
|
||||
d_current_prn_length_samples = round(T_prn_mod_samples);
|
||||
|
||||
double T_prn_true_seconds = GPS_L5i_CODE_LENGTH_CHIPS / GPS_L5i_CODE_RATE_HZ;
|
||||
double T_prn_true_samples = T_prn_true_seconds * static_cast<double>(d_fs_in);
|
||||
double T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds;
|
||||
double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
|
||||
double corrected_acq_phase_samples, delay_correction_samples;
|
||||
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<double>(d_fs_in)), T_prn_true_samples);
|
||||
if (corrected_acq_phase_samples < 0)
|
||||
{
|
||||
corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples;
|
||||
}
|
||||
delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples;
|
||||
|
||||
d_acq_code_phase_samples = corrected_acq_phase_samples;
|
||||
|
||||
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
|
||||
d_carrier_phase_step_rad = GPS_L5_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
|
||||
|
||||
// DLL/PLL filter initialization
|
||||
d_carrier_loop_filter.initialize(); // initialize the carrier filter
|
||||
d_code_loop_filter.initialize(); // initialize the code filter
|
||||
|
||||
// generate local reference ALWAYS starting at chip 1 (1 sample per chip)
|
||||
gps_l5i_code_gen_complex(d_ca_code, d_acquisition_gnss_synchro->PRN);
|
||||
|
||||
multicorrelator_cpu.set_local_code_and_taps(static_cast<int>(GPS_L5i_CODE_LENGTH_CHIPS), d_ca_code, d_local_code_shift_chips);
|
||||
for (int n = 0; n < d_n_correlator_taps; n++)
|
||||
{
|
||||
d_correlator_outs[n] = gr_complex(0, 0);
|
||||
}
|
||||
|
||||
d_carrier_lock_fail_counter = 0;
|
||||
d_rem_code_phase_samples = 0;
|
||||
d_rem_carr_phase_rad = 0.0;
|
||||
d_rem_code_phase_chips = 0.0;
|
||||
d_acc_carrier_phase_rad = 0.0;
|
||||
|
||||
d_code_phase_samples = d_acq_code_phase_samples;
|
||||
|
||||
std::string sys_ = &d_acquisition_gnss_synchro->System;
|
||||
sys = sys_.substr(0, 1);
|
||||
|
||||
// DEBUG OUTPUT
|
||||
std::cout << "Tracking of GPS L5i signal started on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
|
||||
LOG(INFO) << "Starting GPS L5i tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel;
|
||||
|
||||
// enable tracking
|
||||
d_pull_in = true;
|
||||
d_enable_tracking = true;
|
||||
|
||||
LOG(INFO) << "GPS L5i PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz
|
||||
<< " Code Phase correction [samples]=" << delay_correction_samples
|
||||
<< " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples;
|
||||
}
|
||||
|
||||
|
||||
int gps_l5i_dll_pll_tracking_cc::save_matfile()
|
||||
{
|
||||
// READ DUMP FILE
|
||||
std::ifstream::pos_type size;
|
||||
int number_of_double_vars = 11;
|
||||
int number_of_float_vars = 5;
|
||||
int epoch_size_bytes = sizeof(unsigned long int) + sizeof(double) * number_of_double_vars +
|
||||
sizeof(float) * number_of_float_vars + sizeof(unsigned int);
|
||||
std::ifstream dump_file;
|
||||
dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
|
||||
try
|
||||
{
|
||||
dump_file.open(d_dump_filename.c_str(), std::ios::binary | std::ios::ate);
|
||||
}
|
||||
catch (const std::ifstream::failure &e)
|
||||
{
|
||||
std::cerr << "Problem opening dump file:" << e.what() << std::endl;
|
||||
return 1;
|
||||
}
|
||||
// count number of epochs and rewind
|
||||
long int num_epoch = 0;
|
||||
if (dump_file.is_open())
|
||||
{
|
||||
size = dump_file.tellg();
|
||||
num_epoch = static_cast<long int>(size) / static_cast<long int>(epoch_size_bytes);
|
||||
dump_file.seekg(0, std::ios::beg);
|
||||
}
|
||||
else
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
float *abs_E = new float[num_epoch];
|
||||
float *abs_P = new float[num_epoch];
|
||||
float *abs_L = new float[num_epoch];
|
||||
float *Prompt_I = new float[num_epoch];
|
||||
float *Prompt_Q = new float[num_epoch];
|
||||
unsigned long int *PRN_start_sample_count = new unsigned long int[num_epoch];
|
||||
double *acc_carrier_phase_rad = new double[num_epoch];
|
||||
double *carrier_doppler_hz = new double[num_epoch];
