mirror of
				https://github.com/gnss-sdr/gnss-sdr
				synced 2025-10-26 04:57:40 +00:00 
			
		
		
		
	Merge branch 'next' into tracking_conf_structure
This commit is contained in:
		| @@ -45,6 +45,7 @@ GalileoE1PcpsAmbiguousAcquisition::GalileoE1PcpsAmbiguousAcquisition( | ||||
|     ConfigurationInterface* configuration, std::string role, | ||||
|     unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams) | ||||
| { | ||||
|     pcpsconf_t acq_parameters; | ||||
|     configuration_ = configuration; | ||||
|     std::string default_item_type = "gr_complex"; | ||||
|     std::string default_dump_filename = "./data/acquisition.dat"; | ||||
| @@ -55,32 +56,33 @@ GalileoE1PcpsAmbiguousAcquisition::GalileoE1PcpsAmbiguousAcquisition( | ||||
|  | ||||
|     long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 4000000); | ||||
|     fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated); | ||||
|     acq_parameters.fs_in = fs_in_; | ||||
|     if_ = configuration_->property(role + ".if", 0); | ||||
|     acq_parameters.freq = if_; | ||||
|     dump_ = configuration_->property(role + ".dump", false); | ||||
|     acq_parameters.dump = dump_; | ||||
|     blocking_ = configuration_->property(role + ".blocking", true); | ||||
|     acq_parameters.blocking = blocking_; | ||||
|     doppler_max_ = configuration_->property(role + ".doppler_max", 5000); | ||||
|     if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max; | ||||
|     sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 4); | ||||
|  | ||||
|     if (sampled_ms_ % 4 != 0) | ||||
|         { | ||||
|             sampled_ms_ = static_cast<int>(sampled_ms_ / 4) * 4; | ||||
|             LOG(WARNING) << "coherent_integration_time should be multiple of " | ||||
|                          << "Galileo code length (4 ms). coherent_integration_time = " | ||||
|                          << sampled_ms_ << " ms will be used."; | ||||
|         } | ||||
|  | ||||
|     acq_parameters.doppler_max = doppler_max_; | ||||
|     sampled_ms_ = 4; | ||||
|     acq_parameters.sampled_ms = sampled_ms_; | ||||
|     bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false); | ||||
|     acq_parameters.bit_transition_flag = bit_transition_flag_; | ||||
|     use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true);  //will be false in future versions | ||||
|     acquire_pilot_ = configuration_->property(role + ".acquire_pilot", false);                //will be true in future versions | ||||
|     acq_parameters.use_CFAR_algorithm_flag = use_CFAR_algorithm_flag_; | ||||
|     acquire_pilot_ = configuration_->property(role + ".acquire_pilot", false);  //will be true in future versions | ||||
|  | ||||
|     max_dwells_ = configuration_->property(role + ".max_dwells", 1); | ||||
|  | ||||
|     acq_parameters.max_dwells = max_dwells_; | ||||
|     dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename); | ||||
|  | ||||
|     acq_parameters.dump_filename = dump_filename_; | ||||
|     //--- Find number of samples per spreading code (4 ms)  ----------------- | ||||
|     code_length_ = round(fs_in_ / (Galileo_E1_CODE_CHIP_RATE_HZ / Galileo_E1_B_CODE_LENGTH_CHIPS)); | ||||
|     int samples_per_ms = round(code_length_ / 4.0); | ||||
|     code_length_ = static_cast<unsigned int>(std::round(static_cast<double>(fs_in_) / (Galileo_E1_CODE_CHIP_RATE_HZ / Galileo_E1_B_CODE_LENGTH_CHIPS))); | ||||
|     acq_parameters.samples_per_code = code_length_; | ||||
|     int samples_per_ms = static_cast<int>(std::round(static_cast<double>(fs_in_) * 0.001)); | ||||
|     acq_parameters.samples_per_ms = samples_per_ms; | ||||
|     vector_length_ = sampled_ms_ * samples_per_ms; | ||||
|  | ||||
|     if (bit_transition_flag_) | ||||
| @@ -98,10 +100,11 @@ GalileoE1PcpsAmbiguousAcquisition::GalileoE1PcpsAmbiguousAcquisition( | ||||
|         { | ||||
|             item_size_ = sizeof(gr_complex); | ||||
|         } | ||||
|     acquisition_ = pcps_make_acquisition(sampled_ms_, max_dwells_, | ||||
|         doppler_max_, if_, fs_in_, samples_per_ms, code_length_, | ||||
|         bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_, | ||||
|         dump_filename_, item_size_); | ||||
|     acq_parameters.it_size = item_size_; | ||||
|     acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4); | ||||
|     acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0); | ||||
|     acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", false); | ||||
|     acquisition_ = pcps_make_acquisition(acq_parameters); | ||||
|     DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")"; | ||||
|  | ||||
|     stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_); | ||||
|   | ||||
| @@ -44,6 +44,7 @@ using google::LogMessage; | ||||
| GalileoE5aPcpsAcquisition::GalileoE5aPcpsAcquisition(ConfigurationInterface* configuration, | ||||
|     std::string role, unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams) | ||||
| { | ||||
|     pcpsconf_t acq_parameters; | ||||
|     configuration_ = configuration; | ||||
|     std::string default_item_type = "gr_complex"; | ||||
|     std::string default_dump_filename = "../data/acquisition.dat"; | ||||
| @@ -54,6 +55,8 @@ GalileoE5aPcpsAcquisition::GalileoE5aPcpsAcquisition(ConfigurationInterface* con | ||||
|  | ||||
|     long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 32000000); | ||||
|     fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated); | ||||
|     acq_parameters.fs_in = fs_in_; | ||||
|     acq_parameters.freq = 0; | ||||
|     acq_pilot_ = configuration_->property(role + ".acquire_pilot", false); | ||||
|     acq_iq_ = configuration_->property(role + ".acquire_iq", false); | ||||
|     if (acq_iq_) | ||||
| @@ -61,17 +64,23 @@ GalileoE5aPcpsAcquisition::GalileoE5aPcpsAcquisition(ConfigurationInterface* con | ||||
|             acq_pilot_ = false; | ||||
|         } | ||||
|     dump_ = configuration_->property(role + ".dump", false); | ||||
|     acq_parameters.dump = dump_; | ||||
|     doppler_max_ = configuration_->property(role + ".doppler_max", 5000); | ||||
|     if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max; | ||||
|     sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 1); | ||||
|     acq_parameters.doppler_max = doppler_max_; | ||||
|     sampled_ms_ = 1; | ||||
|     max_dwells_ = configuration_->property(role + ".max_dwells", 1); | ||||
|     acq_parameters.max_dwells = max_dwells_; | ||||
|     dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename); | ||||
|     acq_parameters.dump_filename = dump_filename_; | ||||
|     bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false); | ||||
|     acq_parameters.bit_transition_flag = bit_transition_flag_; | ||||
|     use_CFAR_ = configuration_->property(role + ".use_CFAR_algorithm", false); | ||||
|     acq_parameters.use_CFAR_algorithm_flag = use_CFAR_; | ||||
|     blocking_ = configuration_->property(role + ".blocking", true); | ||||
|  | ||||
|     acq_parameters.blocking = blocking_; | ||||
|     //--- Find number of samples per spreading code (1ms)------------------------- | ||||
|     code_length_ = round(static_cast<double>(fs_in_) / Galileo_E5a_CODE_CHIP_RATE_HZ * static_cast<double>(Galileo_E5a_CODE_LENGTH_CHIPS)); | ||||
|     code_length_ = static_cast<unsigned int>(std::round(static_cast<double>(fs_in_) / Galileo_E5a_CODE_CHIP_RATE_HZ * static_cast<double>(Galileo_E5a_CODE_LENGTH_CHIPS))); | ||||
|     vector_length_ = code_length_ * sampled_ms_; | ||||
|  | ||||
|     code_ = new gr_complex[vector_length_]; | ||||
| @@ -89,10 +98,14 @@ GalileoE5aPcpsAcquisition::GalileoE5aPcpsAcquisition(ConfigurationInterface* con | ||||
|             item_size_ = sizeof(gr_complex); | ||||
|             LOG(WARNING) << item_type_ << " unknown acquisition item type"; | ||||
|         } | ||||
|  | ||||
|     acquisition_ = pcps_make_acquisition(sampled_ms_, max_dwells_, doppler_max_, 0, fs_in_, | ||||
|         code_length_, code_length_, bit_transition_flag_, use_CFAR_, dump_, blocking_, | ||||
|         dump_filename_, item_size_); | ||||
|     acq_parameters.it_size = item_size_; | ||||
|     acq_parameters.samples_per_code = code_length_; | ||||
|     acq_parameters.samples_per_ms = code_length_; | ||||
|     acq_parameters.sampled_ms = sampled_ms_; | ||||
|     acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4); | ||||
|     acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0); | ||||
|     acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", false); | ||||
|     acquisition_ = pcps_make_acquisition(acq_parameters); | ||||
|  | ||||
|     stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_); | ||||
|     channel_ = 0; | ||||
|   | ||||
| @@ -46,6 +46,7 @@ GlonassL1CaPcpsAcquisition::GlonassL1CaPcpsAcquisition( | ||||
|     ConfigurationInterface* configuration, std::string role, | ||||
|     unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams) | ||||
| { | ||||
|     pcpsconf_t acq_parameters; | ||||
|     configuration_ = configuration; | ||||
|     std::string default_item_type = "gr_complex"; | ||||
|     std::string default_dump_filename = "./data/acquisition.dat"; | ||||
| @@ -56,22 +57,28 @@ GlonassL1CaPcpsAcquisition::GlonassL1CaPcpsAcquisition( | ||||
|  | ||||
|     long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000); | ||||
|     fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated); | ||||
|     acq_parameters.fs_in = fs_in_; | ||||
|     if_ = configuration_->property(role + ".if", 0); | ||||
|     acq_parameters.freq = if_; | ||||
|     dump_ = configuration_->property(role + ".dump", false); | ||||
|     acq_parameters.dump = dump_; | ||||
|     blocking_ = configuration_->property(role + ".blocking", true); | ||||
|     acq_parameters.blocking = blocking_; | ||||
|     doppler_max_ = configuration_->property(role + ".doppler_max", 5000); | ||||
|     if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max; | ||||
|     acq_parameters.doppler_max = doppler_max_; | ||||
|     sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 1); | ||||
|  | ||||
|     acq_parameters.sampled_ms = sampled_ms_; | ||||
|     bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false); | ||||
|     acq_parameters.bit_transition_flag = bit_transition_flag_; | ||||
|     use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true);  //will be false in future versions | ||||
|  | ||||
|     acq_parameters.use_CFAR_algorithm_flag = use_CFAR_algorithm_flag_; | ||||
|     max_dwells_ = configuration_->property(role + ".max_dwells", 1); | ||||
|  | ||||
|     acq_parameters.max_dwells = max_dwells_; | ||||
|     dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename); | ||||
|  | ||||
|     acq_parameters.dump_filename = dump_filename_; | ||||
|     //--- Find number of samples per spreading code ------------------------- | ||||
|     code_length_ = round(fs_in_ / (GLONASS_L1_CA_CODE_RATE_HZ / GLONASS_L1_CA_CODE_LENGTH_CHIPS)); | ||||
|     code_length_ = static_cast<unsigned int>(std::round(static_cast<double>(fs_in_) / (GLONASS_L1_CA_CODE_RATE_HZ / GLONASS_L1_CA_CODE_LENGTH_CHIPS))); | ||||
|  | ||||
|     vector_length_ = code_length_ * sampled_ms_; | ||||
|  | ||||
| @@ -90,9 +97,14 @@ GlonassL1CaPcpsAcquisition::GlonassL1CaPcpsAcquisition( | ||||
|         { | ||||
|             item_size_ = sizeof(gr_complex); | ||||
|         } | ||||
|     acquisition_ = pcps_make_acquisition(sampled_ms_, max_dwells_, | ||||
|         doppler_max_, if_, fs_in_, code_length_, code_length_, | ||||
|         bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_, dump_filename_, item_size_); | ||||
|     acq_parameters.it_size = item_size_; | ||||
|     acq_parameters.sampled_ms = sampled_ms_; | ||||
|     acq_parameters.samples_per_ms = code_length_; | ||||
|     acq_parameters.samples_per_code = code_length_; | ||||
|     acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4); | ||||
|     acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0); | ||||
|     acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", false); | ||||
|     acquisition_ = pcps_make_acquisition(acq_parameters); | ||||
|     DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")"; | ||||
|  | ||||
|     stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_); | ||||
|   | ||||
| @@ -45,6 +45,7 @@ GlonassL2CaPcpsAcquisition::GlonassL2CaPcpsAcquisition( | ||||
|     ConfigurationInterface* configuration, std::string role, | ||||
|     unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams) | ||||
| { | ||||
|     pcpsconf_t acq_parameters; | ||||
|     configuration_ = configuration; | ||||
|     std::string default_item_type = "gr_complex"; | ||||
|     std::string default_dump_filename = "./data/acquisition.dat"; | ||||
| @@ -55,22 +56,28 @@ GlonassL2CaPcpsAcquisition::GlonassL2CaPcpsAcquisition( | ||||
|  | ||||
|     long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000); | ||||
|     fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated); | ||||
|     acq_parameters.fs_in = fs_in_; | ||||
|     if_ = configuration_->property(role + ".if", 0); | ||||
|     acq_parameters.freq = if_; | ||||
|     dump_ = configuration_->property(role + ".dump", false); | ||||
|     acq_parameters.dump = dump_; | ||||
|     blocking_ = configuration_->property(role + ".blocking", true); | ||||
|     acq_parameters.blocking = blocking_; | ||||
|     doppler_max_ = configuration_->property(role + ".doppler_max", 5000); | ||||
|     if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max; | ||||
|     acq_parameters.doppler_max = doppler_max_; | ||||
|     sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 1); | ||||
|  | ||||
|     bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false); | ||||
|     acq_parameters.bit_transition_flag = bit_transition_flag_; | ||||
|     use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true);  //will be false in future versions | ||||
|  | ||||
|     acq_parameters.use_CFAR_algorithm_flag = use_CFAR_algorithm_flag_; | ||||
|     max_dwells_ = configuration_->property(role + ".max_dwells", 1); | ||||
|     acq_parameters.max_dwells = max_dwells_; | ||||
|  | ||||
|     dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename); | ||||
|  | ||||
|     acq_parameters.dump_filename = dump_filename_; | ||||
|     //--- Find number of samples per spreading code ------------------------- | ||||
|     code_length_ = round(fs_in_ / (GLONASS_L2_CA_CODE_RATE_HZ / GLONASS_L2_CA_CODE_LENGTH_CHIPS)); | ||||
|     code_length_ = static_cast<unsigned int>(std::round(static_cast<double>(fs_in_) / (GLONASS_L2_CA_CODE_RATE_HZ / GLONASS_L2_CA_CODE_LENGTH_CHIPS))); | ||||
|  | ||||
|     vector_length_ = code_length_ * sampled_ms_; | ||||
|  | ||||
| @@ -89,9 +96,14 @@ GlonassL2CaPcpsAcquisition::GlonassL2CaPcpsAcquisition( | ||||
|         { | ||||
|             item_size_ = sizeof(gr_complex); | ||||
|         } | ||||
|     acquisition_ = pcps_make_acquisition(sampled_ms_, max_dwells_, | ||||
|         doppler_max_, if_, fs_in_, code_length_, code_length_, | ||||
|         bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_, dump_filename_, item_size_); | ||||
|     acq_parameters.it_size = item_size_; | ||||
|     acq_parameters.sampled_ms = sampled_ms_; | ||||
|     acq_parameters.samples_per_ms = code_length_; | ||||
|     acq_parameters.samples_per_code = code_length_; | ||||
|     acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4); | ||||
|     acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0); | ||||
|     acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", false); | ||||
|     acquisition_ = pcps_make_acquisition(acq_parameters); | ||||
|     DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")"; | ||||
|  | ||||
|     stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_); | ||||
|   | ||||
| @@ -48,6 +48,7 @@ GpsL1CaPcpsAcquisition::GpsL1CaPcpsAcquisition( | ||||
|     ConfigurationInterface* configuration, std::string role, | ||||
|     unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams) | ||||
| { | ||||
|     pcpsconf_t acq_parameters; | ||||
|     configuration_ = configuration; | ||||
|     std::string default_item_type = "gr_complex"; | ||||
|     std::string default_dump_filename = "./data/acquisition.dat"; | ||||
| @@ -57,22 +58,31 @@ GpsL1CaPcpsAcquisition::GpsL1CaPcpsAcquisition( | ||||
|     item_type_ = configuration_->property(role + ".item_type", default_item_type); | ||||
|     long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000); | ||||
|     fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated); | ||||
|     acq_parameters.fs_in = fs_in_; | ||||
|     if_ = configuration_->property(role + ".if", 0); | ||||
|     acq_parameters.freq = if_; | ||||
|     dump_ = configuration_->property(role + ".dump", false); | ||||
|     acq_parameters.dump = dump_; | ||||
|     blocking_ = configuration_->property(role + ".blocking", true); | ||||
|     acq_parameters.blocking = blocking_; | ||||
|     doppler_max_ = configuration_->property(role + ".doppler_max", 5000); | ||||
|     if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max; | ||||
|     acq_parameters.doppler_max = doppler_max_; | ||||
|     sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 1); | ||||
|  | ||||
|     acq_parameters.sampled_ms = sampled_ms_; | ||||
|     bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false); | ||||
|     acq_parameters.bit_transition_flag = bit_transition_flag_; | ||||
|     use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true);  //will be false in future versions | ||||
|  | ||||
|     acq_parameters.use_CFAR_algorithm_flag = use_CFAR_algorithm_flag_; | ||||
|     max_dwells_ = configuration_->property(role + ".max_dwells", 1); | ||||
|  | ||||
|     acq_parameters.max_dwells = max_dwells_; | ||||
|     dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename); | ||||
|  | ||||
|     acq_parameters.dump_filename = dump_filename_; | ||||
|     acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4); | ||||
|     acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0); | ||||
|     acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", false); | ||||
|     //--- Find number of samples per spreading code ------------------------- | ||||
|     code_length_ = round(fs_in_ / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS)); | ||||
|     code_length_ = static_cast<unsigned int>(std::round(static_cast<double>(fs_in_) / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS))); | ||||
|  | ||||
|     vector_length_ = code_length_ * sampled_ms_; | ||||
|  | ||||
| @@ -91,9 +101,10 @@ GpsL1CaPcpsAcquisition::GpsL1CaPcpsAcquisition( | ||||
|         { | ||||
|             item_size_ = sizeof(gr_complex); | ||||
|         } | ||||
|     acquisition_ = pcps_make_acquisition(sampled_ms_, max_dwells_, | ||||
|         doppler_max_, if_, fs_in_, code_length_, code_length_, | ||||
|         bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_, dump_filename_, item_size_); | ||||
|     acq_parameters.samples_per_ms = code_length_; | ||||
|     acq_parameters.samples_per_code = code_length_; | ||||
|     acq_parameters.it_size = item_size_; | ||||
|     acquisition_ = pcps_make_acquisition(acq_parameters); | ||||
|     DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")"; | ||||
|  | ||||
|     stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_); | ||||
|   | ||||
| @@ -46,6 +46,7 @@ GpsL2MPcpsAcquisition::GpsL2MPcpsAcquisition( | ||||
|     ConfigurationInterface* configuration, std::string role, | ||||
|     unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams) | ||||
| { | ||||
|     pcpsconf_t acq_parameters; | ||||
|     configuration_ = configuration; | ||||
|     std::string default_item_type = "gr_complex"; | ||||
|     std::string default_dump_filename = "./data/acquisition.dat"; | ||||
| @@ -57,21 +58,26 @@ GpsL2MPcpsAcquisition::GpsL2MPcpsAcquisition( | ||||
|  | ||||
|     long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000); | ||||
|     fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated); | ||||
|     acq_parameters.fs_in = fs_in_; | ||||
|     if_ = configuration_->property(role + ".if", 0); | ||||
|     acq_parameters.freq = if_; | ||||
|     dump_ = configuration_->property(role + ".dump", false); | ||||
|     acq_parameters.dump = dump_; | ||||
|     blocking_ = configuration_->property(role + ".blocking", true); | ||||
|     acq_parameters.blocking = blocking_; | ||||
|     doppler_max_ = configuration->property(role + ".doppler_max", 5000); | ||||
|     if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max; | ||||
|  | ||||
|     acq_parameters.doppler_max = doppler_max_; | ||||
|     bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false); | ||||
|     acq_parameters.bit_transition_flag = bit_transition_flag_; | ||||
|     use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true);  //will be false in future versions | ||||
|  | ||||
|     acq_parameters.use_CFAR_algorithm_flag = use_CFAR_algorithm_flag_; | ||||
|     max_dwells_ = configuration_->property(role + ".max_dwells", 1); | ||||
|  | ||||
|     acq_parameters.max_dwells = max_dwells_; | ||||
|     dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename); | ||||
|  | ||||
|     acq_parameters.dump_filename = dump_filename_; | ||||
|     //--- Find number of samples per spreading code ------------------------- | ||||
|     code_length_ = round(static_cast<double>(fs_in_) / (GPS_L2_M_CODE_RATE_HZ / static_cast<double>(GPS_L2_M_CODE_LENGTH_CHIPS))); | ||||
|     code_length_ = std::round(static_cast<double>(fs_in_) / (GPS_L2_M_CODE_RATE_HZ / static_cast<double>(GPS_L2_M_CODE_LENGTH_CHIPS))); | ||||
|  | ||||
|     vector_length_ = code_length_; | ||||
|  | ||||
| @@ -90,10 +96,14 @@ GpsL2MPcpsAcquisition::GpsL2MPcpsAcquisition( | ||||
|         { | ||||
|             item_size_ = sizeof(gr_complex); | ||||
|         } | ||||
|     acquisition_ = pcps_make_acquisition(1, max_dwells_, | ||||
|         doppler_max_, if_, fs_in_, code_length_, code_length_, | ||||
|         bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_, | ||||
|         dump_filename_, item_size_); | ||||
|     acq_parameters.samples_per_ms = static_cast<int>(std::round(static_cast<double>(fs_in_) * 0.001)); | ||||
|     acq_parameters.samples_per_code = code_length_; | ||||
|     acq_parameters.it_size = item_size_; | ||||
|     acq_parameters.sampled_ms = 20; | ||||
|     acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4); | ||||
|     acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0); | ||||
|     acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", true); | ||||
|     acquisition_ = pcps_make_acquisition(acq_parameters); | ||||
|     DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")"; | ||||
|  | ||||
|     stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_); | ||||
|   | ||||
| @@ -46,6 +46,7 @@ GpsL5iPcpsAcquisition::GpsL5iPcpsAcquisition( | ||||
|     ConfigurationInterface* configuration, std::string role, | ||||
|     unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams) | ||||
| { | ||||
|     pcpsconf_t acq_parameters; | ||||
|     configuration_ = configuration; | ||||
|     std::string default_item_type = "gr_complex"; | ||||
|     std::string default_dump_filename = "./data/acquisition.dat"; | ||||
| @@ -56,21 +57,26 @@ GpsL5iPcpsAcquisition::GpsL5iPcpsAcquisition( | ||||
|  | ||||
|     long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000); | ||||
|     fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated); | ||||
|     acq_parameters.fs_in = fs_in_; | ||||
|     if_ = configuration_->property(role + ".if", 0); | ||||
|     acq_parameters.freq = if_; | ||||
|     dump_ = configuration_->property(role + ".dump", false); | ||||
|     acq_parameters.dump = dump_; | ||||
|     blocking_ = configuration_->property(role + ".blocking", true); | ||||
|     acq_parameters.blocking = blocking_; | ||||
|     doppler_max_ = configuration->property(role + ".doppler_max", 5000); | ||||
|     if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max; | ||||
|  | ||||
|     acq_parameters.doppler_max = doppler_max_; | ||||
|     bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false); | ||||
|     acq_parameters.bit_transition_flag = bit_transition_flag_; | ||||
|     use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true);  //will be false in future versions | ||||
|  | ||||
|     acq_parameters.use_CFAR_algorithm_flag = use_CFAR_algorithm_flag_; | ||||
|     max_dwells_ = configuration_->property(role + ".max_dwells", 1); | ||||
|  | ||||
|     acq_parameters.max_dwells = max_dwells_; | ||||
|     dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename); | ||||
|  | ||||
|     acq_parameters.dump_filename = dump_filename_; | ||||
|     //--- Find number of samples per spreading code ------------------------- | ||||
|     code_length_ = round(static_cast<double>(fs_in_) / (GPS_L5i_CODE_RATE_HZ / static_cast<double>(GPS_L5i_CODE_LENGTH_CHIPS))); | ||||
|     code_length_ = static_cast<unsigned int>(std::round(static_cast<double>(fs_in_) / (GPS_L5i_CODE_RATE_HZ / static_cast<double>(GPS_L5i_CODE_LENGTH_CHIPS)))); | ||||
|  | ||||
|     vector_length_ = code_length_; | ||||
|  | ||||
| @@ -89,10 +95,14 @@ GpsL5iPcpsAcquisition::GpsL5iPcpsAcquisition( | ||||
|         { | ||||
|             item_size_ = sizeof(gr_complex); | ||||
|         } | ||||
|     acquisition_ = pcps_make_acquisition(1, max_dwells_, | ||||
|         doppler_max_, if_, fs_in_, code_length_, code_length_, | ||||
|         bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_, | ||||
|         dump_filename_, item_size_); | ||||
|     acq_parameters.samples_per_code = code_length_; | ||||
|     acq_parameters.samples_per_ms = code_length_; | ||||
|     acq_parameters.it_size = item_size_; | ||||
|     acq_parameters.sampled_ms = 1; | ||||
|     acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4); | ||||
|     acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0); | ||||
|     acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", false); | ||||
|     acquisition_ = pcps_make_acquisition(acq_parameters); | ||||
|     DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")"; | ||||
|  | ||||
|     stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_); | ||||
|   | ||||
| @@ -45,57 +45,34 @@ | ||||
|  | ||||
| using google::LogMessage; | ||||
|  | ||||
| pcps_acquisition_sptr pcps_make_acquisition( | ||||
|     unsigned int sampled_ms, unsigned int max_dwells, | ||||
|     unsigned int doppler_max, long freq, long fs_in, | ||||
|     int samples_per_ms, int samples_per_code, | ||||
|     bool bit_transition_flag, bool use_CFAR_algorithm_flag, | ||||
|     bool dump, bool blocking, | ||||
|     std::string dump_filename, size_t it_size) | ||||
| pcps_acquisition_sptr pcps_make_acquisition(pcpsconf_t conf_) | ||||
| { | ||||
|     return pcps_acquisition_sptr( | ||||