|
||||
double *code_freq_chips = new double[num_epoch];
|
||||
double *carr_error_hz = new double[num_epoch];
|
||||
double *carr_error_filt_hz = new double[num_epoch];
|
||||
double *code_error_chips = new double[num_epoch];
|
||||
double *code_error_filt_chips = new double[num_epoch];
|
||||
double *CN0_SNV_dB_Hz = new double[num_epoch];
|
||||
double *carrier_lock_test = new double[num_epoch];
|
||||
double *aux1 = new double[num_epoch];
|
||||
double *aux2 = new double[num_epoch];
|
||||
unsigned int *PRN = new unsigned int[num_epoch];
|
||||
|
||||
try
|
||||
{
|
||||
if (dump_file.is_open())
|
||||
{
|
||||
for (long int i = 0; i < num_epoch; i++)
|
||||
{
|
||||
dump_file.read(reinterpret_cast<char *>(&abs_E[i]), sizeof(float));
|
||||
dump_file.read(reinterpret_cast<char *>(&abs_P[i]), sizeof(float));
|
||||
dump_file.read(reinterpret_cast<char *>(&abs_L[i]), sizeof(float));
|
||||
dump_file.read(reinterpret_cast<char *>(&Prompt_I[i]), sizeof(float));
|
||||
dump_file.read(reinterpret_cast<char *>(&Prompt_Q[i]), sizeof(float));
|
||||
dump_file.read(reinterpret_cast<char *>(&PRN_start_sample_count[i]), sizeof(unsigned long int));
|
||||
dump_file.read(reinterpret_cast<char *>(&acc_carrier_phase_rad[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&carrier_doppler_hz[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&code_freq_chips[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&carr_error_hz[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&carr_error_filt_hz[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&code_error_chips[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&code_error_filt_chips[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&CN0_SNV_dB_Hz[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&carrier_lock_test[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&aux1[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&aux2[i]), sizeof(double));
|
||||
dump_file.read(reinterpret_cast<char *>(&PRN[i]), sizeof(unsigned int));
|
||||
}
|
||||
}
|
||||
dump_file.close();
|
||||
}
|
||||
catch (const std::ifstream::failure &e)
|
||||
{
|
||||
std::cerr << "Problem reading dump file:" << e.what() << std::endl;
|
||||
delete[] abs_E;
|
||||
delete[] abs_P;
|
||||
delete[] abs_L;
|
||||
delete[] Prompt_I;
|
||||
delete[] Prompt_Q;
|
||||
delete[] PRN_start_sample_count;
|
||||
delete[] acc_carrier_phase_rad;
|
||||
delete[] carrier_doppler_hz;
|
||||
delete[] code_freq_chips;
|
||||
delete[] carr_error_hz;
|
||||
delete[] carr_error_filt_hz;
|
||||
delete[] code_error_chips;
|
||||
delete[] code_error_filt_chips;
|
||||
delete[] CN0_SNV_dB_Hz;
|
||||
delete[] carrier_lock_test;
|
||||
delete[] aux1;
|
||||
delete[] aux2;
|
||||
delete[] PRN;
|
||||
return 1;
|
||||
}
|
||||
|
||||
// WRITE MAT FILE
|
||||
mat_t *matfp;
|
||||
matvar_t *matvar;
|
||||
std::string filename = d_dump_filename;
|
||||
filename.erase(filename.length() - 4, 4);
|
||||
filename.append(".mat");
|
||||
matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73);
|
||||
if (reinterpret_cast<long *>(matfp) != NULL)
|
||||
{
|
||||
size_t dims[2] = {1, static_cast<size_t>(num_epoch)};
|
||||
matvar = Mat_VarCreate("abs_E", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_E, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("abs_P", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_P, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("abs_L", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_L, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("Prompt_I", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_I, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("Prompt_Q", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_Q, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("PRN_start_sample_count", MAT_C_UINT64, MAT_T_UINT64, 