|         new pcps_acquisition(sampled_ms, max_dwells, doppler_max, freq, fs_in, samples_per_ms, | ||||
|             samples_per_code, bit_transition_flag, use_CFAR_algorithm_flag, dump, blocking, dump_filename, it_size)); | ||||
|     return pcps_acquisition_sptr(new pcps_acquisition(conf_)); | ||||
| } | ||||
|  | ||||
|  | ||||
| pcps_acquisition::pcps_acquisition( | ||||
|     unsigned int sampled_ms, unsigned int max_dwells, | ||||
|     unsigned int doppler_max, long freq, long fs_in, | ||||
|     int samples_per_ms, int samples_per_code, | ||||
|     bool bit_transition_flag, bool use_CFAR_algorithm_flag, | ||||
|     bool dump, bool blocking, | ||||
|     std::string dump_filename, | ||||
|     size_t it_size) : gr::block("pcps_acquisition", | ||||
|                           gr::io_signature::make(1, 1, it_size * sampled_ms * samples_per_ms * (bit_transition_flag ? 2 : 1)), | ||||
|                           gr::io_signature::make(0, 0, it_size * sampled_ms * samples_per_ms * (bit_transition_flag ? 2 : 1))) | ||||
| pcps_acquisition::pcps_acquisition(pcpsconf_t conf_) : gr::block("pcps_acquisition", | ||||
|                                                            gr::io_signature::make(1, 1, conf_.it_size * conf_.sampled_ms * conf_.samples_per_ms * (conf_.bit_transition_flag ? 2 : 1)), | ||||
|                                                            gr::io_signature::make(0, 0, conf_.it_size * conf_.sampled_ms * conf_.samples_per_ms * (conf_.bit_transition_flag ? 2 : 1))) | ||||
| { | ||||
|     this->message_port_register_out(pmt::mp("events")); | ||||
|  | ||||
|     acq_parameters = conf_; | ||||
|     d_sample_counter = 0;  // SAMPLE COUNTER | ||||
|     d_active = false; | ||||
|     d_state = 0; | ||||
|     d_freq = freq; | ||||
|     d_old_freq = freq; | ||||
|     d_fs_in = fs_in; | ||||
|     d_samples_per_ms = samples_per_ms; | ||||
|     d_samples_per_code = samples_per_code; | ||||
|     d_sampled_ms = sampled_ms; | ||||
|     d_max_dwells = max_dwells; | ||||
|     d_old_freq = conf_.freq; | ||||
|     d_well_count = 0; | ||||
|     d_doppler_max = doppler_max; | ||||
|     d_fft_size = d_sampled_ms * d_samples_per_ms; | ||||
|     d_fft_size = acq_parameters.sampled_ms * acq_parameters.samples_per_ms; | ||||
|     d_mag = 0; | ||||
|     d_input_power = 0.0; | ||||
|     d_num_doppler_bins = 0; | ||||
|     d_bit_transition_flag = bit_transition_flag; | ||||
|     d_use_CFAR_algorithm_flag = use_CFAR_algorithm_flag; | ||||
|     d_threshold = 0.0; | ||||
|     d_doppler_step = 0; | ||||
|     d_code_phase = 0; | ||||
|     d_doppler_center_step_two = 0.0; | ||||
|     d_test_statistics = 0.0; | ||||
|     d_channel = 0; | ||||
|     if (it_size == sizeof(gr_complex)) | ||||
|     if (conf_.it_size == sizeof(gr_complex)) | ||||
|         { | ||||
|             d_cshort = false; | ||||
|         } | ||||
| @@ -114,10 +91,10 @@ pcps_acquisition::pcps_acquisition( | ||||
|     // | ||||
|     // We can avoid this by doing linear correlation, effectively doubling the | ||||
|     // size of the input buffer and padding the code with zeros. | ||||
|     if (d_bit_transition_flag) | ||||
|     if (acq_parameters.bit_transition_flag) | ||||
|         { | ||||
|             d_fft_size *= 2; | ||||
|             d_max_dwells = 1;  //Activation of d_bit_transition_flag invalidates the value of d_max_dwells | ||||
|             acq_parameters.max_dwells = 1;  //Activation of acq_parameters.bit_transition_flag invalidates the value of acq_parameters.max_dwells | ||||
|         } | ||||
|  | ||||
|     d_fft_codes = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment())); | ||||
| @@ -129,12 +106,9 @@ pcps_acquisition::pcps_acquisition( | ||||
|     // Inverse FFT | ||||
|     d_ifft = new gr::fft::fft_complex(d_fft_size, false); | ||||
|  | ||||
|     // For dumping samples into a file | ||||
|     d_dump = dump; | ||||
|     d_dump_filename = dump_filename; | ||||
|     d_gnss_synchro = 0; | ||||
|     d_grid_doppler_wipeoffs = 0; | ||||
|     d_blocking = blocking; | ||||
|     d_grid_doppler_wipeoffs = nullptr; | ||||
|     d_grid_doppler_wipeoffs_step_two = nullptr; | ||||
|     d_worker_active = false; | ||||
|     d_data_buffer = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment())); | ||||
|     if (d_cshort) | ||||
| @@ -146,6 +120,7 @@ pcps_acquisition::pcps_acquisition( | ||||
|             d_data_buffer_sc = nullptr; | ||||
|         } | ||||
|     grid_ = arma::fmat(); | ||||
|     d_step_two = false; | ||||
| } | ||||
|  | ||||
|  | ||||
| @@ -159,6 +134,14 @@ pcps_acquisition::~pcps_acquisition() | ||||
|                 } | ||||
|             delete[] d_grid_doppler_wipeoffs; | ||||
|         } | ||||
|     if (acq_parameters.make_2_steps) | ||||
|         { | ||||
|             for (unsigned int i = 0; i < acq_parameters.num_doppler_bins_step2; i++) | ||||
|                 { | ||||
|                     volk_gnsssdr_free(d_grid_doppler_wipeoffs_step_two[i]); | ||||
|                 } | ||||
|             delete[] d_grid_doppler_wipeoffs_step_two; | ||||
|         } | ||||
|     volk_gnsssdr_free(d_fft_codes); | ||||
|     volk_gnsssdr_free(d_magnitude); | ||||
|     delete d_ifft; | ||||
| @@ -174,7 +157,7 @@ pcps_acquisition::~pcps_acquisition() | ||||
| void pcps_acquisition::set_local_code(std::complex<float>* code) | ||||
| { | ||||
|     // reset the intermediate frequency | ||||
|     d_freq = d_old_freq; | ||||
|     acq_parameters.freq = d_old_freq; | ||||
|     // This will check if it's fdma, if yes will update the intermediate frequency and the doppler grid | ||||
|     if (is_fdma()) | ||||
|         { | ||||
| @@ -185,7 +168,7 @@ void pcps_acquisition::set_local_code(std::complex<float>* code) | ||||
|     // [ 0 0 0 ... 0 c_0 c_1 ... c_L] | ||||
|     // where c_i is the local code and there are L zeros and L chips | ||||
|     gr::thread::scoped_lock lock(d_setlock);  // require mutex with work function called by the scheduler | ||||
|     if (d_bit_transition_flag) | ||||
|     if (acq_parameters.bit_transition_flag) | ||||
|         { | ||||
|             int offset = d_fft_size / 2; | ||||
|             std::fill_n(d_fft_if->get_inbuf(), offset, gr_complex(0.0, 0.0)); | ||||
| @@ -206,14 +189,14 @@ bool pcps_acquisition::is_fdma() | ||||
|     // Dealing with FDMA system | ||||
|     if (strcmp(d_gnss_synchro->Signal, "1G") == 0) | ||||
|         { | ||||
|             d_freq += DFRQ1_GLO * GLONASS_PRN.at(d_gnss_synchro->PRN); | ||||
|             LOG(INFO) << "Trying to acquire SV PRN " << d_gnss_synchro->PRN << " with freq " << d_freq << " in Glonass Channel " << GLONASS_PRN.at(d_gnss_synchro->PRN) << std::endl; | ||||
|             acq_parameters.freq += DFRQ1_GLO * GLONASS_PRN.at(d_gnss_synchro->PRN); | ||||
|             LOG(INFO) << "Trying to acquire SV PRN " << d_gnss_synchro->PRN << " with freq " << acq_parameters.freq << " in Glonass Channel " << GLONASS_PRN.at(d_gnss_synchro->PRN) << std::endl; | ||||
|             return true; | ||||
|         } | ||||
|     else if (strcmp(d_gnss_synchro->Signal, "2G") == 0) | ||||
|         { | ||||
|             d_freq += DFRQ2_GLO * GLONASS_PRN.at(d_gnss_synchro->PRN); | ||||
|             LOG(INFO) << "Trying to acquire SV PRN " << d_gnss_synchro->PRN << " with freq " << d_freq << " in Glonass Channel " << GLONASS_PRN.at(d_gnss_synchro->PRN) << std::endl; | ||||
|             acq_parameters.freq += DFRQ2_GLO * GLONASS_PRN.at(d_gnss_synchro->PRN); | ||||
|             LOG(INFO) << "Trying to acquire SV PRN " << d_gnss_synchro->PRN << " with freq " << acq_parameters.freq << " in Glonass Channel " << GLONASS_PRN.at(d_gnss_synchro->PRN) << std::endl; | ||||
|             return true; | ||||
|         } | ||||
|     else | ||||
| @@ -225,7 +208,7 @@ bool pcps_acquisition::is_fdma() | ||||
|  | ||||
| void pcps_acquisition::update_local_carrier(gr_complex* carrier_vector, int correlator_length_samples, float freq) | ||||
| { | ||||
|     float phase_step_rad = GPS_TWO_PI * freq / static_cast<float>(d_fs_in); | ||||
|     float phase_step_rad = GPS_TWO_PI * freq / static_cast<float>(acq_parameters.fs_in); | ||||
|     float _phase[1]; | ||||
|     _phase[0] = 0; | ||||
|     volk_gnsssdr_s32f_sincos_32fc(carrier_vector, -phase_step_rad, _phase, correlator_length_samples); | ||||
| @@ -245,22 +228,29 @@ void pcps_acquisition::init() | ||||
|     d_mag = 0.0; | ||||
|     d_input_power = 0.0; | ||||
|  | ||||
|     d_num_doppler_bins = static_cast<unsigned int>(std::ceil(static_cast<double>(static_cast<int>(d_doppler_max) - static_cast<int>(-d_doppler_max)) / static_cast<double>(d_doppler_step))); | ||||
|     d_num_doppler_bins = static_cast<unsigned int>(std::ceil(static_cast<double>(static_cast<int>(acq_parameters.doppler_max) - static_cast<int>(-acq_parameters.doppler_max)) / static_cast<double>(d_doppler_step))); | ||||
|  | ||||
|     // Create the carrier Doppler wipeoff signals | ||||
|     d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins]; | ||||
|  | ||||
|     if (acq_parameters.make_2_steps) | ||||
|         { | ||||
|             d_grid_doppler_wipeoffs_step_two = new gr_complex*[acq_parameters.num_doppler_bins_step2]; | ||||
|             for (unsigned int doppler_index = 0; doppler_index < acq_parameters.num_doppler_bins_step2; doppler_index++) | ||||
|                 { | ||||
|                     d_grid_doppler_wipeoffs_step_two[doppler_index] = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment())); | ||||
|                 } | ||||
|         } | ||||
|     for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++) | ||||
|         { | ||||
|             d_grid_doppler_wipeoffs[doppler_index] = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment())); | ||||
|             int doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index; | ||||
|             update_local_carrier(d_grid_doppler_wipeoffs[doppler_index], d_fft_size, d_freq + doppler); | ||||
|             int doppler = -static_cast<int>(acq_parameters.doppler_max) + d_doppler_step * doppler_index; | ||||
|             update_local_carrier(d_grid_doppler_wipeoffs[doppler_index], d_fft_size, acq_parameters.freq + doppler); | ||||
|         } | ||||
|     d_worker_active = false; | ||||
|  | ||||
|     if (d_dump) | ||||
|     if (acq_parameters.dump) | ||||
|         { | ||||
|             unsigned int effective_fft_size = (d_bit_transition_flag ? (d_fft_size / 2) : d_fft_size); | ||||
|             unsigned int effective_fft_size = (acq_parameters.bit_transition_flag ? (d_fft_size / 2) : d_fft_size); | ||||
|             grid_ = arma::fmat(effective_fft_size, d_num_doppler_bins, arma::fill::zeros); | ||||
|         } | ||||
| } | ||||
| @@ -270,12 +260,19 @@ void pcps_acquisition::update_grid_doppler_wipeoffs() | ||||
| { | ||||
|     for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++) | ||||
|         { | ||||
|             d_grid_doppler_wipeoffs[doppler_index] = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment())); | ||||
|             int doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index; | ||||
|             update_local_carrier(d_grid_doppler_wipeoffs[doppler_index], d_fft_size, d_freq + doppler); | ||||
|             int doppler = -static_cast<int>(acq_parameters.doppler_max) + d_doppler_step * doppler_index; | ||||
|             update_local_carrier(d_grid_doppler_wipeoffs[doppler_index], d_fft_size, acq_parameters.freq + doppler); | ||||
|         } | ||||
| } | ||||
|  | ||||
| void pcps_acquisition::update_grid_doppler_wipeoffs_step2() | ||||
| { | ||||
|     for (unsigned int doppler_index = 0; doppler_index < acq_parameters.num_doppler_bins_step2; doppler_index++) | ||||
|         { | ||||
|             float doppler = (static_cast<float>(doppler_index) - static_cast<float>(acq_parameters.num_doppler_bins_step2) / 2.0) * acq_parameters.doppler_step2; | ||||
|             update_local_carrier(d_grid_doppler_wipeoffs_step_two[doppler_index], d_fft_size, d_doppler_center_step_two + doppler); | ||||
|         } | ||||
| } | ||||
|  | ||||
| void pcps_acquisition::set_state(int state) | ||||
| { | ||||
| @@ -354,10 +351,17 @@ int pcps_acquisition::general_work(int noutput_items __attribute__((unused)), | ||||
|      */ | ||||
|  | ||||
|     gr::thread::scoped_lock lk(d_setlock); | ||||
|     if (!d_active || d_worker_active) | ||||
|     if (!d_active or d_worker_active) | ||||
|         { | ||||
|             d_sample_counter += d_fft_size * ninput_items[0]; | ||||
|             consume_each(ninput_items[0]); | ||||
|             if (d_step_two) | ||||
|                 { | ||||
|                     d_doppler_center_step_two = static_cast<float>(d_gnss_synchro->Acq_doppler_hz); | ||||
|                     update_grid_doppler_wipeoffs_step2(); | ||||
|                     d_state = 0; | ||||
|                     d_active = true; | ||||
|                 } | ||||
|             return 0; | ||||
|         } | ||||
|  | ||||
| @@ -390,7 +394,7 @@ int pcps_acquisition::general_work(int noutput_items __attribute__((unused)), | ||||
|                     { | ||||
|                         memcpy(d_data_buffer, input_items[0], d_fft_size * sizeof(gr_complex)); | ||||
|                     } | ||||
|                 if (d_blocking) | ||||
|                 if (acq_parameters.blocking) | ||||
|                     { | ||||
|                         lk.unlock(); | ||||
|                         acquisition_core(d_sample_counter); | ||||
| @@ -414,11 +418,10 @@ void pcps_acquisition::acquisition_core(unsigned long int samp_count) | ||||
|     gr::thread::scoped_lock lk(d_setlock); | ||||
|  | ||||
|     // initialize acquisition algorithm | ||||
|     int doppler; | ||||
|     uint32_t indext = 0; | ||||
|     float magt = 0.0; | ||||
|     const gr_complex* in = d_data_buffer;  //Get the input samples pointer | ||||
|     int effective_fft_size = (d_bit_transition_flag ? d_fft_size / 2 : d_fft_size); | ||||
|     int effective_fft_size = (acq_parameters.bit_transition_flag ? d_fft_size / 2 : d_fft_size); | ||||
|     if (d_cshort) | ||||
|         { | ||||
|             volk_gnsssdr_16ic_convert_32fc(d_data_buffer, d_data_buffer_sc, d_fft_size); | ||||
| @@ -432,12 +435,12 @@ void pcps_acquisition::acquisition_core(unsigned long int samp_count) | ||||
|     DLOG(INFO) << "Channel: " << d_channel | ||||
|                << " , doing acquisition of satellite: " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN | ||||
|                << " ,sample stamp: " << samp_count << ", threshold: " | ||||
|                << d_threshold << ", doppler_max: " << d_doppler_max | ||||
|                << d_threshold << ", doppler_max: " << acq_parameters.doppler_max | ||||
|                << ", doppler_step: " << d_doppler_step | ||||
|                << ", use_CFAR_algorithm_flag: " << (d_use_CFAR_algorithm_flag ? "true" : "false"); | ||||
|                << ", use_CFAR_algorithm_flag: " << (acq_parameters.use_CFAR_algorithm_flag ? "true" : "false"); | ||||
|  | ||||
|     lk.unlock(); | ||||
|     if (d_use_CFAR_algorithm_flag) | ||||
|     if (acq_parameters.use_CFAR_algorithm_flag) | ||||
|         { | ||||
|             // 1- (optional) Compute the input signal power estimation | ||||
|             volk_32fc_magnitude_squared_32f(d_magnitude, in, d_fft_size); | ||||
| @@ -445,142 +448,241 @@ void pcps_acquisition::acquisition_core(unsigned long int samp_count) | ||||
|             d_input_power /= static_cast<float>(d_fft_size); | ||||
|         } | ||||
|     // 2- Doppler frequency search loop | ||||
|     for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++) | ||||
|     if (!d_step_two) | ||||
|         { | ||||
|             // doppler search steps | ||||
|             doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index; | ||||
|  | ||||
|             volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs[doppler_index], d_fft_size); | ||||
|  | ||||
|             // 3- Perform the FFT-based convolution  (parallel time search) | ||||
|             // Compute the FFT of the carrier wiped--off incoming signal | ||||
|             d_fft_if->execute(); | ||||
|  | ||||
|             // Multiply carrier wiped--off, Fourier transformed incoming signal | ||||
|             // with the local FFT'd code reference using SIMD operations with VOLK library | ||||
|             volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_codes, d_fft_size); | ||||
|  | ||||
|             // compute the inverse FFT | ||||
|             d_ifft->execute(); | ||||
|  | ||||
|             // Search maximum | ||||
|             size_t offset = (d_bit_transition_flag ? effective_fft_size : 0); | ||||
|             volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf() + offset, effective_fft_size); | ||||
|             volk_gnsssdr_32f_index_max_32u(&indext, d_magnitude, effective_fft_size); | ||||
|             magt = d_magnitude[indext]; | ||||
|  | ||||
|             if (d_use_CFAR_algorithm_flag) | ||||
|             for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++) | ||||
|                 { | ||||
|                     // Normalize the maximum value to correct the scale factor introduced by FFTW | ||||
|                     magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor); | ||||
|                 } | ||||
|             // 4- record the maximum peak and the associated synchronization parameters | ||||
|             if (d_mag < magt) | ||||
|                 { | ||||
|                     d_mag = magt; | ||||
|                     // doppler search steps | ||||
|                     int doppler = -static_cast<int>(acq_parameters.doppler_max) + d_doppler_step * doppler_index; | ||||
|  | ||||
|                     if (!d_use_CFAR_algorithm_flag) | ||||
|                     volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs[doppler_index], d_fft_size); | ||||
|  | ||||
|                     // 3- Perform the FFT-based convolution  (parallel time search) | ||||
|                     // Compute the FFT of the carrier wiped--off incoming signal | ||||
|                     d_fft_if->execute(); | ||||
|  | ||||
|                     // Multiply carrier wiped--off, Fourier transformed incoming signal | ||||
|                     // with the local FFT'd code reference using SIMD operations with VOLK library | ||||
|                     volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_codes, d_fft_size); | ||||
|  | ||||
|                     // compute the inverse FFT | ||||
|                     d_ifft->execute(); | ||||
|  | ||||
|                     // Search maximum | ||||
|                     size_t offset = (acq_parameters.bit_transition_flag ? effective_fft_size : 0); | ||||
|                     volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf() + offset, effective_fft_size); | ||||
|                     volk_gnsssdr_32f_index_max_32u(&indext, d_magnitude, effective_fft_size); | ||||
|                     magt = d_magnitude[indext]; | ||||
|  | ||||
|                     if (acq_parameters.use_CFAR_algorithm_flag) | ||||
|                         { | ||||
|                             // Search grid noise floor approximation for this doppler line | ||||
|                             volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size); | ||||
|                             d_input_power = (d_input_power - d_mag) / (effective_fft_size - 1); | ||||
|                             // Normalize the maximum value to correct the scale factor introduced by FFTW | ||||
|                             magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor); | ||||
|                         } | ||||
|  | ||||
|                     // In case that d_bit_transition_flag = true, we compare the potentially | ||||
|                     // new maximum test statistics (d_mag/d_input_power) with the value in | ||||
|                     // d_test_statistics. When the second dwell is being processed, the value | ||||
|                     // of d_mag/d_input_power could be lower than d_test_statistics (i.e, | ||||
|                     // the maximum test statistics in the previous dwell is greater than | ||||
|                     // current d_mag/d_input_power). Note that d_test_statistics is not | ||||
|                     // restarted between consecutive dwells in multidwell operation. | ||||
|  | ||||
|                     if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag) | ||||
|                     // 4- record the maximum peak and the associated synchronization parameters | ||||
|                     if (d_mag < magt) | ||||
|                         { | ||||
|                             d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code); | ||||
|                             d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler); | ||||
|                             d_gnss_synchro->Acq_samplestamp_samples = samp_count; | ||||
|                             d_mag = magt; | ||||
|  | ||||
|                             // 5- Compute the test statistics and compare to the threshold | ||||
|                             //d_test_statistics = 2 * d_fft_size * d_mag / d_input_power; | ||||
|                             d_test_statistics = d_mag / d_input_power; | ||||
|                         } | ||||
|                 } | ||||
|             // Record results to file if required | ||||
|             if (d_dump) | ||||
|                 { | ||||
|                     memcpy(grid_.colptr(doppler_index), d_magnitude, sizeof(float) * effective_fft_size); | ||||
|                     if (doppler_index == (d_num_doppler_bins - 1)) | ||||
|                         { | ||||
|                             std::string filename = d_dump_filename; | ||||
|                             filename.append("_"); | ||||
|                             filename.append(1, d_gnss_synchro->System); | ||||
|                             filename.append("_"); | ||||
|                             filename.append(1, d_gnss_synchro->Signal[0]); | ||||
|                             filename.append(1, d_gnss_synchro->Signal[1]); | ||||
|                             filename.append("_sat_"); | ||||
|                             filename.append(std::to_string(d_gnss_synchro->PRN)); | ||||
|                             filename.append(".mat"); | ||||
|                             mat_t* matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73); | ||||
|                             if (matfp == NULL) | ||||
|                             if (!acq_parameters.use_CFAR_algorithm_flag) | ||||
|                                 { | ||||
|                                     std::cout << "Unable to create or open Acquisition dump file" << std::endl; | ||||
|                                     d_dump = false; | ||||
|                                     // Search grid noise floor approximation for this doppler line | ||||
|                                     volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size); | ||||
|                                     d_input_power = (d_input_power - d_mag) / (effective_fft_size - 1); | ||||
|                                 } | ||||
|                             else | ||||
|  | ||||
|                             // In case that acq_parameters.bit_transition_flag = true, we compare the potentially | ||||
|                             // new maximum test statistics (d_mag/d_input_power) with the value in | ||||
|                             // d_test_statistics. When the second dwell is being processed, the value | ||||
|                             // of d_mag/d_input_power could be lower than d_test_statistics (i.e, | ||||
|                             // the maximum test statistics in the previous dwell is greater than | ||||
|                             // current d_mag/d_input_power). Note that d_test_statistics is not | ||||
|                             // restarted between consecutive dwells in multidwell operation. | ||||
|  | ||||
|                             if (d_test_statistics < (d_mag / d_input_power) or !acq_parameters.bit_transition_flag) | ||||
|                                 { | ||||
|                                     size_t dims[2] = {static_cast<size_t>(effective_fft_size), static_cast<size_t>(d_num_doppler_bins)}; | ||||
|                                     matvar_t* matvar = Mat_VarCreate("grid", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, grid_.memptr(), 0); | ||||
|                                     Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|                                     Mat_VarFree(matvar); | ||||
|                                     d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % acq_parameters.samples_per_code); | ||||
|                                     d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler); | ||||
|                                     d_gnss_synchro->Acq_samplestamp_samples = samp_count; | ||||
|  | ||||
|                                     dims[0] = static_cast<size_t>(1); | ||||
|                                     dims[1] = static_cast<size_t>(1); | ||||
|                                     matvar = Mat_VarCreate("doppler_max", MAT_C_SINGLE, MAT_T_UINT32, 1, dims, &d_doppler_max, 0); | ||||
|                                     Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|                                     Mat_VarFree(matvar); | ||||
|                                     // 5- Compute the test statistics and compare to the threshold | ||||
|                                     //d_test_statistics = 2 * d_fft_size * d_mag / d_input_power; | ||||
|                                     d_test_statistics = d_mag / d_input_power; | ||||
|                                 } | ||||
|                         } | ||||
|                     // Record results to file if required | ||||
|                     if (acq_parameters.dump) | ||||
|                         { | ||||
|                             memcpy(grid_.colptr(doppler_index), d_magnitude, sizeof(float) * effective_fft_size); | ||||
|                             if (doppler_index == (d_num_doppler_bins - 1)) | ||||
|                                 { | ||||
|                                     std::string filename = acq_parameters.dump_filename; | ||||
|                                     filename.append("_"); | ||||
|                                     filename.append(1, d_gnss_synchro->System); | ||||
|                                     filename.append("_"); | ||||
|                                     filename.append(1, d_gnss_synchro->Signal[0]); | ||||
|                                     filename.append(1, d_gnss_synchro->Signal[1]); | ||||
|                                     filename.append("_sat_"); | ||||
|                                     filename.append(std::to_string(d_gnss_synchro->PRN)); | ||||
|                                     filename.append(".mat"); | ||||