2, dims, PRN_start_sample_count, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("acc_carrier_phase_rad", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, acc_carrier_phase_rad, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("carrier_doppler_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carrier_doppler_hz, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("code_freq_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_freq_chips, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("carr_error_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carr_error_hz, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("carr_error_filt_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carr_error_filt_hz, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("code_error_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_error_chips, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("code_error_filt_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_error_filt_chips, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("CN0_SNV_dB_Hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, CN0_SNV_dB_Hz, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("carrier_lock_test", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carrier_lock_test, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("aux1", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, aux1, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("aux2", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, aux2, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
|
||||
matvar = Mat_VarCreate("PRN", MAT_C_UINT32, MAT_T_UINT32, 2, dims, PRN, 0);
|
||||
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
|
||||
Mat_VarFree(matvar);
|
||||
}
|
||||
Mat_Close(matfp);
|
||||
delete[] abs_E;
|
||||
delete[] abs_P;
|
||||
delete[] abs_L;
|
||||
delete[] Prompt_I;
|
||||
delete[] Prompt_Q;
|
||||
delete[] PRN_start_sample_count;
|
||||
delete[] acc_carrier_phase_rad;
|
||||
delete[] carrier_doppler_hz;
|
||||
delete[] code_freq_chips;
|
||||
delete[] carr_error_hz;
|
||||
delete[] carr_error_filt_hz;
|
||||
delete[] code_error_chips;
|
||||
delete[] code_error_filt_chips;
|
||||
delete[] CN0_SNV_dB_Hz;
|
||||
delete[] carrier_lock_test;
|
||||
delete[] aux1;
|
||||
delete[] aux2;
|
||||
delete[] PRN;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
gps_l5i_dll_pll_tracking_cc::~gps_l5i_dll_pll_tracking_cc()
|
||||
{
|
||||
if (d_dump_file.is_open())
|
||||
{
|
||||
try
|
||||
{
|
||||
d_dump_file.close();
|
||||
}
|
||||
catch (const std::exception &ex)
|
||||
{
|
||||
LOG(WARNING) << "Exception in destructor " << ex.what();
|
||||
}
|
||||
}
|
||||
if (d_dump)
|
||||
{
|
||||
if (d_channel == 0)
|
||||
{
|
||||
std::cout << "Writing .mat files ...";
|
||||
}
|
||||
gps_l5i_dll_pll_tracking_cc::save_matfile();
|
||||
if (d_channel == 0)
|
||||
{
|
||||
std::cout << " done." << std::endl;
|
||||
}
|
||||
}
|
||||
try
|
||||
{
|
||||
volk_gnsssdr_free(d_local_code_shift_chips);
|
||||
volk_gnsssdr_free(d_correlator_outs);
|
||||
volk_gnsssdr_free(d_ca_code);
|
||||
delete[] d_Prompt_buffer;
|
||||
multicorrelator_cpu.free();
|
||||
}
|
||||
catch (const std::exception &ex)
|
||||
{
|
||||
LOG(WARNING) << "Exception in destructor " << ex.what();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int gps_l5i_dll_pll_tracking_cc::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)),
|
||||
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
|
||||
{
|
||||
// process vars
|
||||
double carr_error_hz = 0;
|
||||
double carr_error_filt_hz = 0;
|
||||
double code_error_chips = 0;
|
||||
double code_error_filt_chips = 0;
|
||||
|
||||
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
|
||||
Gnss_Synchro current_synchro_data = Gnss_Synchro();
|
||||
|
||||
// Block input data and block output stream pointers
|
||||
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]);
|
||||
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
|
||||
|
||||
if (d_enable_tracking == true)
|
||||
{
|
||||
// Fill the acquisition data
|
||||
current_synchro_data = *d_acquisition_gnss_synchro;
|
||||
// Receiver signal alignment
|
||||
if (d_pull_in == true)