|                                     mat_t* matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73); | ||||
|                                     if (matfp == NULL) | ||||
|                                         { | ||||
|                                             std::cout << "Unable to create or open Acquisition dump file" << std::endl; | ||||
|                                             acq_parameters.dump = false; | ||||
|                                         } | ||||
|                                     else | ||||
|                                         { | ||||
|                                             size_t dims[2] = {static_cast<size_t>(effective_fft_size), static_cast<size_t>(d_num_doppler_bins)}; | ||||
|                                             matvar_t* matvar = Mat_VarCreate("grid", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, grid_.memptr(), 0); | ||||
|                                             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|                                             Mat_VarFree(matvar); | ||||
|  | ||||
|                                     matvar = Mat_VarCreate("doppler_step", MAT_C_SINGLE, MAT_T_UINT32, 1, dims, &d_doppler_step, 0); | ||||
|                                     Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|                                     Mat_VarFree(matvar); | ||||
|                                             dims[0] = static_cast<size_t>(1); | ||||
|                                             dims[1] = static_cast<size_t>(1); | ||||
|                                             matvar = Mat_VarCreate("doppler_max", MAT_C_SINGLE, MAT_T_UINT32, 1, dims, &acq_parameters.doppler_max, 0); | ||||
|                                             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|                                             Mat_VarFree(matvar); | ||||
|  | ||||
|                                     Mat_Close(matfp); | ||||
|                                             matvar = Mat_VarCreate("doppler_step", MAT_C_SINGLE, MAT_T_UINT32, 1, dims, &d_doppler_step, 0); | ||||
|                                             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|                                             Mat_VarFree(matvar); | ||||
|  | ||||
|                                             Mat_Close(matfp); | ||||
|                                         } | ||||
|                                 } | ||||
|                         } | ||||
|                 } | ||||
|         } | ||||
|     else | ||||
|         { | ||||
|             for (unsigned int doppler_index = 0; doppler_index < acq_parameters.num_doppler_bins_step2; doppler_index++) | ||||
|                 { | ||||
|                     // doppler search steps | ||||
|                     float doppler = d_doppler_center_step_two + (static_cast<float>(doppler_index) - static_cast<float>(acq_parameters.num_doppler_bins_step2) / 2.0) * acq_parameters.doppler_step2; | ||||
|  | ||||
|                     volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs_step_two[doppler_index], d_fft_size); | ||||
|  | ||||
|                     // 3- Perform the FFT-based convolution  (parallel time search) | ||||
|                     // Compute the FFT of the carrier wiped--off incoming signal | ||||
|                     d_fft_if->execute(); | ||||
|  | ||||
|                     // Multiply carrier wiped--off, Fourier transformed incoming signal | ||||
|                     // with the local FFT'd code reference using SIMD operations with VOLK library | ||||
|                     volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_codes, d_fft_size); | ||||
|  | ||||
|                     // compute the inverse FFT | ||||
|                     d_ifft->execute(); | ||||
|  | ||||
|                     // Search maximum | ||||
|                     size_t offset = (acq_parameters.bit_transition_flag ? effective_fft_size : 0); | ||||
|                     volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf() + offset, effective_fft_size); | ||||
|                     volk_gnsssdr_32f_index_max_32u(&indext, d_magnitude, effective_fft_size); | ||||
|                     magt = d_magnitude[indext]; | ||||
|  | ||||
|                     if (acq_parameters.use_CFAR_algorithm_flag) | ||||
|                         { | ||||
|                             // Normalize the maximum value to correct the scale factor introduced by FFTW | ||||
|                             magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor); | ||||
|                         } | ||||
|                     // 4- record the maximum peak and the associated synchronization parameters | ||||
|                     if (d_mag < magt) | ||||
|                         { | ||||
|                             d_mag = magt; | ||||
|  | ||||
|                             if (!acq_parameters.use_CFAR_algorithm_flag) | ||||
|                                 { | ||||
|                                     // Search grid noise floor approximation for this doppler line | ||||
|                                     volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size); | ||||
|                                     d_input_power = (d_input_power - d_mag) / (effective_fft_size - 1); | ||||
|                                 } | ||||
|  | ||||
|                             // In case that acq_parameters.bit_transition_flag = true, we compare the potentially | ||||
|                             // new maximum test statistics (d_mag/d_input_power) with the value in | ||||
|                             // d_test_statistics. When the second dwell is being processed, the value | ||||
|                             // of d_mag/d_input_power could be lower than d_test_statistics (i.e, | ||||
|                             // the maximum test statistics in the previous dwell is greater than | ||||
|                             // current d_mag/d_input_power). Note that d_test_statistics is not | ||||
|                             // restarted between consecutive dwells in multidwell operation. | ||||
|  | ||||
|                             if (d_test_statistics < (d_mag / d_input_power) or !acq_parameters.bit_transition_flag) | ||||
|                                 { | ||||
|                                     d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % acq_parameters.samples_per_code); | ||||
|                                     d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler); | ||||
|                                     d_gnss_synchro->Acq_samplestamp_samples = samp_count; | ||||
|  | ||||
|                                     // 5- Compute the test statistics and compare to the threshold | ||||
|                                     //d_test_statistics = 2 * d_fft_size * d_mag / d_input_power; | ||||
|                                     d_test_statistics = d_mag / d_input_power; | ||||
|                                 } | ||||
|                         } | ||||
|                 } | ||||
|         } | ||||
|     lk.lock(); | ||||
|     if (!d_bit_transition_flag) | ||||
|     if (!acq_parameters.bit_transition_flag) | ||||
|         { | ||||
|             if (d_test_statistics > d_threshold) | ||||
|                 { | ||||
|                     d_state = 0;  // Positive acquisition | ||||
|                     d_active = false; | ||||
|                     send_positive_acquisition(); | ||||
|                     if (acq_parameters.make_2_steps) | ||||
|                         { | ||||
|                             if (d_step_two) | ||||
|                                 { | ||||
|                                     send_positive_acquisition(); | ||||
|                                     d_step_two = false; | ||||
|                                     d_state = 0;  // Positive acquisition | ||||
|                                 } | ||||
|                             else | ||||
|                                 { | ||||
|                                     d_step_two = true;  // Clear input buffer and make small grid acquisition | ||||
|                                     d_state = 0; | ||||
|                                 } | ||||
|                         } | ||||
|                     else | ||||
|                         { | ||||
|                             send_positive_acquisition(); | ||||
|                             d_state = 0;  // Positive acquisition | ||||
|                         } | ||||
|                 } | ||||
|             else if (d_well_count == d_max_dwells) | ||||
|             else if (d_well_count == acq_parameters.max_dwells) | ||||
|                 { | ||||
|                     d_state = 0; | ||||
|                     d_active = false; | ||||
|                     d_step_two = false; | ||||
|                     send_negative_acquisition(); | ||||
|                 } | ||||
|         } | ||||
|     else | ||||
|         { | ||||
|             if (d_well_count == d_max_dwells)  // d_max_dwells = 2 | ||||
|             d_active = false; | ||||
|             if (d_test_statistics > d_threshold) | ||||
|                 { | ||||
|                     if (d_test_statistics > d_threshold) | ||||
|                     if (acq_parameters.make_2_steps) | ||||
|                         { | ||||
|                             d_state = 0;  // Positive acquisition | ||||
|                             d_active = false; | ||||
|                             send_positive_acquisition(); | ||||
|                             if (d_step_two) | ||||
|                                 { | ||||
|                                     send_positive_acquisition(); | ||||
|                                     d_step_two = false; | ||||
|                                     d_state = 0;  // Positive acquisition | ||||
|                                 } | ||||
|                             else | ||||
|                                 { | ||||
|                                     d_step_two = true;  // Clear input buffer and make small grid acquisition | ||||
|                                     d_state = 0; | ||||
|                                 } | ||||
|                         } | ||||
|                     else | ||||
|                         { | ||||
|                             d_state = 0;  // Negative acquisition | ||||
|                             d_active = false; | ||||
|                             send_negative_acquisition(); | ||||
|                             send_positive_acquisition(); | ||||
|                             d_state = 0;  // Positive acquisition | ||||
|                         } | ||||
|                 } | ||||
|             else | ||||
|                 { | ||||
|                     d_state = 0;  // Negative acquisition | ||||
|                     d_step_two = false; | ||||
|                     send_negative_acquisition(); | ||||
|                 } | ||||
|         } | ||||
|     d_worker_active = false; | ||||
| } | ||||
|   | ||||
| @@ -59,18 +59,33 @@ | ||||
| #include <volk_gnsssdr/volk_gnsssdr.h> | ||||
| #include <string> | ||||
|  | ||||
| typedef struct | ||||
| { | ||||
|     /* pcps acquisition configuration */ | ||||
|     unsigned int sampled_ms; | ||||
|     unsigned int max_dwells; | ||||
|     unsigned int doppler_max; | ||||
|     unsigned int num_doppler_bins_step2; | ||||
|     float doppler_step2; | ||||
|     long freq; | ||||
|     long fs_in; | ||||
|     int samples_per_ms; | ||||
|     int samples_per_code; | ||||
|     bool bit_transition_flag; | ||||
|     bool use_CFAR_algorithm_flag; | ||||
|     bool dump; | ||||
|     bool blocking; | ||||
|     bool make_2_steps; | ||||
|     std::string dump_filename; | ||||
|     size_t it_size; | ||||
| } pcpsconf_t; | ||||
|  | ||||
| class pcps_acquisition; | ||||
|  | ||||
| typedef boost::shared_ptr<pcps_acquisition> pcps_acquisition_sptr; | ||||
|  | ||||
| pcps_acquisition_sptr | ||||
| pcps_make_acquisition(unsigned int sampled_ms, unsigned int max_dwells, | ||||
|     unsigned int doppler_max, long freq, long fs_in, | ||||
|     int samples_per_ms, int samples_per_code, | ||||
|     bool bit_transition_flag, bool use_CFAR_algorithm_flag, | ||||
|     bool dump, bool blocking, | ||||
|     std::string dump_filename, size_t it_size); | ||||
| pcps_make_acquisition(pcpsconf_t conf_); | ||||
|  | ||||
| /*! | ||||
|  * \brief This class implements a Parallel Code Phase Search Acquisition. | ||||
| @@ -82,22 +97,13 @@ class pcps_acquisition : public gr::block | ||||
| { | ||||
| private: | ||||
|     friend pcps_acquisition_sptr | ||||
|     pcps_make_acquisition(unsigned int sampled_ms, unsigned int max_dwells, | ||||
|         unsigned int doppler_max, long freq, long fs_in, | ||||
|         int samples_per_ms, int samples_per_code, | ||||
|         bool bit_transition_flag, bool use_CFAR_algorithm_flag, | ||||
|         bool dump, bool blocking, | ||||
|         std::string dump_filename, size_t it_size); | ||||
|     pcps_make_acquisition(pcpsconf_t conf_); | ||||
|  | ||||
|     pcps_acquisition(unsigned int sampled_ms, unsigned int max_dwells, | ||||
|         unsigned int doppler_max, long freq, long fs_in, | ||||
|         int samples_per_ms, int samples_per_code, | ||||
|         bool bit_transition_flag, bool use_CFAR_algorithm_flag, | ||||
|         bool dump, bool blocking, | ||||
|         std::string dump_filename, size_t it_size); | ||||
|     pcps_acquisition(pcpsconf_t conf_); | ||||
|  | ||||
|     void update_local_carrier(gr_complex* carrier_vector, int correlator_length_samples, float freq); | ||||
|     void update_grid_doppler_wipeoffs(); | ||||
|     void update_grid_doppler_wipeoffs_step2(); | ||||
|     bool is_fdma(); | ||||
|  | ||||
|     void acquisition_core(unsigned long int samp_count); | ||||
| @@ -106,42 +112,33 @@ private: | ||||
|  | ||||
|     void send_positive_acquisition(); | ||||
|  | ||||
|     bool d_bit_transition_flag; | ||||
|     bool d_use_CFAR_algorithm_flag; | ||||
|     pcpsconf_t acq_parameters; | ||||
|     bool d_active; | ||||
|     bool d_dump; | ||||
|     bool d_worker_active; | ||||
|     bool d_blocking; | ||||
|     bool d_cshort; | ||||
|     bool d_step_two; | ||||
|     float d_threshold; | ||||
|     float d_mag; | ||||
|     float d_input_power; | ||||
|     float d_test_statistics; | ||||
|     float* d_magnitude; | ||||
|     long d_fs_in; | ||||
|     long d_freq; | ||||
|     long d_old_freq; | ||||
|     int d_samples_per_ms; | ||||
|     int d_samples_per_code; | ||||
|     int d_state; | ||||
|     unsigned int d_channel; | ||||
|     unsigned int d_doppler_max; | ||||
|     unsigned int d_doppler_step; | ||||
|     unsigned int d_sampled_ms; | ||||
|     unsigned int d_max_dwells; | ||||
|     float d_doppler_center_step_two; | ||||
|     unsigned int d_well_count; | ||||
|     unsigned int d_fft_size; | ||||
|     unsigned int d_num_doppler_bins; | ||||
|     unsigned int d_code_phase; | ||||
|     unsigned long int d_sample_counter; | ||||
|     gr_complex** d_grid_doppler_wipeoffs; | ||||
|     gr_complex** d_grid_doppler_wipeoffs_step_two; | ||||
|     gr_complex* d_fft_codes; | ||||
|     gr_complex* d_data_buffer; | ||||
|     lv_16sc_t* d_data_buffer_sc; | ||||
|     gr::fft::fft_complex* d_fft_if; | ||||
|     gr::fft::fft_complex* d_ifft; | ||||
|     Gnss_Synchro* d_gnss_synchro; | ||||
|     std::string d_dump_filename; | ||||
|     arma::fmat grid_; | ||||
|  | ||||
| public: | ||||
| @@ -223,7 +220,7 @@ public: | ||||
|     inline void set_doppler_max(unsigned int doppler_max) | ||||
|     { | ||||
|         gr::thread::scoped_lock lock(d_setlock);  // require mutex with work function called by the scheduler | ||||
|         d_doppler_max = doppler_max; | ||||
|         acq_parameters.doppler_max = doppler_max; | ||||
|     } | ||||
|  | ||||
|     /*! | ||||
|   | ||||
| @@ -29,6 +29,6 @@ if(${PACKAGE_FIND_VERSION_MAJOR} EQUAL ${MAJOR_VERSION}) | ||||
|     if(NOT ${PACKAGE_FIND_VERSION_PATCH} GREATER ${MAINT_VERSION}) | ||||
|       set(PACKAGE_VERSION_EXACT 1)    # exact match for API version | ||||
|       set(PACKAGE_VERSION_COMPATIBLE 1)  # compat for minor/patch version | ||||
|     endif(NOT ${PACKAGE_FIND_VERSION_PATCH} GREATER ${MINOR_VERSION}) | ||||
|   endif(${PACKAGE_FIND_VERSION_MINOR} EQUAL ${API_COMPAT}) | ||||
|     endif(NOT ${PACKAGE_FIND_VERSION_PATCH} GREATER ${MAINT_VERSION}) | ||||
|   endif(${PACKAGE_FIND_VERSION_MINOR} EQUAL ${MINOR_VERSION}) | ||||
| endif(${PACKAGE_FIND_VERSION_MAJOR} EQUAL ${MAJOR_VERSION}) | ||||
|   | ||||
| @@ -56,7 +56,6 @@ GalileoE5aDllPllTracking::GalileoE5aDllPllTracking( | ||||
|     int fs_in_deprecated = configuration->property("GNSS-SDR.internal_fs_hz", 12000000); | ||||
|     int fs_in = configuration->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated); | ||||
|     bool dump = configuration->property(role + ".dump", false); | ||||
|     unified_ = configuration->property(role + ".unified", false); | ||||
|     float pll_bw_hz = configuration->property(role + ".pll_bw_hz", 20.0); | ||||
|     if (FLAGS_pll_bw_hz != 0.0) pll_bw_hz = static_cast<float>(FLAGS_pll_bw_hz); | ||||
|     float dll_bw_hz = configuration->property(role + ".dll_bw_hz", 20.0); | ||||
| @@ -89,29 +88,18 @@ GalileoE5aDllPllTracking::GalileoE5aDllPllTracking( | ||||
|     if (item_type.compare("gr_complex") == 0) | ||||
|         { | ||||
|             item_size_ = sizeof(gr_complex); | ||||
|             if (unified_) | ||||
|                 { | ||||
|                     char sig_[3] = "5X"; | ||||
|                     item_size_ = sizeof(gr_complex); | ||||
|                     tracking_unified_ = dll_pll_veml_make_tracking( | ||||
|                         fs_in, vector_length, dump, dump_filename, | ||||
|                         pll_bw_hz, dll_bw_hz, | ||||
|                         pll_bw_narrow_hz, dll_bw_narrow_hz, | ||||
|                         early_late_space_chips, | ||||
|                         early_late_space_chips, | ||||
|                         early_late_space_narrow_chips, | ||||
|                         early_late_space_narrow_chips, | ||||
|                         extend_correlation_symbols, | ||||
|                         track_pilot, 'E', sig_); | ||||
|                 } | ||||
|             else | ||||
|                 { | ||||
|                     tracking_ = galileo_e5a_dll_pll_make_tracking_cc( | ||||
|                         0, fs_in, vector_length, dump, dump_filename, | ||||
|                         pll_bw_hz, dll_bw_hz, pll_bw_narrow_hz, | ||||
|                         dll_bw_narrow_hz, ti_ms, | ||||
|                         early_late_space_chips); | ||||
|                 } | ||||
|             char sig_[3] = "5X"; | ||||
|             item_size_ = sizeof(gr_complex); | ||||
|             tracking_ = dll_pll_veml_make_tracking( | ||||
|                 fs_in, vector_length, dump, dump_filename, | ||||
|                 pll_bw_hz, dll_bw_hz, | ||||
|                 pll_bw_narrow_hz, dll_bw_narrow_hz, | ||||
|                 early_late_space_chips, | ||||
|                 early_late_space_chips, | ||||
|                 early_late_space_narrow_chips, | ||||
|                 early_late_space_narrow_chips, | ||||
|                 extend_correlation_symbols, | ||||
|                 track_pilot, 'E', sig_); | ||||
|         } | ||||
|     else | ||||
|         { | ||||
| @@ -130,33 +118,26 @@ GalileoE5aDllPllTracking::~GalileoE5aDllPllTracking() | ||||
|  | ||||
| void GalileoE5aDllPllTracking::start_tracking() | ||||
| { | ||||
|     if (unified_) | ||||
|         tracking_unified_->start_tracking(); | ||||
|     else | ||||
|         tracking_->start_tracking(); | ||||
|     tracking_->start_tracking(); | ||||
| } | ||||
|  | ||||
|  | ||||
| /* | ||||
|  * Set tracking channel unique ID | ||||
|  */ | ||||
| void GalileoE5aDllPllTracking::set_channel(unsigned int channel) | ||||
| { | ||||
|     channel_ = channel; | ||||
|     if (unified_) | ||||
|         tracking_unified_->set_channel(channel); | ||||
|     else | ||||
|         tracking_->set_channel(channel); | ||||
|     tracking_->set_channel(channel); | ||||
| } | ||||
|  | ||||
|  | ||||
| void GalileoE5aDllPllTracking::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro) | ||||
| { | ||||
|     if (unified_) | ||||
|         tracking_unified_->set_gnss_synchro(p_gnss_synchro); | ||||
|     else | ||||
|         tracking_->set_gnss_synchro(p_gnss_synchro); | ||||
|     tracking_->set_gnss_synchro(p_gnss_synchro); | ||||
| } | ||||
|  | ||||
|  | ||||
| void GalileoE5aDllPllTracking::connect(gr::top_block_sptr top_block) | ||||
| { | ||||
|     if (top_block) | ||||
| @@ -165,6 +146,7 @@ void GalileoE5aDllPllTracking::connect(gr::top_block_sptr top_block) | ||||
|     //nothing to connect, now the tracking uses gr_sync_decimator | ||||
| } | ||||
|  | ||||
|  | ||||
| void GalileoE5aDllPllTracking::disconnect(gr::top_block_sptr top_block) | ||||
| { | ||||
|     if (top_block) | ||||
| @@ -173,18 +155,14 @@ void GalileoE5aDllPllTracking::disconnect(gr::top_block_sptr top_block) | ||||
|     //nothing to disconnect, now the tracking uses gr_sync_decimator | ||||
| } | ||||
|  | ||||
|  | ||||
| gr::basic_block_sptr GalileoE5aDllPllTracking::get_left_block() | ||||
| { | ||||
|     if (unified_) | ||||
|         return tracking_unified_; | ||||
|     else | ||||
|         return tracking_; | ||||
|     return tracking_; | ||||
| } | ||||
|  | ||||
|  | ||||
| gr::basic_block_sptr GalileoE5aDllPllTracking::get_right_block() | ||||
| { | ||||
|     if (unified_) | ||||
|         return tracking_unified_; | ||||
|     else | ||||
|         return tracking_; | ||||
|     return tracking_; | ||||
| } | ||||
|   | ||||
| @@ -40,7 +40,6 @@ | ||||
| #define GNSS_SDR_GALILEO_E5A_DLL_PLL_TRACKING_H_ | ||||
|  | ||||
| #include "tracking_interface.h" | ||||
| #include "galileo_e5a_dll_pll_tracking_cc.h" | ||||
| #include "dll_pll_veml_tracking.h" | ||||
| #include <string> | ||||
|  | ||||
| @@ -94,14 +93,12 @@ public: | ||||
|     void start_tracking() override; | ||||
|  | ||||
| private: | ||||
|     galileo_e5a_dll_pll_tracking_cc_sptr tracking_; | ||||
|     dll_pll_veml_tracking_sptr tracking_unified_; | ||||
|     dll_pll_veml_tracking_sptr tracking_; | ||||
|     size_t item_size_; | ||||
|     unsigned int channel_; | ||||
|     std::string role_; | ||||
|     unsigned int in_streams_; | ||||
|     unsigned int out_streams_; | ||||
|     bool unified_; | ||||
| }; | ||||
|  | ||||
| #endif /* GNSS_SDR_GALILEO_E5A_DLL_PLL_TRACKING_H_ */ | ||||
|   | ||||
| @@ -65,7 +65,6 @@ GpsL2MDllPllTracking::GpsL2MDllPllTracking( | ||||
|     float dll_bw_hz = configuration->property(role + ".dll_bw_hz", 0.75); | ||||
|     if (FLAGS_dll_bw_hz != 0.0) dll_bw_hz = static_cast<float>(FLAGS_dll_bw_hz); | ||||
|     trk_param.dll_bw_hz = dll_bw_hz; | ||||
|     unified_ = configuration->property(role + ".unified", false); | ||||
|     float early_late_space_chips = configuration->property(role + ".early_late_space_chips", 0.5); | ||||
|     trk_param.early_late_space_chips = early_late_space_chips; | ||||
|     trk_param.early_late_space_narrow_chips = 0.0; | ||||
| @@ -97,18 +96,14 @@ GpsL2MDllPllTracking::GpsL2MDllPllTracking( | ||||
|     if (item_type.compare("gr_complex") == 0) | ||||
|         { | ||||
|             item_size_ = sizeof(gr_complex); | ||||
|             if (unified_) | ||||
|                 { | ||||
|                     item_size_ = sizeof(gr_complex); | ||||
|                     tracking_unified_ = dll_pll_veml_make_tracking(trk_param); | ||||
|                 } | ||||
|             else | ||||
|                 { | ||||
|                     tracking_ = gps_l2_m_dll_pll_make_tracking_cc( | ||||
|                         0, fs_in, vector_length, dump, | ||||
|                         dump_filename, pll_bw_hz, dll_bw_hz, | ||||
|                         early_late_space_chips); | ||||
|                 } | ||||
|             tracking_ = dll_pll_veml_make_tracking( | ||||
|                 fs_in, vector_length, dump, dump_filename, | ||||
|                 pll_bw_hz, dll_bw_hz, pll_bw_hz, dll_bw_hz, | ||||
|                 early_late_space_chips, | ||||
|                 early_late_space_chips, | ||||
|                 early_late_space_chips, | ||||
|                 early_late_space_chips, | ||||
|                 1, false, 'G', sig_); | ||||
|         } | ||||
|     else | ||||
|         { | ||||
| @@ -127,33 +122,26 @@ GpsL2MDllPllTracking::~GpsL2MDllPllTracking() | ||||
|  | ||||
| void GpsL2MDllPllTracking::start_tracking() | ||||
| { | ||||
|     if (unified_) | ||||
|         tracking_unified_->start_tracking(); | ||||
|     else | ||||
|         tracking_->start_tracking(); | ||||
|     tracking_->start_tracking(); | ||||
| } | ||||
|  | ||||
|  | ||||
| /* | ||||
|  * Set tracking channel unique ID | ||||
|  */ | ||||
| void GpsL2MDllPllTracking::set_channel(unsigned int channel) | ||||
| { | ||||
|     channel_ = channel; | ||||
|     if (unified_) | ||||
|         tracking_unified_->set_channel(channel); | ||||
|     else | ||||
|         tracking_->set_channel(channel); | ||||
|     tracking_->set_channel(channel); | ||||
| } | ||||
|  | ||||
|  | ||||
| void GpsL2MDllPllTracking::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro) | ||||
| { | ||||
|     if (unified_) | ||||
|         tracking_unified_->set_gnss_synchro(p_gnss_synchro); | ||||
|     else | ||||
|         tracking_->set_gnss_synchro(p_gnss_synchro); | ||||
|     tracking_->set_gnss_synchro(p_gnss_synchro); | ||||
| } | ||||
|  | ||||
|  | ||||
| void GpsL2MDllPllTracking::connect(gr::top_block_sptr top_block) | ||||
| { | ||||
|     if (top_block) | ||||
| @@ -162,6 +150,7 @@ void GpsL2MDllPllTracking::connect(gr::top_block_sptr top_block) | ||||
|     //nothing to connect, now the tracking uses gr_sync_decimator | ||||
| } | ||||
|  | ||||
|  | ||||
| void GpsL2MDllPllTracking::disconnect(gr::top_block_sptr top_block) | ||||
| { | ||||
|     if (top_block) | ||||
| @@ -170,18 +159,14 @@ void GpsL2MDllPllTracking::disconnect(gr::top_block_sptr top_block) | ||||
|     //nothing to disconnect, now the tracking uses gr_sync_decimator | ||||
| } | ||||
|  | ||||
|  | ||||
| gr::basic_block_sptr GpsL2MDllPllTracking::get_left_block() | ||||
| { | ||||
|     if (unified_) | ||||
|         return tracking_unified_; | ||||
|     else | ||||
|         return tracking_; | ||||
|     return tracking_; | ||||
| } | ||||
|  | ||||
|  | ||||
| gr::basic_block_sptr GpsL2MDllPllTracking::get_right_block() | ||||
| { | ||||
|     if (unified_) | ||||
|         return tracking_unified_; | ||||
|     else | ||||
|         return tracking_; | ||||
|     return tracking_; | ||||
| } | ||||
|   | ||||
| @@ -39,7 +39,6 @@ | ||||
| #define GNSS_SDR_gps_l2_m_dll_pll_tracking_H_ | ||||
|  | ||||
| #include "tracking_interface.h" | ||||