|
||||
{
|
||||
int samples_offset;
|
||||
double acq_trk_shif_correction_samples;
|
||||
int acq_to_trk_delay_samples;
|
||||
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
|
||||
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
|
||||
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
|
||||
current_synchro_data.Tracking_sample_counter = d_sample_counter + samples_offset;
|
||||
d_sample_counter = d_sample_counter + samples_offset; // count for the processed samples
|
||||
d_pull_in = false;
|
||||
// take into account the carrier cycles accumulated in the pull in signal alignment
|
||||
d_acc_carrier_phase_rad -= d_carrier_phase_step_rad * samples_offset;
|
||||
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
|
||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
||||
current_synchro_data.fs = d_fs_in;
|
||||
current_synchro_data.correlation_length_ms = 1;
|
||||
consume_each(samples_offset); // shift input to perform alignment with local replica
|
||||
return 0;
|
||||
}
|
||||
|
||||
// ################# CARRIER WIPEOFF AND CORRELATORS ##############################
|
||||
// perform carrier wipe-off and compute Early, Prompt and Late correlation
|
||||
multicorrelator_cpu.set_input_output_vectors(d_correlator_outs, in);
|
||||
multicorrelator_cpu.Carrier_wipeoff_multicorrelator_resampler(d_rem_carr_phase_rad,
|
||||
d_carrier_phase_step_rad,
|
||||
d_rem_code_phase_chips,
|
||||
d_code_phase_step_chips,
|
||||
d_current_prn_length_samples);
|
||||
|
||||
// ################## PLL ##########################################################
|
||||
// PLL discriminator
|
||||
// Update PLL discriminator [rads/Ti -> Secs/Ti]
|
||||
carr_error_hz = pll_cloop_two_quadrant_atan(d_correlator_outs[1]) / GPS_L5_TWO_PI;
|
||||
// Carrier discriminator filter
|
||||
carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz);
|
||||
// New carrier Doppler frequency estimation
|
||||
d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_error_filt_hz;
|
||||
// New code Doppler frequency estimation
|
||||
d_code_freq_chips = GPS_L5i_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L5i_CODE_RATE_HZ) / GPS_L5_FREQ_HZ);
|
||||
|
||||
// ################## DLL ##########################################################
|
||||
// DLL discriminator
|
||||
code_error_chips = dll_nc_e_minus_l_normalized(d_correlator_outs[0], d_correlator_outs[2]); // [chips/Ti]
|
||||
// Code discriminator filter
|
||||
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second]
|
||||
double T_chip_seconds = 1.0 / static_cast<double>(d_code_freq_chips);
|
||||
double T_prn_seconds = T_chip_seconds * GPS_L5i_CODE_LENGTH_CHIPS;
|
||||
double code_error_filt_secs = (T_prn_seconds * code_error_filt_chips * T_chip_seconds); //[seconds]
|
||||
//double code_error_filt_secs = (GPS_L5i_PERIOD * code_error_filt_chips) / GPS_L5i_CODE_RATE_HZ; //[seconds]
|
||||
|
||||
// ################## CARRIER AND CODE NCO BUFFER ALIGNMENT #######################
|
||||
// keep alignment parameters for the next input buffer
|
||||
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
|
||||
double T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
|
||||
double K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast<double>(d_fs_in);
|
||||
d_current_prn_length_samples = round(K_blk_samples); // round to a discrete number of samples
|
||||
|
||||
//################### PLL COMMANDS #################################################
|
||||
// carrier phase step (NCO phase increment per sample) [rads/sample]
|
||||
d_carrier_phase_step_rad = GPS_L5_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
|
||||
// remnant carrier phase to prevent overflow in the code NCO
|
||||
d_rem_carr_phase_rad = d_rem_carr_phase_rad + d_carrier_phase_step_rad * d_current_prn_length_samples;
|
||||
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_L5_TWO_PI);
|
||||
// carrier phase accumulator
|
||||
d_acc_carrier_phase_rad -= d_carrier_phase_step_rad * d_current_prn_length_samples;
|
||||
|
||||
//################### DLL COMMANDS #################################################
|
||||
// code phase step (Code resampler phase increment per sample) [chips/sample]
|
||||
d_code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
|
||||
// remnant code phase [chips]
|
||||
d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; // rounding error < 1 sample
|
||||
d_rem_code_phase_chips = d_code_freq_chips * (d_rem_code_phase_samples / static_cast<double>(d_fs_in));
|
||||
|
||||
// ####### CN0 ESTIMATION AND LOCK DETECTORS ######
|
||||
if (d_cn0_estimation_counter < FLAGS_cn0_samples)
|
||||
{
|
||||
// fill buffer with prompt correlator output values
|
||||
d_Prompt_buffer[d_cn0_estimation_counter] = d_correlator_outs[1];
|
||||
d_cn0_estimation_counter++;
|
||||
}
|
||||
else
|
||||
{
|
||||
d_cn0_estimation_counter = 0;
|
||||
// Code lock indicator
|
||||
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, FLAGS_cn0_samples, d_fs_in, GPS_L5i_CODE_LENGTH_CHIPS);
|
||||
// Carrier lock indicator
|
||||
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, FLAGS_cn0_samples);
|
||||
// Loss of lock detection
|
||||
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < FLAGS_cn0_min)
|
||||
{
|
||||
d_carrier_lock_fail_counter++;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
|
||||
}
|
||||
if (d_carrier_lock_fail_counter > FLAGS_max_lock_fail)
|
||||
{
|
||||
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
|
||||
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
|
||||
this->message_port_pub(pmt::mp("events"), pmt::from_long(3)); //3 -> loss of lock
|
||||
d_carrier_lock_fail_counter = 0;
|
||||
d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
|
||||
}
|
||||
}
|
||||
// ########### Output the tracking data to navigation and PVT ##########
|
||||
current_synchro_data.Prompt_I = static_cast<double>(d_correlator_outs[1].real());
|
||||
current_synchro_data.Prompt_Q = static_cast<double>(d_correlator_outs[1].imag());
|
||||
current_synchro_data.Tracking_sample_counter = d_sample_counter + d_current_prn_length_samples;
|
||||
current_synchro_data.Code_phase_samples = d_rem_code_phase_samples;
|
||||
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
|
||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
||||
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
||||
current_synchro_data.Flag_valid_symbol_output = true;
|
||||
current_synchro_data.correlation_length_ms = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int n = 0; n < d_n_correlator_taps; n++)
|
||||
{
|
||||
d_correlator_outs[n] = gr_complex(0, 0);
|
||||
}
|
||||
current_synchro_data.Tracking_sample_counter = d_sample_counter + d_current_prn_length_samples;
|
||||
current_synchro_data.correlation_length_ms = 1;
|
||||
}
|
||||
//assign the GNURadio block output data
|
||||
current_synchro_data.fs = d_fs_in;
|
||||
*out[0] = current_synchro_data;
|
||||
|
||||
if (d_dump)
|
||||
{
|
||||
// MULTIPLEXED FILE RECORDING - Record results to file
|
||||
float prompt_I;
|
||||
float prompt_Q;
|
||||
float tmp_E, tmp_P, tmp_L;
|
||||
double tmp_double;
|
||||
prompt_I = d_correlator_outs[1].real();
|
||||
prompt_Q = d_correlator_outs[1].imag();
|
||||
tmp_E = std::abs<float>(d_correlator_outs[0]);
|
||||
tmp_P = std::abs<float>(d_correlator_outs[1]);
|
||||
tmp_L = std::abs<float>(d_correlator_outs[2]);
|
||||
try
|
||||
{
|
||||
// EPR
|
||||
d_dump_file.write(reinterpret_cast<char *>(&tmp_E), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char *>(&tmp_P), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char *>(&tmp_L), sizeof(float));
|
||||
// PROMPT I and Q (to analyze navigation symbols)
|
||||
d_dump_file.write(reinterpret_cast<char *>(&prompt_I), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char *>(&prompt_Q), sizeof(float));
|
||||
// PRN start sample stamp
|
||||
//tmp_float=(float)d_sample_counter;
|
||||
d_dump_file.write(reinterpret_cast<char *>(&d_sample_counter), sizeof(unsigned long int));
|
||||
// accumulated carrier phase
|
||||