| #include "gps_l2_m_dll_pll_tracking_cc.h" | ||||
| #include "dll_pll_veml_tracking.h" | ||||
| #include <string> | ||||
|  | ||||
| @@ -93,14 +92,12 @@ public: | ||||
|     void start_tracking() override; | ||||
|  | ||||
| private: | ||||
|     gps_l2_m_dll_pll_tracking_cc_sptr tracking_; | ||||
|     dll_pll_veml_tracking_sptr tracking_unified_; | ||||
|     dll_pll_veml_tracking_sptr tracking_; | ||||
|     size_t item_size_; | ||||
|     unsigned int channel_; | ||||
|     std::string role_; | ||||
|     unsigned int in_streams_; | ||||
|     unsigned int out_streams_; | ||||
|     bool unified_; | ||||
| }; | ||||
|  | ||||
| #endif  // GNSS_SDR_gps_l2_m_dll_pll_tracking_H_ | ||||
|   | ||||
| @@ -59,7 +59,6 @@ GpsL5iDllPllTracking::GpsL5iDllPllTracking( | ||||
|     trk_param.fs_in = fs_in; | ||||
|     bool dump = configuration->property(role + ".dump", false); | ||||
|     trk_param.dump = dump; | ||||
|     unified_ = configuration->property(role + ".unified", false); | ||||
|     float pll_bw_hz = configuration->property(role + ".pll_bw_hz", 50.0); | ||||
|     if (FLAGS_pll_bw_hz != 0.0) pll_bw_hz = static_cast<float>(FLAGS_pll_bw_hz); | ||||
|     trk_param.pll_bw_hz = pll_bw_hz; | ||||
| @@ -106,18 +105,16 @@ GpsL5iDllPllTracking::GpsL5iDllPllTracking( | ||||
|     if (item_type.compare("gr_complex") == 0) | ||||
|         { | ||||
|             item_size_ = sizeof(gr_complex); | ||||
|             if (unified_) | ||||
|                 { | ||||
|                     item_size_ = sizeof(gr_complex); | ||||
|                     tracking_unified_ = dll_pll_veml_make_tracking(trk_param); | ||||
|                 } | ||||
|             else | ||||
|                 { | ||||
|                     tracking_ = gps_l5i_dll_pll_make_tracking_cc( | ||||
|                         0, fs_in, vector_length, dump, | ||||
|                         dump_filename, pll_bw_hz, dll_bw_hz, | ||||
|                         early_late_space_chips); | ||||
|                 } | ||||
|             tracking_ = dll_pll_veml_make_tracking( | ||||
|                 fs_in, vector_length, dump, dump_filename, | ||||
|                 pll_bw_hz, dll_bw_hz, | ||||
|                 pll_bw_narrow_hz, dll_bw_narrow_hz, | ||||
|                 early_late_space_chips, | ||||
|                 early_late_space_chips, | ||||
|                 early_late_space_narrow_chips, | ||||
|                 early_late_space_narrow_chips, | ||||
|                 extend_correlation_symbols, | ||||
|                 track_pilot, 'G', sig_); | ||||
|         } | ||||
|     else | ||||
|         { | ||||
| @@ -136,33 +133,26 @@ GpsL5iDllPllTracking::~GpsL5iDllPllTracking() | ||||
|  | ||||
| void GpsL5iDllPllTracking::start_tracking() | ||||
| { | ||||
|     if (unified_) | ||||
|         tracking_unified_->start_tracking(); | ||||
|     else | ||||
|         tracking_->start_tracking(); | ||||
|     tracking_->start_tracking(); | ||||
| } | ||||
|  | ||||
|  | ||||
| /* | ||||
|  * Set tracking channel unique ID | ||||
|  */ | ||||
| void GpsL5iDllPllTracking::set_channel(unsigned int channel) | ||||
| { | ||||
|     channel_ = channel; | ||||
|     if (unified_) | ||||
|         tracking_unified_->set_channel(channel); | ||||
|     else | ||||
|         tracking_->set_channel(channel); | ||||
|     tracking_->set_channel(channel); | ||||
| } | ||||
|  | ||||
|  | ||||
| void GpsL5iDllPllTracking::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro) | ||||
| { | ||||
|     if (unified_) | ||||
|         tracking_unified_->set_gnss_synchro(p_gnss_synchro); | ||||
|     else | ||||
|         tracking_->set_gnss_synchro(p_gnss_synchro); | ||||
|     tracking_->set_gnss_synchro(p_gnss_synchro); | ||||
| } | ||||
|  | ||||
|  | ||||
| void GpsL5iDllPllTracking::connect(gr::top_block_sptr top_block) | ||||
| { | ||||
|     if (top_block) | ||||
| @@ -171,6 +161,7 @@ void GpsL5iDllPllTracking::connect(gr::top_block_sptr top_block) | ||||
|     //nothing to connect, now the tracking uses gr_sync_decimator | ||||
| } | ||||
|  | ||||
|  | ||||
| void GpsL5iDllPllTracking::disconnect(gr::top_block_sptr top_block) | ||||
| { | ||||
|     if (top_block) | ||||
| @@ -179,18 +170,14 @@ void GpsL5iDllPllTracking::disconnect(gr::top_block_sptr top_block) | ||||
|     //nothing to disconnect, now the tracking uses gr_sync_decimator | ||||
| } | ||||
|  | ||||
|  | ||||
| gr::basic_block_sptr GpsL5iDllPllTracking::get_left_block() | ||||
| { | ||||
|     if (unified_) | ||||
|         return tracking_unified_; | ||||
|     else | ||||
|         return tracking_; | ||||
|     return tracking_; | ||||
| } | ||||
|  | ||||
|  | ||||
| gr::basic_block_sptr GpsL5iDllPllTracking::get_right_block() | ||||
| { | ||||
|     if (unified_) | ||||
|         return tracking_unified_; | ||||
|     else | ||||
|         return tracking_; | ||||
|     return tracking_; | ||||
| } | ||||
|   | ||||
| @@ -38,7 +38,6 @@ | ||||
| #define GNSS_SDR_GPS_L5i_DLL_PLL_TRACKING_H_ | ||||
|  | ||||
| #include "tracking_interface.h" | ||||
| #include "gps_l5i_dll_pll_tracking_cc.h" | ||||
| #include "dll_pll_veml_tracking.h" | ||||
| #include <string> | ||||
|  | ||||
| @@ -92,14 +91,12 @@ public: | ||||
|     void start_tracking() override; | ||||
|  | ||||
| private: | ||||
|     gps_l5i_dll_pll_tracking_cc_sptr tracking_; | ||||
|     dll_pll_veml_tracking_sptr tracking_unified_; | ||||
|     dll_pll_veml_tracking_sptr tracking_; | ||||
|     size_t item_size_; | ||||
|     unsigned int channel_; | ||||
|     std::string role_; | ||||
|     unsigned int in_streams_; | ||||
|     unsigned int out_streams_; | ||||
|     bool unified_; | ||||
| }; | ||||
|  | ||||
| #endif  // GNSS_SDR_GPS_L5i_DLL_PLL_TRACKING_H_ | ||||
|   | ||||
| @@ -29,9 +29,6 @@ endif(ENABLE_FPGA) | ||||
| set(TRACKING_GR_BLOCKS_SOURCES | ||||
|      galileo_e1_tcp_connector_tracking_cc.cc | ||||
|      gps_l1_ca_tcp_connector_tracking_cc.cc | ||||
|      galileo_e5a_dll_pll_tracking_cc.cc | ||||
|      gps_l2_m_dll_pll_tracking_cc.cc | ||||
|      gps_l5i_dll_pll_tracking_cc.cc | ||||
|      gps_l1_ca_dll_pll_c_aid_tracking_cc.cc | ||||
|      gps_l1_ca_dll_pll_c_aid_tracking_sc.cc | ||||
|      glonass_l1_ca_dll_pll_tracking_cc.cc | ||||
|   | ||||
| @@ -1047,7 +1047,7 @@ int dll_pll_veml_tracking::save_matfile() | ||||
|     if (reinterpret_cast<long *>(matfp) != NULL) | ||||
|         { | ||||
|             size_t dims[2] = {1, static_cast<size_t>(num_epoch)}; | ||||
|             matvar = Mat_VarCreate("abs_VE", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_E, 0); | ||||
|             matvar = Mat_VarCreate("abs_VE", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_VE, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
| @@ -1063,7 +1063,7 @@ int dll_pll_veml_tracking::save_matfile() | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("abs_VL", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_E, 0); | ||||
|             matvar = Mat_VarCreate("abs_VL", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_VL, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|   | ||||
| @@ -1,977 +0,0 @@ | ||||
| /*! | ||||
|  * \file galileo_e5a_dll_pll_tracking_cc.h | ||||
|  * \brief Implementation of a code DLL + carrier PLL | ||||
|  *  tracking block for Galileo E5a signals | ||||
|  * \author Marc Sales, 2014. marcsales92(at)gmail.com | ||||
|  * \based on work from: | ||||
|  *          <ul> | ||||
|  *          <li> Javier Arribas, 2011. jarribas(at)cttc.es | ||||
|  *          <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com | ||||
|  *          </ul> | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
|  * | ||||
|  * Copyright (C) 2010-2015  (see AUTHORS file for a list of contributors) | ||||
|  * | ||||
|  * GNSS-SDR is a software defined Global Navigation | ||||
|  *          Satellite Systems receiver | ||||
|  * | ||||
|  * This file is part of GNSS-SDR. | ||||
|  * | ||||
|  * GNSS-SDR is free software: you can redistribute it and/or modify | ||||
|  * it under the terms of the GNU General Public License as published by | ||||
|  * the Free Software Foundation, either version 3 of the License, or | ||||
|  * (at your option) any later version. | ||||
|  * | ||||
|  * GNSS-SDR is distributed in the hope that it will be useful, | ||||
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|  * GNU General Public License for more details. | ||||
|  * | ||||
|  * You should have received a copy of the GNU General Public License | ||||
|  * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>. | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
|  */ | ||||
|  | ||||
| #include "galileo_e5a_dll_pll_tracking_cc.h" | ||||
| #include "galileo_e5_signal_processing.h" | ||||
| #include "tracking_discriminators.h" | ||||
| #include "lock_detectors.h" | ||||
| #include "Galileo_E5a.h" | ||||
| #include "Galileo_E1.h" | ||||
| #include "control_message_factory.h" | ||||
| #include "gnss_sdr_flags.h" | ||||
| #include <boost/lexical_cast.hpp> | ||||
| #include <gnuradio/io_signature.h> | ||||
| #include <glog/logging.h> | ||||
| #include <matio.h> | ||||
| #include <volk_gnsssdr/volk_gnsssdr.h> | ||||
| #include <cmath> | ||||
| #include <iostream> | ||||
| #include <sstream> | ||||
|  | ||||
|  | ||||
| using google::LogMessage; | ||||
|  | ||||
| galileo_e5a_dll_pll_tracking_cc_sptr | ||||
| galileo_e5a_dll_pll_make_tracking_cc( | ||||
|     long if_freq, | ||||
|     long fs_in, | ||||
|     unsigned int vector_length, | ||||
|     bool dump, | ||||
|     std::string dump_filename, | ||||
|     float pll_bw_hz, | ||||
|     float dll_bw_hz, | ||||
|     float pll_bw_narrow_hz, | ||||
|     float dll_bw_narrow_hz, | ||||
|     int ti_ms, | ||||
|     float early_late_space_chips) | ||||
| { | ||||
|     return galileo_e5a_dll_pll_tracking_cc_sptr(new Galileo_E5a_Dll_Pll_Tracking_cc(if_freq, | ||||
|         fs_in, vector_length, dump, dump_filename, pll_bw_hz, dll_bw_hz, pll_bw_narrow_hz, dll_bw_narrow_hz, ti_ms, early_late_space_chips)); | ||||
| } | ||||
|  | ||||
|  | ||||
| void Galileo_E5a_Dll_Pll_Tracking_cc::forecast(int noutput_items, gr_vector_int &ninput_items_required) | ||||
| { | ||||
|     if (noutput_items != 0) | ||||
|         { | ||||
|             ninput_items_required[0] = static_cast<int>(d_vector_length) * 2;  //set the required available samples in each call | ||||
|         } | ||||
| } | ||||
|  | ||||
|  | ||||
| Galileo_E5a_Dll_Pll_Tracking_cc::Galileo_E5a_Dll_Pll_Tracking_cc( | ||||
|     long if_freq, | ||||
|     long fs_in, | ||||
|     unsigned int vector_length, | ||||
|     bool dump, | ||||
|     std::string dump_filename, | ||||
|     float pll_bw_hz, | ||||
|     float dll_bw_hz, | ||||
|     float pll_bw_narrow_hz, | ||||
|     float dll_bw_narrow_hz, | ||||
|     int ti_ms, | ||||
|     float early_late_space_chips) : gr::block("Galileo_E5a_Dll_Pll_Tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)), | ||||
|                                         gr::io_signature::make(1, 1, sizeof(Gnss_Synchro))) | ||||
| { | ||||
|     // Telemetry bit synchronization message port input | ||||
|     this->message_port_register_in(pmt::mp("preamble_timestamp_s")); | ||||
|     this->message_port_register_out(pmt::mp("events")); | ||||
|     this->set_relative_rate(1.0 / vector_length); | ||||
|     // initialize internal vars | ||||
|     d_dump = dump; | ||||
|     d_if_freq = if_freq; | ||||
|     d_fs_in = fs_in; | ||||
|     d_vector_length = vector_length; | ||||
|     d_dump_filename = dump_filename; | ||||
|     d_code_loop_filter = Tracking_2nd_DLL_filter(GALILEO_E5a_CODE_PERIOD); | ||||
|     d_carrier_loop_filter = Tracking_2nd_PLL_filter(GALILEO_E5a_CODE_PERIOD); | ||||
|     d_current_ti_ms = 1;  // initializes with 1ms of integration time until secondary code lock | ||||
|     d_ti_ms = ti_ms; | ||||
|     d_dll_bw_hz = dll_bw_hz; | ||||
|     d_pll_bw_hz = pll_bw_hz; | ||||
|     d_dll_bw_narrow_hz = dll_bw_narrow_hz; | ||||
|     d_pll_bw_narrow_hz = pll_bw_narrow_hz; | ||||
|  | ||||
|     // Initialize tracking  ========================================== | ||||
|     d_code_loop_filter.set_DLL_BW(d_dll_bw_hz); | ||||
|     d_carrier_loop_filter.set_PLL_BW(d_pll_bw_hz); | ||||
|  | ||||
|     //--- DLL variables -------------------------------------------------------- | ||||
|     d_early_late_spc_chips = early_late_space_chips;  // Define early-late offset (in chips) | ||||
|  | ||||
|     // Initialization of local code replica | ||||
|     // Get space for a vector with the E5a primary code replicas sampled 1x/chip | ||||
|     d_codeQ = static_cast<gr_complex *>(volk_gnsssdr_malloc(Galileo_E5a_CODE_LENGTH_CHIPS * sizeof(gr_complex), volk_gnsssdr_get_alignment())); | ||||
|     d_codeI = static_cast<gr_complex *>(volk_gnsssdr_malloc(Galileo_E5a_CODE_LENGTH_CHIPS * sizeof(gr_complex), volk_gnsssdr_get_alignment())); | ||||
|  | ||||
|     // correlator Q outputs (scalar) | ||||
|     d_n_correlator_taps = 3;  //  Early, Prompt, Late | ||||
|     d_correlator_outs = static_cast<gr_complex *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(gr_complex), volk_gnsssdr_get_alignment())); | ||||
|     for (int n = 0; n < d_n_correlator_taps; n++) | ||||
|         { | ||||
|             d_correlator_outs[n] = gr_complex(0, 0); | ||||
|         } | ||||
|  | ||||
|     // map memory pointers of correlator outputs | ||||
|     d_Single_Early = &d_correlator_outs[0]; | ||||
|     d_Single_Prompt = &d_correlator_outs[1]; | ||||
|     d_Single_Late = &d_correlator_outs[2]; | ||||
|  | ||||
|     d_local_code_shift_chips = static_cast<float *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(float), volk_gnsssdr_get_alignment())); | ||||
|     // Set TAPs delay values [chips] | ||||
|     d_local_code_shift_chips[0] = -d_early_late_spc_chips; | ||||
|     d_local_code_shift_chips[1] = 0.0; | ||||
|     d_local_code_shift_chips[2] = d_early_late_spc_chips; | ||||
|  | ||||
|     multicorrelator_cpu_Q.init(2 * d_vector_length, d_n_correlator_taps); | ||||
|  | ||||
|     // correlator I single output for data (scalar) | ||||
|     d_Single_Prompt_data = static_cast<gr_complex *>(volk_gnsssdr_malloc(sizeof(gr_complex), volk_gnsssdr_get_alignment())); | ||||
|     *d_Single_Prompt_data = gr_complex(0, 0); | ||||
|     multicorrelator_cpu_I.init(2 * d_vector_length, 1);  // single correlator for data channel | ||||
|  | ||||
|     //--- Perform initializations ------------------------------ | ||||
|     // define initial code frequency basis of NCO | ||||
|     d_code_freq_chips = Galileo_E5a_CODE_CHIP_RATE_HZ; | ||||
|     // define residual code phase (in chips) | ||||
|     d_rem_code_phase_samples = 0.0; | ||||
|     // define residual carrier phase | ||||
|     d_rem_carr_phase_rad = 0.0; | ||||
|     //Filter error vars | ||||
|     d_code_error_filt_secs = 0.0; | ||||
|     // sample synchronization | ||||
|     d_sample_counter = 0; | ||||
|     d_acq_sample_stamp = 0; | ||||
|     d_first_transition = false; | ||||
|  | ||||
|     d_secondary_lock = false; | ||||
|     d_secondary_delay = 0; | ||||
|     d_integration_counter = 0; | ||||
|  | ||||
|     d_current_prn_length_samples = static_cast<int>(d_vector_length); | ||||
|  | ||||
|     // CN0 estimation and lock detector buffers | ||||
|     d_cn0_estimation_counter = 0; | ||||
|     d_Prompt_buffer = new gr_complex[static_cast<unsigned int>(FLAGS_cn0_samples)]; | ||||
|     d_carrier_lock_test = 1; | ||||
|     d_CN0_SNV_dB_Hz = 0; | ||||
|     d_carrier_lock_fail_counter = 0; | ||||
|     d_carrier_lock_threshold = FLAGS_carrier_lock_th; | ||||
|  | ||||
|     d_acquisition_gnss_synchro = 0; | ||||
|     d_channel = 0; | ||||
|     tmp_E = 0; | ||||
|     tmp_P = 0; | ||||
|     tmp_L = 0; | ||||
|     d_acq_code_phase_samples = 0; | ||||
|     d_acq_carrier_doppler_hz = 0; | ||||
|     d_carrier_doppler_hz = 0; | ||||
|     d_acc_carrier_phase_rad = 0; | ||||
|     d_code_phase_samples = 0; | ||||
|     d_acc_code_phase_secs = 0; | ||||
|     d_state = 0; | ||||
|  | ||||
|     d_rem_code_phase_chips = 0.0; | ||||
|     d_code_phase_step_chips = 0.0; | ||||
|     d_carrier_phase_step_rad = 0.0; | ||||
|  | ||||
|     systemName["E"] = std::string("Galileo"); | ||||
| } | ||||
|  | ||||
|  | ||||
| Galileo_E5a_Dll_Pll_Tracking_cc::~Galileo_E5a_Dll_Pll_Tracking_cc() | ||||
| { | ||||
|     if (d_dump_file.is_open()) | ||||
|         { | ||||
|             try | ||||
|                 { | ||||
|                     d_dump_file.close(); | ||||
|                 } | ||||
|             catch (const std::exception &ex) | ||||
|                 { | ||||
|                     LOG(WARNING) << "Exception in destructor " << ex.what(); | ||||
|                 } | ||||
|         } | ||||
|  | ||||
|     if (d_dump) | ||||
|         { | ||||
|             if (d_channel == 0) | ||||
|                 { | ||||
|                     std::cout << "Writing .mat files ..."; | ||||
|                 } | ||||
|             Galileo_E5a_Dll_Pll_Tracking_cc::save_matfile(); | ||||
|             if (d_channel == 0) | ||||
|                 { | ||||
|                     std::cout << " done." << std::endl; | ||||
|                 } | ||||
|         } | ||||
|  | ||||
|     try | ||||
|         { | ||||
|             delete[] d_codeI; | ||||
|             delete[] d_codeQ; | ||||
|             delete[] d_Prompt_buffer; | ||||
|             volk_gnsssdr_free(d_local_code_shift_chips); | ||||
|             volk_gnsssdr_free(d_correlator_outs); | ||||
|             volk_gnsssdr_free(d_Single_Prompt_data); | ||||
|             multicorrelator_cpu_Q.free(); | ||||
|             multicorrelator_cpu_I.free(); | ||||
|         } | ||||
|     catch (const std::exception &ex) | ||||
|         { | ||||
|             LOG(WARNING) << "Exception in destructor " << ex.what(); | ||||
|         } | ||||
| } | ||||
|  | ||||
|  | ||||
| void Galileo_E5a_Dll_Pll_Tracking_cc::start_tracking() | ||||
| { | ||||
|     /* | ||||
|      *  correct the code phase according to the delay between acq and trk | ||||
|      */ | ||||
|     d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples; | ||||
|     d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz; | ||||
|     d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples; | ||||
|  | ||||
|     long int acq_trk_diff_samples; | ||||
|     double acq_trk_diff_seconds; | ||||
|     acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp);  //-d_vector_length; | ||||
|     LOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples; | ||||
|     acq_trk_diff_seconds = static_cast<float>(acq_trk_diff_samples) / static_cast<float>(d_fs_in); | ||||
|     //doppler effect | ||||
|     // Fd=(C/(C+Vr))*F | ||||
|     double radial_velocity; | ||||
|     radial_velocity = (Galileo_E5a_FREQ_HZ + d_acq_carrier_doppler_hz) / Galileo_E5a_FREQ_HZ; | ||||
|     // new chip and prn sequence periods based on acq Doppler | ||||
|     double T_chip_mod_seconds; | ||||
|     double T_prn_mod_seconds; | ||||
|     double T_prn_mod_samples; | ||||
|     d_code_freq_chips = radial_velocity * Galileo_E5a_CODE_CHIP_RATE_HZ; | ||||
|     T_chip_mod_seconds = 1 / d_code_freq_chips; | ||||
|     T_prn_mod_seconds = T_chip_mod_seconds * Galileo_E5a_CODE_LENGTH_CHIPS; | ||||
|     T_prn_mod_samples = T_prn_mod_seconds * static_cast<float>(d_fs_in); | ||||
|  | ||||
|     d_current_prn_length_samples = round(T_prn_mod_samples); | ||||
|  | ||||
|     double T_prn_true_seconds = Galileo_E5a_CODE_LENGTH_CHIPS / Galileo_E5a_CODE_CHIP_RATE_HZ; | ||||
|     double T_prn_true_samples = T_prn_true_seconds * static_cast<float>(d_fs_in); | ||||
|     double T_prn_diff_seconds; | ||||
|     T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds; | ||||
|     double N_prn_diff; | ||||
|     N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds; | ||||
|     double corrected_acq_phase_samples, delay_correction_samples; | ||||
|     corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<float>(d_fs_in)), T_prn_true_samples); | ||||
|     if (corrected_acq_phase_samples < 0) | ||||
|         { | ||||
|             corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples; | ||||
|         } | ||||
|     delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples; | ||||
|  | ||||
|     d_acq_code_phase_samples = corrected_acq_phase_samples; | ||||
|  | ||||
|     d_carrier_doppler_hz = d_acq_carrier_doppler_hz; | ||||
|  | ||||
|     // DLL/PLL filter initialization | ||||
|     d_carrier_loop_filter.initialize();  // initialize the carrier filter | ||||
|     d_code_loop_filter.initialize();     // initialize the code filter | ||||
|  | ||||
|     // generate local reference ALWAYS starting at chip 1 (1 sample per chip) | ||||
|     char sig[3]; | ||||
|     strcpy(sig, "5Q"); | ||||
|     galileo_e5_a_code_gen_complex_primary(d_codeQ, d_acquisition_gnss_synchro->PRN, sig); | ||||
|  | ||||
|     strcpy(sig, "5I"); | ||||
|     galileo_e5_a_code_gen_complex_primary(d_codeI, d_acquisition_gnss_synchro->PRN, sig); | ||||
|  | ||||
|     d_carrier_lock_fail_counter = 0; | ||||
|     d_rem_code_phase_samples = 0; | ||||
|     d_rem_carr_phase_rad = 0; | ||||
|     d_acc_carrier_phase_rad = 0; | ||||
|     d_acc_code_phase_secs = 0; | ||||
|  | ||||
|     d_code_phase_samples = d_acq_code_phase_samples; | ||||
|  | ||||
|     std::string sys_ = &d_acquisition_gnss_synchro->System; | ||||
|     sys = sys_.substr(0, 1); | ||||
|  | ||||
|     // DEBUG OUTPUT | ||||
|     std::cout << "Tracking of Galileo E5a signal started on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl; | ||||
|     LOG(INFO) << "Galileo E5a starting tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel; | ||||
|  | ||||
|     // enable tracking | ||||
|     d_state = 1; | ||||
|  | ||||
|     LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz | ||||
|               << " Code Phase correction [samples]=" << delay_correction_samples | ||||
|               << " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples; | ||||
| } | ||||
|  | ||||
|  | ||||
| void Galileo_E5a_Dll_Pll_Tracking_cc::acquire_secondary() | ||||
| { | ||||
|     // 1. Transform replica to 1 and -1 | ||||
|     int sec_code_signed[Galileo_E5a_Q_SECONDARY_CODE_LENGTH]; | ||||
|     for (unsigned int i = 0; i < Galileo_E5a_Q_SECONDARY_CODE_LENGTH; i++) | ||||
|         { | ||||
|             if (Galileo_E5a_Q_SECONDARY_CODE[d_acquisition_gnss_synchro->PRN - 1].at(i) == '0') | ||||
|                 { | ||||
|                     sec_code_signed[i] = 1; | ||||
|                 } | ||||
|             else | ||||
|                 { | ||||
|                     sec_code_signed[i] = -1; | ||||
|                 } | ||||
|         } | ||||
|     // 2. Transform buffer to 1 and -1 | ||||
|     int in_corr[static_cast<unsigned int>(FLAGS_cn0_samples)]; | ||||
|     for (unsigned int i = 0; i < static_cast<unsigned int>(FLAGS_cn0_samples); i++) | ||||
|         { | ||||
|             if (d_Prompt_buffer[i].real() > 0) | ||||
|                 { | ||||
|                     in_corr[i] = 1; | ||||
|                 } | ||||
|             else | ||||
|                 { | ||||
|                     in_corr[i] = -1; | ||||
|                 } | ||||
|         } | ||||
|     // 3. Serial search | ||||
|     int out_corr; | ||||
|     int current_best_ = 0; | ||||
|     for (unsigned int i = 0; i < Galileo_E5a_Q_SECONDARY_CODE_LENGTH; i++) | ||||
|         { | ||||
|             out_corr = 0; | ||||
|             for (unsigned int j = 0; j < static_cast<unsigned int>(FLAGS_cn0_samples); j++) | ||||
|                 { | ||||
|                     //reverse replica sign since i*i=-1 (conjugated complex) | ||||
|                     out_corr += in_corr[j] * -sec_code_signed[(j + i) % Galileo_E5a_Q_SECONDARY_CODE_LENGTH]; | ||||
|                 } | ||||
|             if (abs(out_corr) > current_best_) | ||||
|                 { | ||||
|                     current_best_ = abs(out_corr); | ||||
|                     d_secondary_delay = i; | ||||
|                 } | ||||
|         } | ||||
|     if (current_best_ == FLAGS_cn0_samples)  // all bits correlate | ||||
|         { | ||||
|             d_secondary_lock = true; | ||||
|             d_secondary_delay = (d_secondary_delay + static_cast<unsigned int>(FLAGS_cn0_samples) - 1) % Galileo_E5a_Q_SECONDARY_CODE_LENGTH; | ||||
|         } | ||||
| } | ||||
|  | ||||
|  | ||||
| int Galileo_E5a_Dll_Pll_Tracking_cc::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)), | ||||
|     gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) | ||||
| { | ||||
|     // process vars | ||||
|     double carr_error_hz; | ||||
|     double carr_error_filt_hz; | ||||
|     double code_error_chips; | ||||
|     double code_error_filt_chips; | ||||
|  | ||||
|     // GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder | ||||
|     Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);  //block output streams pointer | ||||
|  | ||||
|     // GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder | ||||
|     Gnss_Synchro current_synchro_data; | ||||
|     // Fill the acquisition data | ||||
|     current_synchro_data = *d_acquisition_gnss_synchro; | ||||
|  | ||||
|     /* States:     0 Tracking not enabled | ||||
|      *         1 Pull-in of primary code (alignment). | ||||
|      *         3 Tracking algorithm. Correlates EPL each loop and accumulates the result | ||||
|      *                     until it reaches integration time. | ||||
|      */ | ||||
|     switch (d_state) | ||||
|         { | ||||
|         case 0: | ||||
|             { | ||||
|                 d_Early = gr_complex(0, 0); | ||||
|                 d_Prompt = gr_complex(0, 0); | ||||
|                 d_Late = gr_complex(0, 0); | ||||
|                 d_Prompt_data = gr_complex(0, 0); | ||||
|                 current_synchro_data.Tracking_sample_counter = d_sample_counter; | ||||
|                 break; | ||||
|             } | ||||
|         case 1: | ||||
|             { | ||||
|                 int samples_offset; | ||||
|                 double acq_trk_shif_correction_samples; | ||||
|                 int acq_to_trk_delay_samples; | ||||
|                 acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp; | ||||
|                 acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples)); | ||||
|                 samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples); | ||||
|                 d_sample_counter = d_sample_counter + samples_offset;  //count for the processed samples | ||||
|                 DLOG(INFO) << " samples_offset=" << samples_offset; | ||||
|                 d_state = 2;  // start in Ti = 1 code, until secondary code lock. | ||||
|  | ||||
|                 // make an output to not stop the rest of the processing blocks | ||||
|                 current_synchro_data.Prompt_I = 0.0; | ||||
|                 current_synchro_data.Prompt_Q = 0.0; | ||||
|                 current_synchro_data.Tracking_sample_counter = d_sample_counter; | ||||
|                 current_synchro_data.Carrier_phase_rads = 0.0; | ||||
|                 current_synchro_data.CN0_dB_hz = 0.0; | ||||
|                 current_synchro_data.fs = d_fs_in; | ||||
|                 consume_each(samples_offset);  //shift input to perform alignment with local replica | ||||
|                 return 0; | ||||
|                 break; | ||||
|             } | ||||
|         case 2: | ||||
|             { | ||||
|                 // Block input data and block output stream pointers | ||||
|                 const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]);  //PRN start block alignment | ||||
|                 gr_complex sec_sign_Q; | ||||
|                 gr_complex sec_sign_I; | ||||
|                 // Secondary code Chip | ||||
|                 if (d_secondary_lock) | ||||
|                     { | ||||
|                         sec_sign_Q = gr_complex((Galileo_E5a_Q_SECONDARY_CODE[d_acquisition_gnss_synchro->PRN - 1].at(d_secondary_delay) == '0' ? -1 : 1), 0); | ||||
|                         sec_sign_I = gr_complex((Galileo_E5a_I_SECONDARY_CODE.at(d_secondary_delay % Galileo_E5a_I_SECONDARY_CODE_LENGTH) == '0' ? -1 : 1), 0); | ||||
|                     } | ||||
|                 else | ||||
|                     { | ||||
|                         sec_sign_Q = gr_complex(1.0, 0.0); | ||||
|                         sec_sign_I = gr_complex(1.0, 0.0); | ||||
|                     } | ||||
|                 // Reset integration counter | ||||
|                 if (d_integration_counter == d_current_ti_ms) | ||||
|                     { | ||||
|                         d_integration_counter = 0; | ||||
|                     } | ||||
|                 //Generate local code and carrier replicas (using \hat{f}_d(k-1)) | ||||
|                 if (d_integration_counter == 0) | ||||
|                     { | ||||
|                         // Reset accumulated values | ||||
|                         d_Early = gr_complex(0, 0); | ||||
|                         d_Prompt = gr_complex(0, 0); | ||||
|                         d_Late = gr_complex(0, 0); | ||||
|                     } | ||||
|  | ||||
|                 // perform carrier wipe-off and compute Early, Prompt and Late | ||||
|                 // correlation of 1 primary code | ||||
|  | ||||
|                 multicorrelator_cpu_Q.set_local_code_and_taps(Galileo_E5a_CODE_LENGTH_CHIPS, d_codeQ, d_local_code_shift_chips); | ||||
|                 multicorrelator_cpu_I.set_local_code_and_taps(Galileo_E5a_CODE_LENGTH_CHIPS, d_codeI, &d_local_code_shift_chips[1]); | ||||
|  | ||||
|                 // ################# CARRIER WIPEOFF AND CORRELATORS ############################## | ||||
|                 // perform carrier wipe-off and compute Early, Prompt and Late correlation | ||||
|                 multicorrelator_cpu_Q.set_input_output_vectors(d_correlator_outs, in); | ||||
|                 multicorrelator_cpu_I.set_input_output_vectors(d_Single_Prompt_data, in); | ||||
|  | ||||
|                 double carr_phase_step_rad = GALILEO_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in); | ||||
|                 double code_phase_step_chips = d_code_freq_chips / (static_cast<double>(d_fs_in)); | ||||
|                 double rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / d_fs_in); | ||||
|                 multicorrelator_cpu_Q.Carrier_wipeoff_multicorrelator_resampler( | ||||
|                     d_rem_carr_phase_rad, | ||||
|                     carr_phase_step_rad, | ||||
|                     rem_code_phase_chips, | ||||
|                     code_phase_step_chips, | ||||
|                     d_current_prn_length_samples); | ||||
|  | ||||
|                 multicorrelator_cpu_I.Carrier_wipeoff_multicorrelator_resampler( | ||||
|                     d_rem_carr_phase_rad, | ||||
|                     carr_phase_step_rad, | ||||
|                     rem_code_phase_chips, | ||||
|                     code_phase_step_chips, | ||||
|                     d_current_prn_length_samples); | ||||
|  | ||||
|                 // Accumulate results (coherent integration since there are no bit transitions in pilot signal) | ||||
|                 d_Early += (*d_Single_Early) * sec_sign_Q; | ||||
|                 d_Prompt += (*d_Single_Prompt) * sec_sign_Q; | ||||
|                 d_Late += (*d_Single_Late) * sec_sign_Q; | ||||
|                 d_Prompt_data = (*d_Single_Prompt_data); | ||||
|                 d_Prompt_data *= sec_sign_I; | ||||
|                 d_integration_counter++; | ||||
|  | ||||
|                 // ################## PLL ########################################################## | ||||
|                 // PLL discriminator | ||||
|                 if (d_integration_counter == d_current_ti_ms) | ||||
|                     { | ||||
|                         if (d_secondary_lock == true) | ||||
|                             { | ||||
|                                 carr_error_hz = pll_four_quadrant_atan(d_Prompt) / GALILEO_PI * 2.0; | ||||
|                             } | ||||
|                         else | ||||
|                             { | ||||
|                                 carr_error_hz = pll_cloop_two_quadrant_atan(d_Prompt) / GALILEO_PI * 2.0; | ||||
|                             } | ||||
|  | ||||
|                         // Carrier discriminator filter | ||||
|                         carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz); | ||||
|                         // New carrier Doppler frequency estimation | ||||
|                         d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_error_filt_hz; | ||||
|                         // New code Doppler frequency estimation | ||||
|                         d_code_freq_chips = Galileo_E5a_CODE_CHIP_RATE_HZ + ((d_carrier_doppler_hz * Galileo_E5a_CODE_CHIP_RATE_HZ) / Galileo_E5a_FREQ_HZ); | ||||
|                     } | ||||
|                 // carrier phase accumulator for (K) doppler estimation | ||||
|                 d_acc_carrier_phase_rad -= 2.0 * GALILEO_PI * d_carrier_doppler_hz * GALILEO_E5a_CODE_PERIOD; | ||||
|                 // remnant carrier phase to prevent overflow in the code NCO | ||||
|                 d_rem_carr_phase_rad = d_rem_carr_phase_rad + 2.0 * GALILEO_PI * d_carrier_doppler_hz * GALILEO_E5a_CODE_PERIOD; | ||||
|                 d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, 2.0 * GALILEO_PI); | ||||
|  | ||||
|                 // ################## DLL ########################################################## | ||||
|                 if (d_integration_counter == d_current_ti_ms) | ||||
|                     { | ||||
|                         // DLL discriminator | ||||
|                         code_error_chips = dll_nc_e_minus_l_normalized(d_Early, d_Late);  //[chips/Ti] | ||||
|                         // Code discriminator filter | ||||
|                         code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips);  //[chips/second] | ||||
|                         //Code phase accumulator | ||||
|                         d_code_error_filt_secs = (GALILEO_E5a_CODE_PERIOD * code_error_filt_chips) / Galileo_E5a_CODE_CHIP_RATE_HZ;  //[seconds] | ||||
|                     } | ||||
|                 d_acc_code_phase_secs = d_acc_code_phase_secs + d_code_error_filt_secs; | ||||
|  | ||||
|                 // ################## CARRIER AND CODE NCO BUFFER ALIGNMENT ####################### | ||||
|                 // keep alignment parameters for the next input buffer | ||||
|                 double T_chip_seconds; | ||||
|                 double T_prn_seconds; | ||||
|                 double T_prn_samples; | ||||
|                 double K_blk_samples; | ||||
|                 // Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation | ||||
|                 T_chip_seconds = 1.0 / d_code_freq_chips; | ||||
|                 T_prn_seconds = T_chip_seconds * Galileo_E5a_CODE_LENGTH_CHIPS; | ||||
|                 T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in); | ||||
|                 K_blk_samples = T_prn_samples + d_rem_code_phase_samples + d_code_error_filt_secs * static_cast<double>(d_fs_in); | ||||
|                 d_current_prn_length_samples = round(K_blk_samples);                      //round to a discrete samples | ||||
|                 d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples;  //rounding error < 1 sample | ||||
|  | ||||
|                 // ####### CN0 ESTIMATION AND LOCK DETECTORS ###### | ||||
|                 if (d_cn0_estimation_counter < FLAGS_cn0_samples - 1) | ||||
|                     { | ||||
|                         // fill buffer with prompt correlator output values | ||||
|                         d_Prompt_buffer[d_cn0_estimation_counter] = d_Prompt; | ||||
|                         d_cn0_estimation_counter++; | ||||
|                     } | ||||
|                 else | ||||
|                     { | ||||
|                         d_Prompt_buffer[d_cn0_estimation_counter] = d_Prompt; | ||||
|                         // ATTEMPT SECONDARY CODE ACQUISITION | ||||
|                         if (d_secondary_lock == false) | ||||
|                             { | ||||
|                                 acquire_secondary();  // changes d_secondary_lock and d_secondary_delay | ||||
|                                 if (d_secondary_lock == true) | ||||
|                                     { | ||||
|                                         std::cout << "Galileo E5a secondary code locked for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl; | ||||
|                                         d_current_ti_ms = d_ti_ms; | ||||
|                                         // Change loop parameters ========================================== | ||||
|                                         d_code_loop_filter.set_pdi(d_current_ti_ms * GALILEO_E5a_CODE_PERIOD); | ||||
|                                         d_carrier_loop_filter.set_pdi(d_current_ti_ms * GALILEO_E5a_CODE_PERIOD); | ||||
|                                         d_code_loop_filter.set_DLL_BW(d_dll_bw_narrow_hz); | ||||
|                                         d_carrier_loop_filter.set_PLL_BW(d_pll_bw_narrow_hz); | ||||
|                                     } | ||||
|                                 else | ||||
|                                     { | ||||
|                                         //std::cout << "Secondary code delay couldn't be resolved." << std::endl; | ||||
|                                         d_carrier_lock_fail_counter++; | ||||
|                                         if (d_carrier_lock_fail_counter > FLAGS_max_lock_fail) | ||||
|                                             { | ||||
|                                                 std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl; | ||||
|                                                 LOG(INFO) << "Loss of lock in channel " << d_channel << "!"; | ||||
|                                                 this->message_port_pub(pmt::mp("events"), pmt::from_long(3));  //3 -> loss of lock | ||||
|                                                 d_carrier_lock_fail_counter = 0; | ||||
|                                                 d_state = 0;  // TODO: check if disabling tracking is consistent with the channel state machine | ||||
|                                             } | ||||
|                                     } | ||||
|                             } | ||||
|                         else  // Secondary lock achieved, monitor carrier lock. | ||||
|                             { | ||||
|                                 // Code lock indicator | ||||
|                                 d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, static_cast<unsigned int>(FLAGS_cn0_samples), d_fs_in, d_current_ti_ms * Galileo_E5a_CODE_LENGTH_CHIPS); | ||||
|                                 // Carrier lock indicator | ||||
|                                 d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, static_cast<unsigned int>(FLAGS_cn0_samples)); | ||||
|                                 // Loss of lock detection | ||||
|                                 if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < FLAGS_cn0_min) | ||||
|                                     { | ||||
|                                         d_carrier_lock_fail_counter++; | ||||
|                                     } | ||||
|                                 else | ||||
|                                     { | ||||
|                                         if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--; | ||||
|  | ||||
|                                         if (d_carrier_lock_fail_counter > FLAGS_max_lock_fail) | ||||
|                                             { | ||||
|                                                 std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl; | ||||
|                                                 LOG(INFO) << "Loss of lock in channel " << d_channel << "!"; | ||||
|                                                 this->message_port_pub(pmt::mp("events"), pmt::from_long(3));  //3 -> loss of lock | ||||
|                                                 d_carrier_lock_fail_counter = 0; | ||||
|                                                 d_state = 0; | ||||
|                                             } | ||||
|                                     } | ||||
|                             } | ||||
|                         d_cn0_estimation_counter = 0; | ||||
|                     } | ||||
|                 if (d_secondary_lock && (d_secondary_delay % Galileo_E5a_I_SECONDARY_CODE_LENGTH) == 0) | ||||
|                     { | ||||
|                         d_first_transition = true; | ||||
|                     } | ||||
|                 // ########### Output the tracking data to navigation and PVT ########## | ||||
|                 // The first Prompt output not equal to 0 is synchronized with the transition of a navigation data bit. | ||||
|                 if (d_secondary_lock && d_first_transition) | ||||
|                     { | ||||
|                         current_synchro_data.Prompt_I = static_cast<double>(d_Prompt_data.real()); | ||||
|                         current_synchro_data.Prompt_Q = static_cast<double>(d_Prompt_data.imag()); | ||||
|                         current_synchro_data.Tracking_sample_counter = d_sample_counter + d_current_prn_length_samples; | ||||
|                         current_synchro_data.Code_phase_samples = d_rem_code_phase_samples; | ||||
|                         current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad; | ||||
|                         current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz; | ||||
|                         current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz; | ||||
|                         current_synchro_data.Flag_valid_symbol_output = true; | ||||
|                     } | ||||
|                 else | ||||
|                     { | ||||
|                         // make an output to not stop the rest of the processing blocks | ||||
|                         current_synchro_data.Prompt_I = 0.0; | ||||
|                         current_synchro_data.Prompt_Q = 0.0; | ||||
|                         current_synchro_data.Tracking_sample_counter = d_sample_counter; | ||||
|                         current_synchro_data.Carrier_phase_rads = 0.0; | ||||
|                         current_synchro_data.CN0_dB_hz = 0.0; | ||||
|                         current_synchro_data.Flag_valid_symbol_output = false; | ||||
|                     } | ||||
|  | ||||
|                 break; | ||||
|             } | ||||
|         } | ||||
|  | ||||
|     current_synchro_data.fs = d_fs_in; | ||||
|     current_synchro_data.correlation_length_ms = GALILEO_E5a_CODE_PERIOD_MS; | ||||
|     if (current_synchro_data.Flag_valid_symbol_output) | ||||
|         { | ||||
|             *out[0] = current_synchro_data; | ||||
|         } | ||||
|  | ||||
|     if (d_dump) | ||||
|         { | ||||
|             // MULTIPLEXED FILE RECORDING - Record results to file | ||||
|             float prompt_I; | ||||
|             float prompt_Q; | ||||
|             double tmp_double; | ||||
|             prompt_I = (d_Prompt_data).real(); | ||||
|             prompt_Q = (d_Prompt_data).imag(); | ||||
|             if (d_integration_counter == d_current_ti_ms) | ||||
|                 { | ||||
|                     tmp_E = std::abs<float>(d_Early); | ||||
|                     tmp_P = std::abs<float>(d_Prompt); | ||||
|                     tmp_L = std::abs<float>(d_Late); | ||||
|                 } | ||||
|             try | ||||
|                 { | ||||
|                     // EPR | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&tmp_E), sizeof(float)); | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&tmp_P), sizeof(float)); | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&tmp_L), sizeof(float)); | ||||
|                     // PROMPT I and Q (to analyze navigation symbols) | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&prompt_I), sizeof(float)); | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&prompt_Q), sizeof(float)); | ||||
|                     // PRN start sample stamp | ||||
|                     //tmp_float=(float)d_sample_counter; | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&d_sample_counter), sizeof(unsigned long int)); | ||||
|                     // accumulated carrier phase | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&d_acc_carrier_phase_rad), sizeof(double)); | ||||
|  | ||||
|                     // carrier and code frequency | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&d_carrier_doppler_hz), sizeof(double)); | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&d_code_freq_chips), sizeof(double)); | ||||
|  | ||||
|                     //PLL commands | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&carr_error_hz), sizeof(double)); | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&carr_error_filt_hz), sizeof(double)); | ||||
|  | ||||
|                     //DLL commands | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&code_error_chips), sizeof(double)); | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&code_error_filt_chips), sizeof(double)); | ||||
|  | ||||
|                     // CN0 and carrier lock test | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&d_CN0_SNV_dB_Hz), sizeof(double)); | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&d_carrier_lock_test), sizeof(double)); | ||||
|  | ||||
|                     // AUX vars (for debug purposes) | ||||
|                     tmp_double = d_rem_code_phase_samples; | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double)); | ||||
|                     tmp_double = static_cast<double>(d_sample_counter + d_current_prn_length_samples); | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double)); | ||||
|  | ||||
|                     // PRN | ||||
|                     unsigned int prn_ = d_acquisition_gnss_synchro->PRN; | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&prn_), sizeof(unsigned int)); | ||||
|                 } | ||||
|             catch (const std::ifstream::failure &e) | ||||
|                 { | ||||
|                     LOG(WARNING) << "Exception writing trk dump file " << e.what(); | ||||
|                 } | ||||
|         } | ||||
|  | ||||
|     d_secondary_delay = (d_secondary_delay + 1) % Galileo_E5a_Q_SECONDARY_CODE_LENGTH; | ||||
|     d_sample_counter += d_current_prn_length_samples; | ||||
|     consume_each(d_current_prn_length_samples); | ||||
|  | ||||
|     if (current_synchro_data.Flag_valid_symbol_output) | ||||
|         { | ||||
|             return 1; | ||||
|         } | ||||
|     else | ||||
|         { | ||||
|             return 0; | ||||
|         } | ||||
| } | ||||
|  | ||||
|  | ||||
| void Galileo_E5a_Dll_Pll_Tracking_cc::set_channel(unsigned int channel) | ||||
| { | ||||
|     d_channel = channel; | ||||
|     LOG(INFO) << "Tracking Channel set to " << d_channel; | ||||
|     // ############# ENABLE DATA FILE LOG ################# | ||||
|     if (d_dump == true) | ||||
|         { | ||||
|             if (d_dump_file.is_open() == false) | ||||
|                 { | ||||
|                     try | ||||
|                         { | ||||
|                             d_dump_filename.append(boost::lexical_cast<std::string>(d_channel)); | ||||
|                             d_dump_filename.append(".dat"); | ||||
|                             d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit); | ||||
|                             d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary); | ||||
|                             LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str(); | ||||
|                         } | ||||
|                     catch (const std::ifstream::failure &e) | ||||
|                         { | ||||
|                             LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what(); | ||||
|                         } | ||||
|                 } | ||||
|         } | ||||
| } | ||||
|  | ||||
|  | ||||
| int Galileo_E5a_Dll_Pll_Tracking_cc::save_matfile() | ||||
| { | ||||
|     // READ DUMP FILE | ||||
|     std::ifstream::pos_type size; | ||||
|     int number_of_double_vars = 11; | ||||
|     int number_of_float_vars = 5; | ||||
|     int epoch_size_bytes = sizeof(unsigned long int) + sizeof(double) * number_of_double_vars + | ||||
|                            sizeof(float) * number_of_float_vars + sizeof(unsigned int); | ||||
|     std::ifstream dump_file; | ||||
|     dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit); | ||||
|     try | ||||
|         { | ||||
|             dump_file.open(d_dump_filename.c_str(), std::ios::binary | std::ios::ate); | ||||
|         } | ||||
|     catch (const std::ifstream::failure &e) | ||||
|         { | ||||
|             std::cerr << "Problem opening dump file:" << e.what() << std::endl; | ||||
|             return 1; | ||||
|         } | ||||
|     // count number of epochs and rewind | ||||
|     long int num_epoch = 0; | ||||
|     if (dump_file.is_open()) | ||||
|         { | ||||
|             size = dump_file.tellg(); | ||||
|             num_epoch = static_cast<long int>(size) / static_cast<long int>(epoch_size_bytes); | ||||
|             dump_file.seekg(0, std::ios::beg); | ||||
|         } | ||||
|     else | ||||
|         { | ||||
|             return 1; | ||||
|         } | ||||
|     float *abs_E = new float[num_epoch]; | ||||
|     float *abs_P = new float[num_epoch]; | ||||
|     float *abs_L = new float[num_epoch]; | ||||
|     float *Prompt_I = new float[num_epoch]; | ||||
|     float *Prompt_Q = new float[num_epoch]; | ||||
|     unsigned long int *PRN_start_sample_count = new unsigned long int[num_epoch]; | ||||
|     double *acc_carrier_phase_rad = new double[num_epoch]; | ||||
|     double *carrier_doppler_hz = new double[num_epoch]; | ||||
|     double *code_freq_chips = new double[num_epoch]; | ||||
|     double *carr_error_hz = new double[num_epoch]; | ||||
|     double *carr_error_filt_hz = new double[num_epoch]; | ||||
|     double *code_error_chips = new double[num_epoch]; | ||||
|     double *code_error_filt_chips = new double[num_epoch]; | ||||
|     double *CN0_SNV_dB_Hz = new double[num_epoch]; | ||||
|     double *carrier_lock_test = new double[num_epoch]; | ||||
|     double *aux1 = new double[num_epoch]; | ||||
|     double *aux2 = new double[num_epoch]; | ||||
|     unsigned int *PRN = new unsigned int[num_epoch]; | ||||
|  | ||||
|     try | ||||
|         { | ||||
|             if (dump_file.is_open()) | ||||
|                 { | ||||
|                     for (long int i = 0; i < num_epoch; i++) | ||||
|                         { | ||||
|                             dump_file.read(reinterpret_cast<char *>(&abs_E[i]), sizeof(float)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&abs_P[i]), sizeof(float)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&abs_L[i]), sizeof(float)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&Prompt_I[i]), sizeof(float)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&Prompt_Q[i]), sizeof(float)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&PRN_start_sample_count[i]), sizeof(unsigned long int)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&acc_carrier_phase_rad[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&carrier_doppler_hz[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&code_freq_chips[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&carr_error_hz[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&carr_error_filt_hz[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&code_error_chips[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&code_error_filt_chips[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&CN0_SNV_dB_Hz[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&carrier_lock_test[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&aux1[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&aux2[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&PRN[i]), sizeof(unsigned int)); | ||||
|                         } | ||||
|                 } | ||||
|             dump_file.close(); | ||||
|         } | ||||
|     catch (const std::ifstream::failure &e) | ||||
|         { | ||||
|             std::cerr << "Problem reading dump file:" << e.what() << std::endl; | ||||
|             delete[] abs_E; | ||||
|             delete[] abs_P; | ||||
|             delete[] abs_L; | ||||
|             delete[] Prompt_I; | ||||
|             delete[] Prompt_Q; | ||||
|             delete[] PRN_start_sample_count; | ||||
|             delete[] acc_carrier_phase_rad; | ||||
|             delete[] carrier_doppler_hz; | ||||
|             delete[] code_freq_chips; | ||||
|             delete[] carr_error_hz; | ||||
|             delete[] carr_error_filt_hz; | ||||
|             delete[] code_error_chips; | ||||
|             delete[] code_error_filt_chips; | ||||
|             delete[] CN0_SNV_dB_Hz; | ||||
|             delete[] carrier_lock_test; | ||||
|             delete[] aux1; | ||||
|             delete[] aux2; | ||||
|             delete[] PRN; | ||||
|             return 1; | ||||
|         } | ||||
|  | ||||
|     // WRITE MAT FILE | ||||
|     mat_t *matfp; | ||||
|     matvar_t *matvar; | ||||
|     std::string filename = d_dump_filename; | ||||
|     filename.erase(filename.length() - 4, 4); | ||||
|     filename.append(".mat"); | ||||
|     matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73); | ||||
|     if (reinterpret_cast<long *>(matfp) != NULL) | ||||
|         { | ||||
|             size_t dims[2] = {1, static_cast<size_t>(num_epoch)}; | ||||