d_dump_file.write(reinterpret_cast<char *>(&d_acc_carrier_phase_rad), sizeof(double));
|
||||
|
||||
// carrier and code frequency
|
||||
d_dump_file.write(reinterpret_cast<char *>(&d_carrier_doppler_hz), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char *>(&d_code_freq_chips), sizeof(double));
|
||||
|
||||
//PLL commands
|
||||
d_dump_file.write(reinterpret_cast<char *>(&carr_error_hz), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char *>(&d_carrier_doppler_hz), sizeof(double));
|
||||
|
||||
//DLL commands
|
||||
d_dump_file.write(reinterpret_cast<char *>(&code_error_chips), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char *>(&code_error_filt_chips), sizeof(double));
|
||||
|
||||
// CN0 and carrier lock test
|
||||
d_dump_file.write(reinterpret_cast<char *>(&d_CN0_SNV_dB_Hz), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char *>(&d_carrier_lock_test), sizeof(double));
|
||||
|
||||
// AUX vars (for debug purposes)
|
||||
tmp_double = d_rem_code_phase_samples;
|
||||
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
|
||||
tmp_double = static_cast<double>(d_sample_counter + d_current_prn_length_samples);
|
||||
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
|
||||
|
||||
// PRN
|
||||
unsigned int prn_ = d_acquisition_gnss_synchro->PRN;
|
||||
d_dump_file.write(reinterpret_cast<char *>(&prn_), sizeof(unsigned int));
|
||||
}
|
||||
catch (std::ifstream::failure &e)
|
||||
{
|
||||
LOG(WARNING) << "Exception writing trk dump file " << e.what();
|
||||
}
|
||||
}
|
||||
consume_each(d_current_prn_length_samples); // this is necessary in gr::block derivates
|
||||
d_sample_counter += d_current_prn_length_samples; // count for the processed samples
|
||||
if (current_synchro_data.Flag_valid_symbol_output)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void gps_l5i_dll_pll_tracking_cc::set_channel(unsigned int channel)
|
||||
{
|
||||
d_channel = channel;
|
||||
LOG(INFO) << "Tracking Channel set to " << d_channel;
|
||||
// ############# ENABLE DATA FILE LOG #################
|
||||
if (d_dump == true)
|
||||
{
|
||||
if (d_dump_file.is_open() == false)
|
||||
{
|
||||
try
|
||||
{
|
||||
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
|
||||
d_dump_filename.append(".dat");
|
||||
d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
|
||||
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
|
||||
LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str();
|
||||
}
|
||||
catch (std::ifstream::failure &e)
|
||||
{
|
||||
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void gps_l5i_dll_pll_tracking_cc::set_gnss_synchro(Gnss_Synchro *p_gnss_synchro)
|
||||
{
|
||||
d_acquisition_gnss_synchro = p_gnss_synchro;
|
||||
}
|
@ -1,165 +0,0 @@
|
||||
/*!
|
||||
* \file gps_l5i_dll_pll_tracking_cc.h
|
||||
* \brief Interface of a code DLL + carrier PLL tracking block for GPS L2C
|
||||
* \author Javier Arribas, 2015. jarribas(at)cttc.es
|
||||
*
|
||||
* Code DLL + carrier PLL according to the algorithms described in:
|
||||
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
|
||||
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency Approach,
|
||||
* Birkhauser, 2007
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef GNSS_SDR_GPS_L5i_DLL_PLL_TRACKING_CC_H
|
||||
#define GNSS_SDR_GPS_L5i_DLL_PLL_TRACKING_CC_H
|
||||
|
||||
#include "gnss_synchro.h"
|
||||
#include "tracking_2nd_DLL_filter.h"
|
||||
#include "tracking_2nd_PLL_filter.h"
|
||||
#include "cpu_multicorrelator.h"
|
||||
#include <gnuradio/block.h>
|
||||
#include <fstream>
|
||||
#include <map>
|
||||
#include <string>
|
||||
|
||||
class gps_l5i_dll_pll_tracking_cc;
|
||||
|
||||
typedef boost::shared_ptr<gps_l5i_dll_pll_tracking_cc>
|
||||
gps_l5i_dll_pll_tracking_cc_sptr;
|
||||
|
||||
gps_l5i_dll_pll_tracking_cc_sptr
|
||||
gps_l5i_dll_pll_make_tracking_cc(long if_freq,
|
||||
long fs_in, unsigned int vector_length,
|
||||
bool dump,
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float early_late_space_chips);
|
||||
|
||||
|
||||
/*!