|             matvar = Mat_VarCreate("abs_E", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_E, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("abs_P", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_P, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("abs_L", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_L, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("Prompt_I", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_I, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("Prompt_Q", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_Q, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("PRN_start_sample_count", MAT_C_UINT64, MAT_T_UINT64, 2, dims, PRN_start_sample_count, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("acc_carrier_phase_rad", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, acc_carrier_phase_rad, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("carrier_doppler_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carrier_doppler_hz, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("code_freq_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_freq_chips, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("carr_error_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carr_error_hz, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("carr_error_filt_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carr_error_filt_hz, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("code_error_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_error_chips, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("code_error_filt_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_error_filt_chips, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("CN0_SNV_dB_Hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, CN0_SNV_dB_Hz, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("carrier_lock_test", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carrier_lock_test, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("aux1", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, aux1, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("aux2", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, aux2, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("PRN", MAT_C_UINT32, MAT_T_UINT32, 2, dims, PRN, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|         } | ||||
|     Mat_Close(matfp); | ||||
|     delete[] abs_E; | ||||
|     delete[] abs_P; | ||||
|     delete[] abs_L; | ||||
|     delete[] Prompt_I; | ||||
|     delete[] Prompt_Q; | ||||
|     delete[] PRN_start_sample_count; | ||||
|     delete[] acc_carrier_phase_rad; | ||||
|     delete[] carrier_doppler_hz; | ||||
|     delete[] code_freq_chips; | ||||
|     delete[] carr_error_hz; | ||||
|     delete[] carr_error_filt_hz; | ||||
|     delete[] code_error_chips; | ||||
|     delete[] code_error_filt_chips; | ||||
|     delete[] CN0_SNV_dB_Hz; | ||||
|     delete[] carrier_lock_test; | ||||
|     delete[] aux1; | ||||
|     delete[] aux2; | ||||
|     delete[] PRN; | ||||
|     return 0; | ||||
| } | ||||
|  | ||||
|  | ||||
| void Galileo_E5a_Dll_Pll_Tracking_cc::set_gnss_synchro(Gnss_Synchro *p_gnss_synchro) | ||||
| { | ||||
|     d_acquisition_gnss_synchro = p_gnss_synchro; | ||||
| } | ||||
| @@ -1,207 +0,0 @@ | ||||
| /*! | ||||
|  * \file galileo_e5a_dll_pll_tracking_cc.h | ||||
|  * \brief Implementation of a code DLL + carrier PLL | ||||
|  *  tracking block for Galileo E5a signals | ||||
|  * \author Marc Sales, 2014. marcsales92(at)gmail.com | ||||
|  * \based on work from: | ||||
|  *          <ul> | ||||
|  *          <li> Javier Arribas, 2011. jarribas(at)cttc.es | ||||
|  *          <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com | ||||
|  *          </ul> | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
|  * | ||||
|  * Copyright (C) 2010-2015  (see AUTHORS file for a list of contributors) | ||||
|  * | ||||
|  * GNSS-SDR is a software defined Global Navigation | ||||
|  *          Satellite Systems receiver | ||||
|  * | ||||
|  * This file is part of GNSS-SDR. | ||||
|  * | ||||
|  * GNSS-SDR is free software: you can redistribute it and/or modify | ||||
|  * it under the terms of the GNU General Public License as published by | ||||
|  * the Free Software Foundation, either version 3 of the License, or | ||||
|  * (at your option) any later version. | ||||
|  * | ||||
|  * GNSS-SDR is distributed in the hope that it will be useful, | ||||
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|  * GNU General Public License for more details. | ||||
|  * | ||||
|  * You should have received a copy of the GNU General Public License | ||||
|  * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>. | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
|  */ | ||||
|  | ||||
| #ifndef GNSS_SDR_GALILEO_E5A_DLL_PLL_TRACKING_CC_H_ | ||||
| #define GNSS_SDR_GALILEO_E5A_DLL_PLL_TRACKING_CC_H_ | ||||
|  | ||||
| #include "gnss_synchro.h" | ||||
| #include "tracking_2nd_DLL_filter.h" | ||||
| #include "tracking_2nd_PLL_filter.h" | ||||
| #include "cpu_multicorrelator.h" | ||||
| #include <gnuradio/block.h> | ||||
| #include <fstream> | ||||
| #include <map> | ||||
| #include <string> | ||||
|  | ||||
| class Galileo_E5a_Dll_Pll_Tracking_cc; | ||||
|  | ||||
| typedef boost::shared_ptr<Galileo_E5a_Dll_Pll_Tracking_cc> | ||||
|     galileo_e5a_dll_pll_tracking_cc_sptr; | ||||
|  | ||||
| galileo_e5a_dll_pll_tracking_cc_sptr | ||||
| galileo_e5a_dll_pll_make_tracking_cc(long if_freq, | ||||
|     long fs_in, unsigned int vector_length, | ||||
|     bool dump, | ||||
|     std::string dump_filename, | ||||
|     float pll_bw_hz, | ||||
|     float dll_bw_hz, | ||||
|     float pll_bw_narrow_narrowhz, | ||||
|     float dll_bw_narrow_hz, | ||||
|     int ti_ms, | ||||
|     float early_late_space_chips); | ||||
|  | ||||
|  | ||||
| /*! | ||||
|  * \brief This class implements a DLL + PLL tracking loop block | ||||
|  */ | ||||
| class Galileo_E5a_Dll_Pll_Tracking_cc : public gr::block | ||||
| { | ||||
| public: | ||||
|     ~Galileo_E5a_Dll_Pll_Tracking_cc(); | ||||
|  | ||||
|     void set_channel(unsigned int channel); | ||||
|     void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro); | ||||
|     void start_tracking(); | ||||
|  | ||||
|     int general_work(int noutput_items, gr_vector_int& ninput_items, | ||||
|         gr_vector_const_void_star& input_items, gr_vector_void_star& output_items); | ||||
|  | ||||
|     void forecast(int noutput_items, gr_vector_int& ninput_items_required); | ||||
|  | ||||
| private: | ||||
|     friend galileo_e5a_dll_pll_tracking_cc_sptr | ||||
|     galileo_e5a_dll_pll_make_tracking_cc(long if_freq, | ||||
|         long fs_in, unsigned int vector_length, | ||||
|         bool dump, | ||||
|         std::string dump_filename, | ||||
|         float pll_bw_hz, | ||||
|         float dll_bw_hz, | ||||
|         float pll_bw_narrow_hz, | ||||
|         float dll_bw_narrow_hz, | ||||
|         int ti_ms, | ||||
|         float early_late_space_chips); | ||||
|  | ||||
|     Galileo_E5a_Dll_Pll_Tracking_cc(long if_freq, | ||||
|         long fs_in, unsigned int vector_length, | ||||
|         bool dump, | ||||
|         std::string dump_filename, | ||||
|         float pll_bw_hz, | ||||
|         float dll_bw_hz, | ||||
|         float pll_bw_narrow_hz, | ||||
|         float dll_bw_narrow_hz, | ||||
|         int ti_ms, | ||||
|         float early_late_space_chips); | ||||
|     void acquire_secondary(); | ||||
|     // tracking configuration vars | ||||
|     unsigned int d_vector_length; | ||||
|     int d_current_ti_ms; | ||||
|     int d_ti_ms; | ||||
|     bool d_dump; | ||||
|  | ||||
|  | ||||
|     Gnss_Synchro* d_acquisition_gnss_synchro; | ||||
|     unsigned int d_channel; | ||||
|     long d_if_freq; | ||||
|     long d_fs_in; | ||||
|  | ||||
|     double d_early_late_spc_chips; | ||||
|     double d_dll_bw_hz; | ||||
|     double d_pll_bw_hz; | ||||
|     double d_dll_bw_narrow_hz; | ||||
|     double d_pll_bw_narrow_hz; | ||||
|  | ||||
|     gr_complex* d_codeQ; | ||||
|     gr_complex* d_codeI; | ||||
|  | ||||
|     gr_complex d_Early; | ||||
|     gr_complex d_Prompt; | ||||
|     gr_complex d_Late; | ||||
|     gr_complex d_Prompt_data; | ||||
|  | ||||
|     gr_complex* d_Single_Early; | ||||
|     gr_complex* d_Single_Prompt; | ||||
|     gr_complex* d_Single_Late; | ||||
|     gr_complex* d_Single_Prompt_data; | ||||
|  | ||||
|  | ||||
|     float tmp_E; | ||||
|     float tmp_P; | ||||
|     float tmp_L; | ||||
|     // remaining code phase and carrier phase between tracking loops | ||||
|     double d_rem_code_phase_samples; | ||||
|     double d_rem_code_phase_chips; | ||||
|     double d_rem_carr_phase_rad; | ||||
|  | ||||
|     // PLL and DLL filter library | ||||
|     Tracking_2nd_DLL_filter d_code_loop_filter; | ||||
|     Tracking_2nd_PLL_filter d_carrier_loop_filter; | ||||
|  | ||||
|     // acquisition | ||||
|     double d_acq_code_phase_samples; | ||||
|     double d_acq_carrier_doppler_hz; | ||||
|     // correlator | ||||
|     int d_n_correlator_taps; | ||||
|     float* d_local_code_shift_chips; | ||||
|     gr_complex* d_correlator_outs; | ||||
|     cpu_multicorrelator multicorrelator_cpu_I; | ||||
|     cpu_multicorrelator multicorrelator_cpu_Q; | ||||
|  | ||||
|     // tracking vars | ||||
|     double d_code_freq_chips; | ||||
|     double d_carrier_doppler_hz; | ||||
|     double d_acc_carrier_phase_rad; | ||||
|     double d_code_phase_samples; | ||||
|     double d_acc_code_phase_secs; | ||||
|     double d_code_error_filt_secs; | ||||
|     double d_code_phase_step_chips; | ||||
|     double d_carrier_phase_step_rad; | ||||
|  | ||||
|  | ||||
|     //PRN period in samples | ||||
|     int d_current_prn_length_samples; | ||||
|  | ||||
|     //processing samples counters | ||||
|     unsigned long int d_sample_counter; | ||||
|     unsigned long int d_acq_sample_stamp; | ||||
|  | ||||
|     // CN0 estimation and lock detector | ||||
|     int d_cn0_estimation_counter; | ||||
|     gr_complex* d_Prompt_buffer; | ||||
|     double d_carrier_lock_test; | ||||
|     double d_CN0_SNV_dB_Hz; | ||||
|     double d_carrier_lock_threshold; | ||||
|     int d_carrier_lock_fail_counter; | ||||
|  | ||||
|     // control vars | ||||
|     int d_state; | ||||
|     bool d_first_transition; | ||||
|  | ||||
|     // Secondary code acquisition | ||||
|     bool d_secondary_lock; | ||||
|     int d_secondary_delay; | ||||
|     int d_integration_counter; | ||||
|  | ||||
|     // file dump | ||||
|     std::string d_dump_filename; | ||||
|     std::ofstream d_dump_file; | ||||
|  | ||||
|     std::map<std::string, std::string> systemName; | ||||
|     std::string sys; | ||||
|  | ||||
|     int save_matfile(); | ||||
| }; | ||||
|  | ||||
| #endif /* GNSS_SDR_GALILEO_E5A_DLL_PLL_TRACKING_CC_H_ */ | ||||
| @@ -1,761 +0,0 @@ | ||||
| /*! | ||||
|  * \file gps_l2_m_dll_pll_tracking_cc.cc | ||||
|  * \brief Implementation of a code DLL + carrier PLL tracking block for GPS L2C | ||||
|  * \author Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com | ||||
|  *         Javier Arribas, 2011. jarribas(at)cttc.es | ||||
|  * | ||||
|  * Code DLL + carrier PLL according to the algorithms described in: | ||||
|  * [1] K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen, | ||||
|  * A Software-Defined GPS and Galileo Receiver. A Single-Frequency | ||||
|  * Approach, Birkhauser, 2007 | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
|  * | ||||
|  * Copyright (C) 2010-2015  (see AUTHORS file for a list of contributors) | ||||
|  * | ||||
|  * GNSS-SDR is a software defined Global Navigation | ||||
|  *          Satellite Systems receiver | ||||
|  * | ||||
|  * This file is part of GNSS-SDR. | ||||
|  * | ||||
|  * GNSS-SDR is free software: you can redistribute it and/or modify | ||||
|  * it under the terms of the GNU General Public License as published by | ||||
|  * the Free Software Foundation, either version 3 of the License, or | ||||
|  * (at your option) any later version. | ||||
|  * | ||||
|  * GNSS-SDR is distributed in the hope that it will be useful, | ||||
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|  * GNU General Public License for more details. | ||||
|  * | ||||
|  * You should have received a copy of the GNU General Public License | ||||
|  * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>. | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
|  */ | ||||
|  | ||||
| #include "gps_l2_m_dll_pll_tracking_cc.h" | ||||
| #include "gps_l2c_signal.h" | ||||
| #include "tracking_discriminators.h" | ||||
| #include "lock_detectors.h" | ||||
| #include "GPS_L2C.h" | ||||
| #include "control_message_factory.h" | ||||
| #include "gnss_sdr_flags.h" | ||||
| #include <boost/lexical_cast.hpp> | ||||
| #include <gnuradio/io_signature.h> | ||||
| #include <glog/logging.h> | ||||
| #include <matio.h> | ||||
| #include <volk_gnsssdr/volk_gnsssdr.h> | ||||
| #include <cmath> | ||||
| #include <iostream> | ||||
| #include <memory> | ||||
| #include <sstream> | ||||
|  | ||||
| using google::LogMessage; | ||||
|  | ||||
| gps_l2_m_dll_pll_tracking_cc_sptr | ||||
| gps_l2_m_dll_pll_make_tracking_cc( | ||||
|     long if_freq, | ||||
|     long fs_in, | ||||
|     unsigned int vector_length, | ||||
|     bool dump, | ||||
|     std::string dump_filename, | ||||
|     float pll_bw_hz, | ||||
|     float dll_bw_hz, | ||||
|     float early_late_space_chips) | ||||
| { | ||||
|     return gps_l2_m_dll_pll_tracking_cc_sptr(new gps_l2_m_dll_pll_tracking_cc(if_freq, | ||||
|         fs_in, vector_length, dump, dump_filename, pll_bw_hz, dll_bw_hz, early_late_space_chips)); | ||||
| } | ||||
|  | ||||
|  | ||||
| void gps_l2_m_dll_pll_tracking_cc::forecast(int noutput_items, | ||||
|     gr_vector_int &ninput_items_required) | ||||
| { | ||||
|     if (noutput_items != 0) | ||||
|         { | ||||
|             ninput_items_required[0] = static_cast<int>(d_vector_length) * 2;  //set the required available samples in each call | ||||
|         } | ||||
| } | ||||
|  | ||||
|  | ||||
| gps_l2_m_dll_pll_tracking_cc::gps_l2_m_dll_pll_tracking_cc( | ||||
|     long if_freq, | ||||
|     long fs_in, | ||||
|     unsigned int vector_length, | ||||
|     bool dump, | ||||
|     std::string dump_filename, | ||||
|     float pll_bw_hz, | ||||
|     float dll_bw_hz, | ||||
|     float early_late_space_chips) : gr::block("gps_l2_m_dll_pll_tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)), | ||||
|                                         gr::io_signature::make(1, 1, sizeof(Gnss_Synchro))) | ||||
| { | ||||
|     // Telemetry bit synchronization message port input | ||||
|     this->message_port_register_in(pmt::mp("preamble_timestamp_s")); | ||||
|     this->message_port_register_out(pmt::mp("events")); | ||||
|     // initialize internal vars | ||||
|     d_dump = dump; | ||||
|     d_if_freq = if_freq; | ||||
|     d_fs_in = fs_in; | ||||
|     d_vector_length = vector_length; | ||||
|     d_dump_filename = dump_filename; | ||||
|  | ||||
|     d_current_prn_length_samples = static_cast<int>(d_vector_length); | ||||
|  | ||||
|     // DLL/PLL filter initialization | ||||
|     d_carrier_loop_filter = Tracking_2nd_PLL_filter(GPS_L2_M_PERIOD); | ||||
|     d_code_loop_filter = Tracking_2nd_DLL_filter(GPS_L2_M_PERIOD); | ||||
|  | ||||
|     // Initialize tracking  ========================================== | ||||
|     d_code_loop_filter.set_DLL_BW(dll_bw_hz); | ||||
|     d_carrier_loop_filter.set_PLL_BW(pll_bw_hz); | ||||
|  | ||||
|     //--- DLL variables -------------------------------------------------------- | ||||
|     d_early_late_spc_chips = early_late_space_chips;  // Define early-late offset (in chips) | ||||
|  | ||||
|     // Initialization of local code replica | ||||
|     // Get space for a vector with the C/A code replica sampled 1x/chip | ||||
|     d_ca_code = static_cast<gr_complex *>(volk_gnsssdr_malloc(static_cast<int>(GPS_L2_M_CODE_LENGTH_CHIPS) * sizeof(gr_complex), volk_gnsssdr_get_alignment())); | ||||
|  | ||||
|     // correlator outputs (scalar) | ||||
|     d_n_correlator_taps = 3;  // Early, Prompt, and Late | ||||
|     d_correlator_outs = static_cast<gr_complex *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(gr_complex), volk_gnsssdr_get_alignment())); | ||||
|     for (int n = 0; n < d_n_correlator_taps; n++) | ||||
|         { | ||||
|             d_correlator_outs[n] = gr_complex(0, 0); | ||||
|         } | ||||
|     d_local_code_shift_chips = static_cast<float *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(float), volk_gnsssdr_get_alignment())); | ||||
|     // Set TAPs delay values [chips] | ||||
|     d_local_code_shift_chips[0] = -d_early_late_spc_chips; | ||||
|     d_local_code_shift_chips[1] = 0.0; | ||||
|     d_local_code_shift_chips[2] = d_early_late_spc_chips; | ||||
|  | ||||
|     multicorrelator_cpu.init(2 * d_current_prn_length_samples, d_n_correlator_taps); | ||||
|  | ||||
|     //--- Perform initializations ------------------------------ | ||||
|     // define initial code frequency basis of NCO | ||||
|     d_code_freq_chips = GPS_L2_M_CODE_RATE_HZ; | ||||
|     // define residual code phase (in chips) | ||||
|     d_rem_code_phase_samples = 0.0; | ||||
|     // define residual carrier phase | ||||
|     d_rem_carr_phase_rad = 0.0; | ||||
|  | ||||
|     // sample synchronization | ||||
|     d_sample_counter = 0; | ||||
|     //d_sample_counter_seconds = 0; | ||||
|     d_acq_sample_stamp = 0; | ||||
|  | ||||
|     d_enable_tracking = false; | ||||
|     d_pull_in = false; | ||||
|  | ||||
|     // CN0 estimation and lock detector buffers | ||||
|     d_cn0_estimation_counter = 0; | ||||
|     d_Prompt_buffer = new gr_complex[FLAGS_cn0_samples]; | ||||
|     d_carrier_lock_test = 1; | ||||
|     d_CN0_SNV_dB_Hz = 0; | ||||
|     d_carrier_lock_fail_counter = 0; | ||||
|     d_carrier_lock_threshold = FLAGS_carrier_lock_th; | ||||
|  | ||||
|     systemName["G"] = std::string("GPS"); | ||||
|  | ||||
|     //set_min_output_buffer((long int)300); | ||||
|  | ||||
|     d_acquisition_gnss_synchro = 0; | ||||
|     d_channel = 0; | ||||
|     d_acq_code_phase_samples = 0.0; | ||||
|     d_acq_carrier_doppler_hz = 0.0; | ||||
|     d_carrier_doppler_hz = 0.0; | ||||
|     d_acc_carrier_phase_rad = 0.0; | ||||
|     d_code_phase_samples = 0.0; | ||||
|  | ||||
|     d_rem_code_phase_chips = 0.0; | ||||
|     d_code_phase_step_chips = 0.0; | ||||
|     d_carrier_phase_step_rad = 0.0; | ||||
|  | ||||
|     set_relative_rate(1.0 / static_cast<double>(d_vector_length)); | ||||
| } | ||||
|  | ||||
|  | ||||
| void gps_l2_m_dll_pll_tracking_cc::start_tracking() | ||||
| { | ||||
|     /* | ||||
|      *  correct the code phase according to the delay between acq and trk | ||||
|      */ | ||||
|     d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples; | ||||
|     d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz; | ||||
|     d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples; | ||||
|  | ||||
|     long int acq_trk_diff_samples; | ||||
|     double acq_trk_diff_seconds; | ||||
|     acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp);  //-d_vector_length; | ||||
|     DLOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples; | ||||
|     acq_trk_diff_seconds = static_cast<float>(acq_trk_diff_samples) / static_cast<float>(d_fs_in); | ||||
|     // Doppler effect | ||||
|     // Fd=(C/(C+Vr))*F | ||||
|     double radial_velocity = (GPS_L2_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L2_FREQ_HZ; | ||||
|     // new chip and prn sequence periods based on acq Doppler | ||||
|     double T_chip_mod_seconds; | ||||
|     double T_prn_mod_seconds; | ||||
|     double T_prn_mod_samples; | ||||
|     d_code_freq_chips = radial_velocity * GPS_L2_M_CODE_RATE_HZ; | ||||
|     d_code_phase_step_chips = static_cast<double>(d_code_freq_chips) / static_cast<double>(d_fs_in); | ||||
|     T_chip_mod_seconds = 1 / d_code_freq_chips; | ||||
|     T_prn_mod_seconds = T_chip_mod_seconds * GPS_L2_M_CODE_LENGTH_CHIPS; | ||||
|     T_prn_mod_samples = T_prn_mod_seconds * static_cast<double>(d_fs_in); | ||||
|  | ||||
|     d_current_prn_length_samples = round(T_prn_mod_samples); | ||||
|  | ||||
|     double T_prn_true_seconds = GPS_L2_M_CODE_LENGTH_CHIPS / GPS_L2_M_CODE_RATE_HZ; | ||||
|     double T_prn_true_samples = T_prn_true_seconds * static_cast<double>(d_fs_in); | ||||
|     double T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds; | ||||
|     double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds; | ||||
|     double corrected_acq_phase_samples, delay_correction_samples; | ||||
|     corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<double>(d_fs_in)), T_prn_true_samples); | ||||
|     if (corrected_acq_phase_samples < 0) | ||||
|         { | ||||
|             corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples; | ||||
|         } | ||||
|     delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples; | ||||
|  | ||||
|     d_acq_code_phase_samples = corrected_acq_phase_samples; | ||||
|  | ||||
|     d_carrier_doppler_hz = d_acq_carrier_doppler_hz; | ||||
|     d_carrier_phase_step_rad = GPS_L2_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in); | ||||
|  | ||||
|     // DLL/PLL filter initialization | ||||
|     d_carrier_loop_filter.initialize();  // initialize the carrier filter | ||||
|     d_code_loop_filter.initialize();     // initialize the code filter | ||||
|  | ||||
|     // generate local reference ALWAYS starting at chip 1 (1 sample per chip) | ||||
|     gps_l2c_m_code_gen_complex(d_ca_code, d_acquisition_gnss_synchro->PRN); | ||||
|  | ||||
|     multicorrelator_cpu.set_local_code_and_taps(static_cast<int>(GPS_L2_M_CODE_LENGTH_CHIPS), d_ca_code, d_local_code_shift_chips); | ||||
|     for (int n = 0; n < d_n_correlator_taps; n++) | ||||
|         { | ||||
|             d_correlator_outs[n] = gr_complex(0, 0); | ||||
|         } | ||||
|  | ||||
|     d_carrier_lock_fail_counter = 0; | ||||
|     d_rem_code_phase_samples = 0; | ||||
|     d_rem_carr_phase_rad = 0.0; | ||||
|     d_rem_code_phase_chips = 0.0; | ||||
|     d_acc_carrier_phase_rad = 0.0; | ||||
|  | ||||
|     d_code_phase_samples = d_acq_code_phase_samples; | ||||
|  | ||||
|     std::string sys_ = &d_acquisition_gnss_synchro->System; | ||||
|     sys = sys_.substr(0, 1); | ||||
|  | ||||
|     // DEBUG OUTPUT | ||||
|     std::cout << "Tracking of GPS L2CM signal started on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl; | ||||
|     LOG(INFO) << "Starting GPS L2CM tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel; | ||||
|  | ||||
|     // enable tracking | ||||
|     d_pull_in = true; | ||||
|     d_enable_tracking = true; | ||||
|  | ||||
|     LOG(INFO) << "GPS L2CM PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz | ||||
|               << " Code Phase correction [samples]=" << delay_correction_samples | ||||
|               << " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples; | ||||
| } | ||||
|  | ||||
|  | ||||
| int gps_l2_m_dll_pll_tracking_cc::save_matfile() | ||||
| { | ||||
|     // READ DUMP FILE | ||||
|     std::ifstream::pos_type size; | ||||
|     int number_of_double_vars = 11; | ||||
|     int number_of_float_vars = 5; | ||||
|     int epoch_size_bytes = sizeof(unsigned long int) + sizeof(double) * number_of_double_vars + | ||||
|                            sizeof(float) * number_of_float_vars + sizeof(unsigned int); | ||||
|     std::ifstream dump_file; | ||||
|     dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit); | ||||
|     try | ||||
|         { | ||||
|             dump_file.open(d_dump_filename.c_str(), std::ios::binary | std::ios::ate); | ||||
|         } | ||||
|     catch (const std::ifstream::failure &e) | ||||
|         { | ||||
|             std::cerr << "Problem opening dump file:" << e.what() << std::endl; | ||||
|             return 1; | ||||
|         } | ||||
|     // count number of epochs and rewind | ||||
|     long int num_epoch = 0; | ||||
|     if (dump_file.is_open()) | ||||
|         { | ||||
|             size = dump_file.tellg(); | ||||
|             num_epoch = static_cast<long int>(size) / static_cast<long int>(epoch_size_bytes); | ||||
|             dump_file.seekg(0, std::ios::beg); | ||||
|         } | ||||
|     else | ||||
|         { | ||||
|             return 1; | ||||
|         } | ||||
|     float *abs_E = new float[num_epoch]; | ||||
|     float *abs_P = new float[num_epoch]; | ||||
|     float *abs_L = new float[num_epoch]; | ||||
|     float *Prompt_I = new float[num_epoch]; | ||||
|     float *Prompt_Q = new float[num_epoch]; | ||||
|     unsigned long int *PRN_start_sample_count = new unsigned long int[num_epoch]; | ||||
|     double *acc_carrier_phase_rad = new double[num_epoch]; | ||||
|     double *carrier_doppler_hz = new double[num_epoch]; | ||||
|     double *code_freq_chips = new double[num_epoch]; | ||||
|     double *carr_error_hz = new double[num_epoch]; | ||||
|     double *carr_error_filt_hz = new double[num_epoch]; | ||||
|     double *code_error_chips = new double[num_epoch]; | ||||
|     double *code_error_filt_chips = new double[num_epoch]; | ||||
|     double *CN0_SNV_dB_Hz = new double[num_epoch]; | ||||
|     double *carrier_lock_test = new double[num_epoch]; | ||||
|     double *aux1 = new double[num_epoch]; | ||||
|     double *aux2 = new double[num_epoch]; | ||||
|     unsigned int *PRN = new unsigned int[num_epoch]; | ||||
|  | ||||
|     try | ||||
|         { | ||||
|             if (dump_file.is_open()) | ||||
|                 { | ||||
|                     for (long int i = 0; i < num_epoch; i++) | ||||
|                         { | ||||
|                             dump_file.read(reinterpret_cast<char *>(&abs_E[i]), sizeof(float)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&abs_P[i]), sizeof(float)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&abs_L[i]), sizeof(float)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&Prompt_I[i]), sizeof(float)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&Prompt_Q[i]), sizeof(float)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&PRN_start_sample_count[i]), sizeof(unsigned long int)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&acc_carrier_phase_rad[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&carrier_doppler_hz[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&code_freq_chips[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&carr_error_hz[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&carr_error_filt_hz[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&code_error_chips[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&code_error_filt_chips[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&CN0_SNV_dB_Hz[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&carrier_lock_test[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&aux1[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&aux2[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&PRN[i]), sizeof(unsigned int)); | ||||
|                         } | ||||
|                 } | ||||
|             dump_file.close(); | ||||
|         } | ||||
|     catch (const std::ifstream::failure &e) | ||||
|         { | ||||
|             std::cerr << "Problem reading dump file:" << e.what() << std::endl; | ||||
|             delete[] abs_E; | ||||
|             delete[] abs_P; | ||||
|             delete[] abs_L; | ||||
|             delete[] Prompt_I; | ||||
|             delete[] Prompt_Q; | ||||
|             delete[] PRN_start_sample_count; | ||||
|             delete[] acc_carrier_phase_rad; | ||||
|             delete[] carrier_doppler_hz; | ||||
|             delete[] code_freq_chips; | ||||
|             delete[] carr_error_hz; | ||||
|             delete[] carr_error_filt_hz; | ||||
|             delete[] code_error_chips; | ||||
|             delete[] code_error_filt_chips; | ||||
|             delete[] CN0_SNV_dB_Hz; | ||||
|             delete[] carrier_lock_test; | ||||
|             delete[] aux1; | ||||
|             delete[] aux2; | ||||
|             delete[] PRN; | ||||
|             return 1; | ||||
|         } | ||||
|  | ||||
|     // WRITE MAT FILE | ||||
|     mat_t *matfp; | ||||
|     matvar_t *matvar; | ||||
|     std::string filename = d_dump_filename; | ||||
|     filename.erase(filename.length() - 4, 4); | ||||
|     filename.append(".mat"); | ||||
|     matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73); | ||||
|     if (reinterpret_cast<long *>(matfp) != NULL) | ||||
|         { | ||||
|             size_t dims[2] = {1, static_cast<size_t>(num_epoch)}; | ||||
|             matvar = Mat_VarCreate("abs_E", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_E, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("abs_P", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_P, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("abs_L", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_L, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("Prompt_I", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_I, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("Prompt_Q", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_Q, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("PRN_start_sample_count", MAT_C_UINT64, MAT_T_UINT64, 2, dims, PRN_start_sample_count, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("acc_carrier_phase_rad", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, acc_carrier_phase_rad, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("carrier_doppler_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carrier_doppler_hz, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("code_freq_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_freq_chips, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("carr_error_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carr_error_hz, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("carr_error_filt_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carr_error_filt_hz, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("code_error_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_error_chips, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("code_error_filt_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_error_filt_chips, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("CN0_SNV_dB_Hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, CN0_SNV_dB_Hz, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("carrier_lock_test", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carrier_lock_test, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("aux1", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, aux1, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("aux2", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, aux2, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("PRN", MAT_C_UINT32, MAT_T_UINT32, 2, dims, PRN, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|         } | ||||
|     Mat_Close(matfp); | ||||
|     delete[] abs_E; | ||||
|     delete[] abs_P; | ||||
|     delete[] abs_L; | ||||
|     delete[] Prompt_I; | ||||
|     delete[] Prompt_Q; | ||||
|     delete[] PRN_start_sample_count; | ||||
|     delete[] acc_carrier_phase_rad; | ||||
|     delete[] carrier_doppler_hz; | ||||
|     delete[] code_freq_chips; | ||||
|     delete[] carr_error_hz; | ||||
|     delete[] carr_error_filt_hz; | ||||
|     delete[] code_error_chips; | ||||
|     delete[] code_error_filt_chips; | ||||
|     delete[] CN0_SNV_dB_Hz; | ||||
|     delete[] carrier_lock_test; | ||||
|     delete[] aux1; | ||||
|     delete[] aux2; | ||||
|     delete[] PRN; | ||||
|     return 0; | ||||
| } | ||||
|  | ||||
|  | ||||
| gps_l2_m_dll_pll_tracking_cc::~gps_l2_m_dll_pll_tracking_cc() | ||||
| { | ||||
|     if (d_dump_file.is_open()) | ||||
|         { | ||||
|             try | ||||
|                 { | ||||
|                     d_dump_file.close(); | ||||
|                 } | ||||
|             catch (const std::exception &ex) | ||||
|                 { | ||||
|                     LOG(WARNING) << "Exception in destructor " << ex.what(); | ||||
|                 } | ||||
|         } | ||||
|     if (d_dump) | ||||
|         { | ||||
|             if (d_channel == 0) | ||||
|                 { | ||||
|                     std::cout << "Writing .mat files ..."; | ||||
|                 } | ||||
|             gps_l2_m_dll_pll_tracking_cc::save_matfile(); | ||||
|             if (d_channel == 0) | ||||
|                 { | ||||
|                     std::cout << " done." << std::endl; | ||||
|                 } | ||||
|         } | ||||
|     try | ||||
|         { | ||||
|             volk_gnsssdr_free(d_local_code_shift_chips); | ||||
|             volk_gnsssdr_free(d_correlator_outs); | ||||
|             volk_gnsssdr_free(d_ca_code); | ||||
|             delete[] d_Prompt_buffer; | ||||
|             multicorrelator_cpu.free(); | ||||
|         } | ||||
|     catch (const std::exception &ex) | ||||
|         { | ||||
|             LOG(WARNING) << "Exception in destructor " << ex.what(); | ||||
|         } | ||||
| } | ||||
|  | ||||
|  | ||||
| int gps_l2_m_dll_pll_tracking_cc::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)), | ||||
|     gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) | ||||
| { | ||||
|     // process vars | ||||
|     double carr_error_hz = 0; | ||||
|     double carr_error_filt_hz = 0; | ||||
|     double code_error_chips = 0; | ||||
|     double code_error_filt_chips = 0; | ||||
|  | ||||
|     // GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder | ||||
|     Gnss_Synchro current_synchro_data = Gnss_Synchro(); | ||||
|  | ||||
|     // Block input data and block output stream pointers | ||||
|     const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]); | ||||
|     Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]); | ||||
|  | ||||
|     if (d_enable_tracking == true) | ||||
|         { | ||||
|             // Fill the acquisition data | ||||
|             current_synchro_data = *d_acquisition_gnss_synchro; | ||||
|             // Receiver signal alignment | ||||
|             if (d_pull_in == true) | ||||
|                 { | ||||
|                     int samples_offset; | ||||
|                     double acq_trk_shif_correction_samples; | ||||
|                     int acq_to_trk_delay_samples; | ||||
|                     acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp; | ||||
|                     acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples)); | ||||
|                     samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples); | ||||
|                     current_synchro_data.Tracking_sample_counter = d_sample_counter + samples_offset; | ||||
|                     d_sample_counter = d_sample_counter + samples_offset;  // count for the processed samples | ||||
|                     d_pull_in = false; | ||||
|                     // take into account the carrier cycles accumulated in the pull in signal alignment | ||||
|                     d_acc_carrier_phase_rad -= d_carrier_phase_step_rad * samples_offset; | ||||
|                     current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad; | ||||
|                     current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz; | ||||
|                     current_synchro_data.fs = d_fs_in; | ||||
|                     current_synchro_data.correlation_length_ms = 20; | ||||
|                     consume_each(samples_offset);  // shift input to perform alignment with local replica | ||||
|                     return 0; | ||||
|                 } | ||||
|  | ||||
|             // ################# CARRIER WIPEOFF AND CORRELATORS ############################## | ||||
|             // perform carrier wipe-off and compute Early, Prompt and Late correlation | ||||
|             multicorrelator_cpu.set_input_output_vectors(d_correlator_outs, in); | ||||
|             multicorrelator_cpu.Carrier_wipeoff_multicorrelator_resampler(d_rem_carr_phase_rad, | ||||
|                 d_carrier_phase_step_rad, | ||||
|                 d_rem_code_phase_chips, | ||||
|                 d_code_phase_step_chips, | ||||
|                 d_current_prn_length_samples); | ||||
|  | ||||
|             // ################## PLL ########################################################## | ||||
|             // PLL discriminator | ||||
|             // Update PLL discriminator [rads/Ti -> Secs/Ti] | ||||
|             carr_error_hz = pll_cloop_two_quadrant_atan(d_correlator_outs[1]) / GPS_L2_TWO_PI; | ||||
|             // Carrier discriminator filter | ||||
|             carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz); | ||||
|             // New carrier Doppler frequency estimation | ||||
|             d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_error_filt_hz; | ||||
|             // New code Doppler frequency estimation | ||||
|             d_code_freq_chips = GPS_L2_M_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L2_M_CODE_RATE_HZ) / GPS_L2_FREQ_HZ); | ||||
|  | ||||
|             // ################## DLL ########################################################## | ||||
|             // DLL discriminator | ||||
|             code_error_chips = dll_nc_e_minus_l_normalized(d_correlator_outs[0], d_correlator_outs[2]);  // [chips/Ti] | ||||
|             // Code discriminator filter | ||||
|             code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips);  //[chips/second] | ||||
|             double T_chip_seconds = 1.0 / static_cast<double>(d_code_freq_chips); | ||||
|             double T_prn_seconds = T_chip_seconds * GPS_L2_M_CODE_LENGTH_CHIPS; | ||||
|             double code_error_filt_secs = (T_prn_seconds * code_error_filt_chips * T_chip_seconds);  //[seconds] | ||||
|             //double code_error_filt_secs = (GPS_L2_M_PERIOD * code_error_filt_chips) / GPS_L2_M_CODE_RATE_HZ; //[seconds] | ||||
|  | ||||
|             // ################## CARRIER AND CODE NCO BUFFER ALIGNMENT ####################### | ||||
|             // keep alignment parameters for the next input buffer | ||||
|             // Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation | ||||
|             double T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in); | ||||
|             double K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast<double>(d_fs_in); | ||||
|             d_current_prn_length_samples = round(K_blk_samples);  // round to a discrete number of samples | ||||
|  | ||||
|             //################### PLL COMMANDS ################################################# | ||||
|             // carrier phase step (NCO phase increment per sample) [rads/sample] | ||||
|             d_carrier_phase_step_rad = GPS_L2_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in); | ||||
|             // remnant carrier phase to prevent overflow in the code NCO | ||||
|             d_rem_carr_phase_rad = d_rem_carr_phase_rad + d_carrier_phase_step_rad * d_current_prn_length_samples; | ||||
|             d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_L2_TWO_PI); | ||||
|             // carrier phase accumulator | ||||
|             d_acc_carrier_phase_rad -= d_carrier_phase_step_rad * d_current_prn_length_samples; | ||||
|  | ||||
|             //################### DLL COMMANDS ################################################# | ||||
|             // code phase step (Code resampler phase increment per sample) [chips/sample] | ||||
|             d_code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in); | ||||
|             // remnant code phase [chips] | ||||
|             d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples;  // rounding error < 1 sample | ||||
|             d_rem_code_phase_chips = d_code_freq_chips * (d_rem_code_phase_samples / static_cast<double>(d_fs_in)); | ||||
|  | ||||
|             // ####### CN0 ESTIMATION AND LOCK DETECTORS ###### | ||||
|             if (d_cn0_estimation_counter < FLAGS_cn0_samples) | ||||
|                 { | ||||
|                     // fill buffer with prompt correlator output values | ||||
|                     d_Prompt_buffer[d_cn0_estimation_counter] = d_correlator_outs[1]; | ||||
|                     d_cn0_estimation_counter++; | ||||
|                 } | ||||
|             else | ||||
|                 { | ||||
|                     d_cn0_estimation_counter = 0; | ||||
|                     // Code lock indicator | ||||
|                     d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, FLAGS_cn0_samples, d_fs_in, GPS_L2_M_CODE_LENGTH_CHIPS); | ||||
|                     // Carrier lock indicator | ||||
|                     d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, FLAGS_cn0_samples); | ||||
|                     // Loss of lock detection | ||||
|                     if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < FLAGS_cn0_min) | ||||
|                         { | ||||
|                             d_carrier_lock_fail_counter++; | ||||
|                         } | ||||
|                     else | ||||
|                         { | ||||
|                             if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--; | ||||
|                         } | ||||
|                     if (d_carrier_lock_fail_counter > FLAGS_max_lock_fail) | ||||
|                         { | ||||
|                             std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl; | ||||
|                             LOG(INFO) << "Loss of lock in channel " << d_channel << "!"; | ||||
|                             this->message_port_pub(pmt::mp("events"), pmt::from_long(3));  //3 -> loss of lock | ||||
|                             d_carrier_lock_fail_counter = 0; | ||||
|                             d_enable_tracking = false;  // TODO: check if disabling tracking is consistent with the channel state machine | ||||
|                         } | ||||
|                 } | ||||
|             // ########### Output the tracking data to navigation and PVT ########## | ||||
|             current_synchro_data.Prompt_I = static_cast<double>(d_correlator_outs[1].real()); | ||||
|             current_synchro_data.Prompt_Q = static_cast<double>(d_correlator_outs[1].imag()); | ||||
|             current_synchro_data.Tracking_sample_counter = d_sample_counter + d_current_prn_length_samples; | ||||
|             current_synchro_data.Code_phase_samples = d_rem_code_phase_samples; | ||||
|             current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad; | ||||
|             current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz; | ||||
|             current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz; | ||||
|             current_synchro_data.Flag_valid_symbol_output = true; | ||||
|             current_synchro_data.correlation_length_ms = 20; | ||||
|         } | ||||
|     else | ||||
|         { | ||||
|             for (int n = 0; n < d_n_correlator_taps; n++) | ||||
|                 { | ||||
|                     d_correlator_outs[n] = gr_complex(0, 0); | ||||
|                 } | ||||
|             current_synchro_data.Tracking_sample_counter = d_sample_counter + d_current_prn_length_samples; | ||||
|             current_synchro_data.correlation_length_ms = 20; | ||||
|         } | ||||
|     //assign the GNURadio block output data | ||||
|     current_synchro_data.fs = d_fs_in; | ||||
|     *out[0] = current_synchro_data; | ||||
|  | ||||
|     if (d_dump) | ||||
|         { | ||||
|             // MULTIPLEXED FILE RECORDING - Record results to file | ||||
|             float prompt_I; | ||||
|             float prompt_Q; | ||||
|             float tmp_E, tmp_P, tmp_L; | ||||
|             double tmp_double; | ||||
|             prompt_I = d_correlator_outs[1].real(); | ||||
|             prompt_Q = d_correlator_outs[1].imag(); | ||||
|             tmp_E = std::abs<float>(d_correlator_outs[0]); | ||||
|             tmp_P = std::abs<float>(d_correlator_outs[1]); | ||||
|             tmp_L = std::abs<float>(d_correlator_outs[2]); | ||||
|             try | ||||
|                 { | ||||
|                     // EPR | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&tmp_E), sizeof(float)); | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&tmp_P), sizeof(float)); | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&tmp_L), sizeof(float)); | ||||
|                     // PROMPT I and Q (to analyze navigation symbols) | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&prompt_I), sizeof(float)); | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&prompt_Q), sizeof(float)); | ||||
|                     // PRN start sample stamp | ||||
|                     //tmp_float=(float)d_sample_counter; | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&d_sample_counter), sizeof(unsigned long int)); | ||||
|                     // accumulated carrier phase | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&d_acc_carrier_phase_rad), sizeof(double)); | ||||
|  | ||||
|                     // carrier and code frequency | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&d_carrier_doppler_hz), sizeof(double)); | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&d_code_freq_chips), sizeof(double)); | ||||
|  | ||||
|                     //PLL commands | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&carr_error_hz), sizeof(double)); | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&d_carrier_doppler_hz), sizeof(double)); | ||||
|  | ||||
|                     //DLL commands | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&code_error_chips), sizeof(double)); | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&code_error_filt_chips), sizeof(double)); | ||||
|  | ||||
|                     // CN0 and carrier lock test | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&d_CN0_SNV_dB_Hz), sizeof(double)); | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&d_carrier_lock_test), sizeof(double)); | ||||
|  | ||||
|                     // AUX vars (for debug purposes) | ||||
|                     tmp_double = d_rem_code_phase_samples; | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double)); | ||||
|                     tmp_double = static_cast<double>(d_sample_counter + d_current_prn_length_samples); | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double)); | ||||
|  | ||||
|                     // PRN | ||||
|                     unsigned int prn_ = d_acquisition_gnss_synchro->PRN; | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&prn_), sizeof(unsigned int)); | ||||
|                 } | ||||
|             catch (std::ifstream::failure &e) | ||||
|                 { | ||||
|                     LOG(WARNING) << "Exception writing trk dump file " << e.what(); | ||||
|                 } | ||||
|         } | ||||
|     consume_each(d_current_prn_length_samples); | ||||
|     d_sample_counter += d_current_prn_length_samples; | ||||
|     if (current_synchro_data.Flag_valid_symbol_output) | ||||
|         { | ||||
|             return 1; | ||||
|         } | ||||
|     else | ||||
|         { | ||||
|             return 0; | ||||
|         } | ||||
| } | ||||
|  | ||||
|  | ||||
| void gps_l2_m_dll_pll_tracking_cc::set_channel(unsigned int channel) | ||||
| { | ||||
|     d_channel = channel; | ||||
|     LOG(INFO) << "Tracking Channel set to " << d_channel; | ||||
|     // ############# ENABLE DATA FILE LOG ################# | ||||
|     if (d_dump == true) | ||||
|         { | ||||
|             if (d_dump_file.is_open() == false) | ||||
|                 { | ||||
|                     try | ||||
|                         { | ||||
|                             d_dump_filename.append(boost::lexical_cast<std::string>(d_channel)); | ||||
|                             d_dump_filename.append(".dat"); | ||||
|                             d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit); | ||||
|                             d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary); | ||||
|                             LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str(); | ||||
|                         } | ||||
|                     catch (std::ifstream::failure &e) | ||||
|                         { | ||||
|                             LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what(); | ||||
|                         } | ||||
|                 } | ||||
|         } | ||||
| } | ||||
|  | ||||
|  | ||||
| void gps_l2_m_dll_pll_tracking_cc::set_gnss_synchro(Gnss_Synchro *p_gnss_synchro) | ||||
| { | ||||
|     d_acquisition_gnss_synchro = p_gnss_synchro; | ||||
| } | ||||
| @@ -1,165 +0,0 @@ | ||||
| /*! | ||||
|  * \file gps_l2_m_dll_pll_tracking_cc.h | ||||
|  * \brief Interface of a code DLL + carrier PLL tracking block for GPS L2C | ||||
|  * \author Javier Arribas, 2015. jarribas(at)cttc.es | ||||
|  * | ||||
|  * Code DLL + carrier PLL according to the algorithms described in: | ||||
|  * K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen, | ||||
|  * A Software-Defined GPS and Galileo Receiver. A Single-Frequency Approach, | ||||
|  * Birkhauser, 2007 | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
|  * | ||||
|  * Copyright (C) 2010-2015  (see AUTHORS file for a list of contributors) | ||||
|  * | ||||
|  * GNSS-SDR is a software defined Global Navigation | ||||
|  *          Satellite Systems receiver | ||||
|  * | ||||
|  * This file is part of GNSS-SDR. | ||||
|  * | ||||
|  * GNSS-SDR is free software: you can redistribute it and/or modify | ||||
|  * it under the terms of the GNU General Public License as published by | ||||
|  * the Free Software Foundation, either version 3 of the License, or | ||||
|  * (at your option) any later version. | ||||
|  * | ||||
|  * GNSS-SDR is distributed in the hope that it will be useful, | ||||
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|  * GNU General Public License for more details. | ||||
|  * | ||||
|  * You should have received a copy of the GNU General Public License | ||||
|  * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>. | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
|  */ | ||||
|  | ||||
| #ifndef GNSS_SDR_GPS_L2_M_DLL_PLL_TRACKING_CC_H | ||||
| #define GNSS_SDR_GPS_L2_M_DLL_PLL_TRACKING_CC_H | ||||
|  | ||||
| #include "gnss_synchro.h" | ||||
| #include "tracking_2nd_DLL_filter.h" | ||||
| #include "tracking_2nd_PLL_filter.h" | ||||
| #include "cpu_multicorrelator.h" | ||||
| #include <gnuradio/block.h> | ||||
| #include <fstream> | ||||
| #include <map> | ||||
| #include <string> | ||||
|  | ||||
| class gps_l2_m_dll_pll_tracking_cc; | ||||
|  | ||||
| typedef boost::shared_ptr<gps_l2_m_dll_pll_tracking_cc> | ||||
|     gps_l2_m_dll_pll_tracking_cc_sptr; | ||||
|  | ||||
| gps_l2_m_dll_pll_tracking_cc_sptr | ||||
| gps_l2_m_dll_pll_make_tracking_cc(long if_freq, | ||||
|     long fs_in, unsigned int vector_length, | ||||
|     bool dump, | ||||
|     std::string dump_filename, | ||||
|     float pll_bw_hz, | ||||
|     float dll_bw_hz, | ||||
|     float early_late_space_chips); | ||||
|  | ||||
|  | ||||
| /*! | ||||
|  * \brief This class implements a DLL + PLL tracking loop block | ||||
|  */ | ||||
| class gps_l2_m_dll_pll_tracking_cc : public gr::block | ||||
| { | ||||
| public: | ||||
|     ~gps_l2_m_dll_pll_tracking_cc(); | ||||
|  | ||||
|     void set_channel(unsigned int channel); | ||||
|     void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro); | ||||
|     void start_tracking(); | ||||
|  | ||||
|     int general_work(int noutput_items, gr_vector_int& ninput_items, | ||||
|         gr_vector_const_void_star& input_items, gr_vector_void_star& output_items); | ||||
|  | ||||
|     void forecast(int noutput_items, gr_vector_int& ninput_items_required); | ||||
|  | ||||
| private: | ||||
|     friend gps_l2_m_dll_pll_tracking_cc_sptr | ||||
|     gps_l2_m_dll_pll_make_tracking_cc(long if_freq, | ||||
|         long fs_in, unsigned int vector_length, | ||||
|         bool dump, | ||||
|         std::string dump_filename, | ||||
|         float pll_bw_hz, | ||||
|         float dll_bw_hz, | ||||
|         float early_late_space_chips); | ||||
|  | ||||
|     gps_l2_m_dll_pll_tracking_cc(long if_freq, | ||||
|         long fs_in, unsigned int vector_length, | ||||
|         bool dump, | ||||
|         std::string dump_filename, | ||||
|         float pll_bw_hz, | ||||
|         float dll_bw_hz, | ||||
|         float early_late_space_chips); | ||||
|  | ||||
|     // tracking configuration vars | ||||
|     unsigned int d_vector_length; | ||||
|     bool d_dump; | ||||
|  | ||||
|     Gnss_Synchro* d_acquisition_gnss_synchro; | ||||
|     unsigned int d_channel; | ||||
|     long d_if_freq; | ||||
|     long d_fs_in; | ||||
|  | ||||
|     double d_early_late_spc_chips; | ||||
|  | ||||
|     // remaining code phase and carrier phase between tracking loops | ||||
|     double d_rem_code_phase_samples; | ||||
|     double d_rem_code_phase_chips; | ||||
|     double d_rem_carr_phase_rad; | ||||
|  | ||||
|     // PLL and DLL filter library | ||||
|     Tracking_2nd_DLL_filter d_code_loop_filter; | ||||
|     Tracking_2nd_PLL_filter d_carrier_loop_filter; | ||||
|  | ||||
|     // acquisition | ||||
|     double d_acq_code_phase_samples; | ||||
|     double d_acq_carrier_doppler_hz; | ||||
|     // correlator | ||||
|     int d_n_correlator_taps; | ||||
|     gr_complex* d_ca_code; | ||||
|     float* d_local_code_shift_chips; | ||||
|     gr_complex* d_correlator_outs; | ||||
|     cpu_multicorrelator multicorrelator_cpu; | ||||
|  | ||||
|     // tracking vars | ||||
|     double d_code_freq_chips; | ||||
|     double d_code_phase_step_chips; | ||||