|
||||
* \brief This class implements a DLL + PLL tracking loop block
|
||||
*/
|
||||
class gps_l5i_dll_pll_tracking_cc : public gr::block
|
||||
{
|
||||
public:
|
||||
~gps_l5i_dll_pll_tracking_cc();
|
||||
|
||||
void set_channel(unsigned int channel);
|
||||
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
|
||||
void start_tracking();
|
||||
|
||||
int general_work(int noutput_items, gr_vector_int& ninput_items,
|
||||
gr_vector_const_void_star& input_items, gr_vector_void_star& output_items);
|
||||
|
||||
void forecast(int noutput_items, gr_vector_int& ninput_items_required);
|
||||
|
||||
private:
|
||||
friend gps_l5i_dll_pll_tracking_cc_sptr
|
||||
gps_l5i_dll_pll_make_tracking_cc(long if_freq,
|
||||
long fs_in, unsigned int vector_length,
|
||||
bool dump,
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float early_late_space_chips);
|
||||
|
||||
gps_l5i_dll_pll_tracking_cc(long if_freq,
|
||||
long fs_in, unsigned int vector_length,
|
||||
bool dump,
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float early_late_space_chips);
|
||||
|
||||
// tracking configuration vars
|
||||
unsigned int d_vector_length;
|
||||
bool d_dump;
|
||||
|
||||
Gnss_Synchro* d_acquisition_gnss_synchro;
|
||||
unsigned int d_channel;
|
||||
long d_if_freq;
|
||||
long d_fs_in;
|
||||
|
||||
double d_early_late_spc_chips;
|
||||
|
||||
// remaining code phase and carrier phase between tracking loops
|
||||
double d_rem_code_phase_samples;
|
||||
double d_rem_code_phase_chips;
|
||||
double d_rem_carr_phase_rad;
|
||||
|
||||
// PLL and DLL filter library
|
||||
Tracking_2nd_DLL_filter d_code_loop_filter;
|
||||
Tracking_2nd_PLL_filter d_carrier_loop_filter;
|
||||
|
||||
// acquisition
|
||||
double d_acq_code_phase_samples;
|
||||
double d_acq_carrier_doppler_hz;
|
||||
// correlator
|
||||
int d_n_correlator_taps;
|
||||
gr_complex* d_ca_code;
|
||||
float* d_local_code_shift_chips;
|
||||
gr_complex* d_correlator_outs;
|
||||
cpu_multicorrelator multicorrelator_cpu;
|
||||
|
||||
// tracking vars
|
||||
double d_code_freq_chips;
|
||||
double d_code_phase_step_chips;
|
||||
double d_carrier_doppler_hz;
|
||||
double d_carrier_phase_step_rad;
|
||||
double d_acc_carrier_phase_rad;
|
||||
double d_code_phase_samples;
|
||||
|
||||
// PRN period in samples
|
||||
int d_current_prn_length_samples;
|
||||
|
||||
// processing samples counters
|
||||
unsigned long int d_sample_counter;
|
||||
unsigned long int d_acq_sample_stamp;
|
||||
|
||||
// CN0 estimation and lock detector
|
||||
int d_cn0_estimation_counter;
|
||||
gr_complex* d_Prompt_buffer;
|
||||
double d_carrier_lock_test;
|
||||
double d_CN0_SNV_dB_Hz;
|
||||
double d_carrier_lock_threshold;
|
||||
int d_carrier_lock_fail_counter;
|
||||
|
||||
// control vars
|
||||
bool d_enable_tracking;
|
||||
bool d_pull_in;
|
||||
|
||||
// file dump
|
||||
std::string d_dump_filename;
|
||||
std::ofstream d_dump_file;
|
||||
|
||||
std::map<std::string, std::string> systemName;
|
||||
std::string sys;
|
||||
|
||||
int save_matfile();
|
||||
};
|
||||
|
||||
#endif //GNSS_SDR_GPS_L5i_DLL_PLL_TRACKING_CC_H
|
@ -168,6 +168,7 @@ void GpsL2MPcpsAcquisitionTest::init()
|
||||
config->set_property("Acquisition_2S.doppler_max", std::to_string(doppler_max));
|
||||
config->set_property("Acquisition_2S.doppler_step", std::to_string(doppler_step));
|
||||
config->set_property("Acquisition_2S.repeat_satellite", "false");
|
||||
config->set_property("Acquisition_2S.make_two_steps", "false");
|
||||
}
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user