|     double d_carrier_doppler_hz; | ||||
|     double d_carrier_phase_step_rad; | ||||
|     double d_acc_carrier_phase_rad; | ||||
|     double d_code_phase_samples; | ||||
|  | ||||
|     // PRN period in samples | ||||
|     int d_current_prn_length_samples; | ||||
|  | ||||
|     // processing samples counters | ||||
|     unsigned long int d_sample_counter; | ||||
|     unsigned long int d_acq_sample_stamp; | ||||
|  | ||||
|     // CN0 estimation and lock detector | ||||
|     int d_cn0_estimation_counter; | ||||
|     gr_complex* d_Prompt_buffer; | ||||
|     double d_carrier_lock_test; | ||||
|     double d_CN0_SNV_dB_Hz; | ||||
|     double d_carrier_lock_threshold; | ||||
|     int d_carrier_lock_fail_counter; | ||||
|  | ||||
|     // control vars | ||||
|     bool d_enable_tracking; | ||||
|     bool d_pull_in; | ||||
|  | ||||
|     // file dump | ||||
|     std::string d_dump_filename; | ||||
|     std::ofstream d_dump_file; | ||||
|  | ||||
|     std::map<std::string, std::string> systemName; | ||||
|     std::string sys; | ||||
|  | ||||
|     int save_matfile(); | ||||
| }; | ||||
|  | ||||
| #endif  //GNSS_SDR_GPS_L2_M_DLL_PLL_TRACKING_CC_H | ||||
| @@ -1,762 +0,0 @@ | ||||
| /*! | ||||
|  * \file gps_l5i_dll_pll_tracking_cc.cc | ||||
|  * \brief Implementation of a code DLL + carrier PLL tracking block for GPS L2C | ||||
|  * \author Carlos Aviles, 2010. carlos.avilesr(at)googlemail.com | ||||
|  *         Javier Arribas, 2011. jarribas(at)cttc.es | ||||
|  * | ||||
|  * Code DLL + carrier PLL according to the algorithms described in: | ||||
|  * [1] K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen, | ||||
|  * A Software-Defined GPS and Galileo Receiver. A Single-Frequency | ||||
|  * Approach, Birkhauser, 2007 | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
|  * | ||||
|  * Copyright (C) 2010-2015  (see AUTHORS file for a list of contributors) | ||||
|  * | ||||
|  * GNSS-SDR is a software defined Global Navigation | ||||
|  *          Satellite Systems receiver | ||||
|  * | ||||
|  * This file is part of GNSS-SDR. | ||||
|  * | ||||
|  * GNSS-SDR is free software: you can redistribute it and/or modify | ||||
|  * it under the terms of the GNU General Public License as published by | ||||
|  * the Free Software Foundation, either version 3 of the License, or | ||||
|  * (at your option) any later version. | ||||
|  * | ||||
|  * GNSS-SDR is distributed in the hope that it will be useful, | ||||
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|  * GNU General Public License for more details. | ||||
|  * | ||||
|  * You should have received a copy of the GNU General Public License | ||||
|  * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>. | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
|  */ | ||||
|  | ||||
| #include "gps_l5i_dll_pll_tracking_cc.h" | ||||
| #include "gps_l5_signal.h" | ||||
| #include "tracking_discriminators.h" | ||||
| #include "lock_detectors.h" | ||||
| #include "GPS_L5.h" | ||||
| #include "control_message_factory.h" | ||||
| #include "gnss_sdr_flags.h" | ||||
| #include <boost/lexical_cast.hpp> | ||||
| #include <gnuradio/io_signature.h> | ||||
| #include <glog/logging.h> | ||||
| #include <matio.h> | ||||
| #include <volk_gnsssdr/volk_gnsssdr.h> | ||||
| #include <cmath> | ||||
| #include <iostream> | ||||
| #include <memory> | ||||
| #include <sstream> | ||||
|  | ||||
|  | ||||
| using google::LogMessage; | ||||
|  | ||||
| gps_l5i_dll_pll_tracking_cc_sptr | ||||
| gps_l5i_dll_pll_make_tracking_cc( | ||||
|     long if_freq, | ||||
|     long fs_in, | ||||
|     unsigned int vector_length, | ||||
|     bool dump, | ||||
|     std::string dump_filename, | ||||
|     float pll_bw_hz, | ||||
|     float dll_bw_hz, | ||||
|     float early_late_space_chips) | ||||
| { | ||||
|     return gps_l5i_dll_pll_tracking_cc_sptr(new gps_l5i_dll_pll_tracking_cc(if_freq, | ||||
|         fs_in, vector_length, dump, dump_filename, pll_bw_hz, dll_bw_hz, early_late_space_chips)); | ||||
| } | ||||
|  | ||||
|  | ||||
| void gps_l5i_dll_pll_tracking_cc::forecast(int noutput_items, | ||||
|     gr_vector_int &ninput_items_required) | ||||
| { | ||||
|     if (noutput_items != 0) | ||||
|         { | ||||
|             ninput_items_required[0] = static_cast<int>(d_vector_length) * 2;  //set the required available samples in each call | ||||
|         } | ||||
| } | ||||
|  | ||||
|  | ||||
| gps_l5i_dll_pll_tracking_cc::gps_l5i_dll_pll_tracking_cc( | ||||
|     long if_freq, | ||||
|     long fs_in, | ||||
|     unsigned int vector_length, | ||||
|     bool dump, | ||||
|     std::string dump_filename, | ||||
|     float pll_bw_hz, | ||||
|     float dll_bw_hz, | ||||
|     float early_late_space_chips) : gr::block("gps_l5i_dll_pll_tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)), | ||||
|                                         gr::io_signature::make(1, 1, sizeof(Gnss_Synchro))) | ||||
| { | ||||
|     // Telemetry bit synchronization message port input | ||||
|     this->message_port_register_in(pmt::mp("preamble_timestamp_s")); | ||||
|     this->message_port_register_out(pmt::mp("events")); | ||||
|     // initialize internal vars | ||||
|     d_dump = dump; | ||||
|     d_if_freq = if_freq; | ||||
|     d_fs_in = fs_in; | ||||
|     d_vector_length = vector_length; | ||||
|     d_dump_filename = dump_filename; | ||||
|  | ||||
|     d_current_prn_length_samples = static_cast<int>(d_vector_length); | ||||
|  | ||||
|     // DLL/PLL filter initialization | ||||
|     d_carrier_loop_filter = Tracking_2nd_PLL_filter(GPS_L5i_PERIOD); | ||||
|     d_code_loop_filter = Tracking_2nd_DLL_filter(GPS_L5i_PERIOD); | ||||
|  | ||||
|     // Initialize tracking  ========================================== | ||||
|     d_code_loop_filter.set_DLL_BW(dll_bw_hz); | ||||
|     d_carrier_loop_filter.set_PLL_BW(pll_bw_hz); | ||||
|  | ||||
|     //--- DLL variables -------------------------------------------------------- | ||||
|     d_early_late_spc_chips = early_late_space_chips;  // Define early-late offset (in chips) | ||||
|  | ||||
|     // Initialization of local code replica | ||||
|     // Get space for a vector with the C/A code replica sampled 1x/chip | ||||
|     d_ca_code = static_cast<gr_complex *>(volk_gnsssdr_malloc(static_cast<int>(GPS_L5i_CODE_LENGTH_CHIPS) * sizeof(gr_complex), volk_gnsssdr_get_alignment())); | ||||
|  | ||||
|     // correlator outputs (scalar) | ||||
|     d_n_correlator_taps = 3;  // Early, Prompt, and Late | ||||
|     d_correlator_outs = static_cast<gr_complex *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(gr_complex), volk_gnsssdr_get_alignment())); | ||||
|     for (int n = 0; n < d_n_correlator_taps; n++) | ||||
|         { | ||||
|             d_correlator_outs[n] = gr_complex(0, 0); | ||||
|         } | ||||
|     d_local_code_shift_chips = static_cast<float *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(float), volk_gnsssdr_get_alignment())); | ||||
|     // Set TAPs delay values [chips] | ||||
|     d_local_code_shift_chips[0] = -d_early_late_spc_chips; | ||||
|     d_local_code_shift_chips[1] = 0.0; | ||||
|     d_local_code_shift_chips[2] = d_early_late_spc_chips; | ||||
|  | ||||
|     multicorrelator_cpu.init(2 * d_current_prn_length_samples, d_n_correlator_taps); | ||||
|  | ||||
|     //--- Perform initializations ------------------------------ | ||||
|     // define initial code frequency basis of NCO | ||||
|     d_code_freq_chips = GPS_L5i_CODE_RATE_HZ; | ||||
|     // define residual code phase (in chips) | ||||
|     d_rem_code_phase_samples = 0.0; | ||||
|     // define residual carrier phase | ||||
|     d_rem_carr_phase_rad = 0.0; | ||||
|  | ||||
|     // sample synchronization | ||||
|     d_sample_counter = 0; | ||||
|     //d_sample_counter_seconds = 0; | ||||
|     d_acq_sample_stamp = 0; | ||||
|  | ||||
|     d_enable_tracking = false; | ||||
|     d_pull_in = false; | ||||
|  | ||||
|     // CN0 estimation and lock detector buffers | ||||
|     d_cn0_estimation_counter = 0; | ||||
|     d_Prompt_buffer = new gr_complex[FLAGS_cn0_samples]; | ||||
|     d_carrier_lock_test = 1; | ||||
|     d_CN0_SNV_dB_Hz = 0; | ||||
|     d_carrier_lock_fail_counter = 0; | ||||
|     d_carrier_lock_threshold = FLAGS_carrier_lock_th; | ||||
|  | ||||
|     systemName["G"] = std::string("GPS"); | ||||
|  | ||||
|     //set_min_output_buffer((long int)300); | ||||
|  | ||||
|     d_acquisition_gnss_synchro = 0; | ||||
|     d_channel = 0; | ||||
|     d_acq_code_phase_samples = 0.0; | ||||
|     d_acq_carrier_doppler_hz = 0.0; | ||||
|     d_carrier_doppler_hz = 0.0; | ||||
|     d_acc_carrier_phase_rad = 0.0; | ||||
|     d_code_phase_samples = 0.0; | ||||
|  | ||||
|     d_rem_code_phase_chips = 0.0; | ||||
|     d_code_phase_step_chips = 0.0; | ||||
|     d_carrier_phase_step_rad = 0.0; | ||||
|  | ||||
|     set_relative_rate(1.0 / static_cast<double>(d_vector_length)); | ||||
| } | ||||
|  | ||||
|  | ||||
| void gps_l5i_dll_pll_tracking_cc::start_tracking() | ||||
| { | ||||
|     /* | ||||
|      *  correct the code phase according to the delay between acq and trk | ||||
|      */ | ||||
|     d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples; | ||||
|     d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz; | ||||
|     d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples; | ||||
|  | ||||
|     long int acq_trk_diff_samples; | ||||
|     double acq_trk_diff_seconds; | ||||
|     acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp);  //-d_vector_length; | ||||
|     DLOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples; | ||||
|     acq_trk_diff_seconds = static_cast<float>(acq_trk_diff_samples) / static_cast<float>(d_fs_in); | ||||
|     // Doppler effect | ||||
|     // Fd=(C/(C+Vr))*F | ||||
|     double radial_velocity = (GPS_L5_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L5_FREQ_HZ; | ||||
|     // new chip and prn sequence periods based on acq Doppler | ||||
|     double T_chip_mod_seconds; | ||||
|     double T_prn_mod_seconds; | ||||
|     double T_prn_mod_samples; | ||||
|     d_code_freq_chips = radial_velocity * GPS_L5i_CODE_RATE_HZ; | ||||
|     d_code_phase_step_chips = static_cast<double>(d_code_freq_chips) / static_cast<double>(d_fs_in); | ||||
|     T_chip_mod_seconds = 1 / d_code_freq_chips; | ||||
|     T_prn_mod_seconds = T_chip_mod_seconds * GPS_L5i_CODE_LENGTH_CHIPS; | ||||
|     T_prn_mod_samples = T_prn_mod_seconds * static_cast<double>(d_fs_in); | ||||
|  | ||||
|     d_current_prn_length_samples = round(T_prn_mod_samples); | ||||
|  | ||||
|     double T_prn_true_seconds = GPS_L5i_CODE_LENGTH_CHIPS / GPS_L5i_CODE_RATE_HZ; | ||||
|     double T_prn_true_samples = T_prn_true_seconds * static_cast<double>(d_fs_in); | ||||
|     double T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds; | ||||
|     double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds; | ||||
|     double corrected_acq_phase_samples, delay_correction_samples; | ||||
|     corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<double>(d_fs_in)), T_prn_true_samples); | ||||
|     if (corrected_acq_phase_samples < 0) | ||||
|         { | ||||
|             corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples; | ||||
|         } | ||||
|     delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples; | ||||
|  | ||||
|     d_acq_code_phase_samples = corrected_acq_phase_samples; | ||||
|  | ||||
|     d_carrier_doppler_hz = d_acq_carrier_doppler_hz; | ||||
|     d_carrier_phase_step_rad = GPS_L5_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in); | ||||
|  | ||||
|     // DLL/PLL filter initialization | ||||
|     d_carrier_loop_filter.initialize();  // initialize the carrier filter | ||||
|     d_code_loop_filter.initialize();     // initialize the code filter | ||||
|  | ||||
|     // generate local reference ALWAYS starting at chip 1 (1 sample per chip) | ||||
|     gps_l5i_code_gen_complex(d_ca_code, d_acquisition_gnss_synchro->PRN); | ||||
|  | ||||
|     multicorrelator_cpu.set_local_code_and_taps(static_cast<int>(GPS_L5i_CODE_LENGTH_CHIPS), d_ca_code, d_local_code_shift_chips); | ||||
|     for (int n = 0; n < d_n_correlator_taps; n++) | ||||
|         { | ||||
|             d_correlator_outs[n] = gr_complex(0, 0); | ||||
|         } | ||||
|  | ||||
|     d_carrier_lock_fail_counter = 0; | ||||
|     d_rem_code_phase_samples = 0; | ||||
|     d_rem_carr_phase_rad = 0.0; | ||||
|     d_rem_code_phase_chips = 0.0; | ||||
|     d_acc_carrier_phase_rad = 0.0; | ||||
|  | ||||
|     d_code_phase_samples = d_acq_code_phase_samples; | ||||
|  | ||||
|     std::string sys_ = &d_acquisition_gnss_synchro->System; | ||||
|     sys = sys_.substr(0, 1); | ||||
|  | ||||
|     // DEBUG OUTPUT | ||||
|     std::cout << "Tracking of GPS L5i signal started on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl; | ||||
|     LOG(INFO) << "Starting GPS L5i tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel; | ||||
|  | ||||
|     // enable tracking | ||||
|     d_pull_in = true; | ||||
|     d_enable_tracking = true; | ||||
|  | ||||
|     LOG(INFO) << "GPS L5i PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz | ||||
|               << " Code Phase correction [samples]=" << delay_correction_samples | ||||
|               << " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples; | ||||
| } | ||||
|  | ||||
|  | ||||
| int gps_l5i_dll_pll_tracking_cc::save_matfile() | ||||
| { | ||||
|     // READ DUMP FILE | ||||
|     std::ifstream::pos_type size; | ||||
|     int number_of_double_vars = 11; | ||||
|     int number_of_float_vars = 5; | ||||
|     int epoch_size_bytes = sizeof(unsigned long int) + sizeof(double) * number_of_double_vars + | ||||
|                            sizeof(float) * number_of_float_vars + sizeof(unsigned int); | ||||
|     std::ifstream dump_file; | ||||
|     dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit); | ||||
|     try | ||||
|         { | ||||
|             dump_file.open(d_dump_filename.c_str(), std::ios::binary | std::ios::ate); | ||||
|         } | ||||
|     catch (const std::ifstream::failure &e) | ||||
|         { | ||||
|             std::cerr << "Problem opening dump file:" << e.what() << std::endl; | ||||
|             return 1; | ||||
|         } | ||||
|     // count number of epochs and rewind | ||||
|     long int num_epoch = 0; | ||||
|     if (dump_file.is_open()) | ||||
|         { | ||||
|             size = dump_file.tellg(); | ||||
|             num_epoch = static_cast<long int>(size) / static_cast<long int>(epoch_size_bytes); | ||||
|             dump_file.seekg(0, std::ios::beg); | ||||
|         } | ||||
|     else | ||||
|         { | ||||
|             return 1; | ||||
|         } | ||||
|     float *abs_E = new float[num_epoch]; | ||||
|     float *abs_P = new float[num_epoch]; | ||||
|     float *abs_L = new float[num_epoch]; | ||||
|     float *Prompt_I = new float[num_epoch]; | ||||
|     float *Prompt_Q = new float[num_epoch]; | ||||
|     unsigned long int *PRN_start_sample_count = new unsigned long int[num_epoch]; | ||||
|     double *acc_carrier_phase_rad = new double[num_epoch]; | ||||
|     double *carrier_doppler_hz = new double[num_epoch]; | ||||
|     double *code_freq_chips = new double[num_epoch]; | ||||
|     double *carr_error_hz = new double[num_epoch]; | ||||
|     double *carr_error_filt_hz = new double[num_epoch]; | ||||
|     double *code_error_chips = new double[num_epoch]; | ||||
|     double *code_error_filt_chips = new double[num_epoch]; | ||||
|     double *CN0_SNV_dB_Hz = new double[num_epoch]; | ||||
|     double *carrier_lock_test = new double[num_epoch]; | ||||
|     double *aux1 = new double[num_epoch]; | ||||
|     double *aux2 = new double[num_epoch]; | ||||
|     unsigned int *PRN = new unsigned int[num_epoch]; | ||||
|  | ||||
|     try | ||||
|         { | ||||
|             if (dump_file.is_open()) | ||||
|                 { | ||||
|                     for (long int i = 0; i < num_epoch; i++) | ||||
|                         { | ||||
|                             dump_file.read(reinterpret_cast<char *>(&abs_E[i]), sizeof(float)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&abs_P[i]), sizeof(float)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&abs_L[i]), sizeof(float)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&Prompt_I[i]), sizeof(float)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&Prompt_Q[i]), sizeof(float)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&PRN_start_sample_count[i]), sizeof(unsigned long int)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&acc_carrier_phase_rad[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&carrier_doppler_hz[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&code_freq_chips[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&carr_error_hz[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&carr_error_filt_hz[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&code_error_chips[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&code_error_filt_chips[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&CN0_SNV_dB_Hz[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&carrier_lock_test[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&aux1[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&aux2[i]), sizeof(double)); | ||||
|                             dump_file.read(reinterpret_cast<char *>(&PRN[i]), sizeof(unsigned int)); | ||||
|                         } | ||||
|                 } | ||||
|             dump_file.close(); | ||||
|         } | ||||
|     catch (const std::ifstream::failure &e) | ||||
|         { | ||||
|             std::cerr << "Problem reading dump file:" << e.what() << std::endl; | ||||
|             delete[] abs_E; | ||||
|             delete[] abs_P; | ||||
|             delete[] abs_L; | ||||
|             delete[] Prompt_I; | ||||
|             delete[] Prompt_Q; | ||||
|             delete[] PRN_start_sample_count; | ||||
|             delete[] acc_carrier_phase_rad; | ||||
|             delete[] carrier_doppler_hz; | ||||
|             delete[] code_freq_chips; | ||||
|             delete[] carr_error_hz; | ||||
|             delete[] carr_error_filt_hz; | ||||
|             delete[] code_error_chips; | ||||
|             delete[] code_error_filt_chips; | ||||
|             delete[] CN0_SNV_dB_Hz; | ||||
|             delete[] carrier_lock_test; | ||||
|             delete[] aux1; | ||||
|             delete[] aux2; | ||||
|             delete[] PRN; | ||||
|             return 1; | ||||
|         } | ||||
|  | ||||
|     // WRITE MAT FILE | ||||
|     mat_t *matfp; | ||||
|     matvar_t *matvar; | ||||
|     std::string filename = d_dump_filename; | ||||
|     filename.erase(filename.length() - 4, 4); | ||||
|     filename.append(".mat"); | ||||
|     matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73); | ||||
|     if (reinterpret_cast<long *>(matfp) != NULL) | ||||
|         { | ||||
|             size_t dims[2] = {1, static_cast<size_t>(num_epoch)}; | ||||
|             matvar = Mat_VarCreate("abs_E", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_E, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("abs_P", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_P, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("abs_L", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_L, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("Prompt_I", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_I, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("Prompt_Q", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_Q, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("PRN_start_sample_count", MAT_C_UINT64, MAT_T_UINT64, 2, dims, PRN_start_sample_count, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("acc_carrier_phase_rad", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, acc_carrier_phase_rad, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("carrier_doppler_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carrier_doppler_hz, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("code_freq_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_freq_chips, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("carr_error_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carr_error_hz, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("carr_error_filt_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carr_error_filt_hz, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("code_error_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_error_chips, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("code_error_filt_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_error_filt_chips, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("CN0_SNV_dB_Hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, CN0_SNV_dB_Hz, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("carrier_lock_test", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carrier_lock_test, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("aux1", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, aux1, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("aux2", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, aux2, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|  | ||||
|             matvar = Mat_VarCreate("PRN", MAT_C_UINT32, MAT_T_UINT32, 2, dims, PRN, 0); | ||||
|             Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB);  // or MAT_COMPRESSION_NONE | ||||
|             Mat_VarFree(matvar); | ||||
|         } | ||||
|     Mat_Close(matfp); | ||||
|     delete[] abs_E; | ||||
|     delete[] abs_P; | ||||
|     delete[] abs_L; | ||||
|     delete[] Prompt_I; | ||||
|     delete[] Prompt_Q; | ||||
|     delete[] PRN_start_sample_count; | ||||
|     delete[] acc_carrier_phase_rad; | ||||
|     delete[] carrier_doppler_hz; | ||||
|     delete[] code_freq_chips; | ||||
|     delete[] carr_error_hz; | ||||
|     delete[] carr_error_filt_hz; | ||||
|     delete[] code_error_chips; | ||||
|     delete[] code_error_filt_chips; | ||||
|     delete[] CN0_SNV_dB_Hz; | ||||
|     delete[] carrier_lock_test; | ||||
|     delete[] aux1; | ||||
|     delete[] aux2; | ||||
|     delete[] PRN; | ||||
|     return 0; | ||||
| } | ||||
|  | ||||
|  | ||||
| gps_l5i_dll_pll_tracking_cc::~gps_l5i_dll_pll_tracking_cc() | ||||
| { | ||||
|     if (d_dump_file.is_open()) | ||||
|         { | ||||
|             try | ||||
|                 { | ||||
|                     d_dump_file.close(); | ||||
|                 } | ||||
|             catch (const std::exception &ex) | ||||
|                 { | ||||
|                     LOG(WARNING) << "Exception in destructor " << ex.what(); | ||||
|                 } | ||||
|         } | ||||
|     if (d_dump) | ||||
|         { | ||||
|             if (d_channel == 0) | ||||
|                 { | ||||
|                     std::cout << "Writing .mat files ..."; | ||||
|                 } | ||||
|             gps_l5i_dll_pll_tracking_cc::save_matfile(); | ||||
|             if (d_channel == 0) | ||||
|                 { | ||||
|                     std::cout << " done." << std::endl; | ||||
|                 } | ||||
|         } | ||||
|     try | ||||
|         { | ||||
|             volk_gnsssdr_free(d_local_code_shift_chips); | ||||
|             volk_gnsssdr_free(d_correlator_outs); | ||||
|             volk_gnsssdr_free(d_ca_code); | ||||
|             delete[] d_Prompt_buffer; | ||||
|             multicorrelator_cpu.free(); | ||||
|         } | ||||
|     catch (const std::exception &ex) | ||||
|         { | ||||
|             LOG(WARNING) << "Exception in destructor " << ex.what(); | ||||
|         } | ||||
| } | ||||
|  | ||||
|  | ||||
| int gps_l5i_dll_pll_tracking_cc::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)), | ||||
|     gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) | ||||
| { | ||||
|     // process vars | ||||
|     double carr_error_hz = 0; | ||||
|     double carr_error_filt_hz = 0; | ||||
|     double code_error_chips = 0; | ||||
|     double code_error_filt_chips = 0; | ||||
|  | ||||
|     // GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder | ||||
|     Gnss_Synchro current_synchro_data = Gnss_Synchro(); | ||||
|  | ||||
|     // Block input data and block output stream pointers | ||||
|     const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]); | ||||
|     Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]); | ||||
|  | ||||
|     if (d_enable_tracking == true) | ||||
|         { | ||||
|             // Fill the acquisition data | ||||
|             current_synchro_data = *d_acquisition_gnss_synchro; | ||||
|             // Receiver signal alignment | ||||
|             if (d_pull_in == true) | ||||
|                 { | ||||
|                     int samples_offset; | ||||
|                     double acq_trk_shif_correction_samples; | ||||
|                     int acq_to_trk_delay_samples; | ||||
|                     acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp; | ||||
|                     acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples)); | ||||
|                     samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples); | ||||
|                     current_synchro_data.Tracking_sample_counter = d_sample_counter + samples_offset; | ||||
|                     d_sample_counter = d_sample_counter + samples_offset;  // count for the processed samples | ||||
|                     d_pull_in = false; | ||||
|                     // take into account the carrier cycles accumulated in the pull in signal alignment | ||||
|                     d_acc_carrier_phase_rad -= d_carrier_phase_step_rad * samples_offset; | ||||
|                     current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad; | ||||
|                     current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz; | ||||
|                     current_synchro_data.fs = d_fs_in; | ||||
|                     current_synchro_data.correlation_length_ms = 1; | ||||
|                     consume_each(samples_offset);  // shift input to perform alignment with local replica | ||||
|                     return 0; | ||||
|                 } | ||||
|  | ||||
|             // ################# CARRIER WIPEOFF AND CORRELATORS ############################## | ||||
|             // perform carrier wipe-off and compute Early, Prompt and Late correlation | ||||
|             multicorrelator_cpu.set_input_output_vectors(d_correlator_outs, in); | ||||
|             multicorrelator_cpu.Carrier_wipeoff_multicorrelator_resampler(d_rem_carr_phase_rad, | ||||
|                 d_carrier_phase_step_rad, | ||||
|                 d_rem_code_phase_chips, | ||||
|                 d_code_phase_step_chips, | ||||
|                 d_current_prn_length_samples); | ||||
|  | ||||
|             // ################## PLL ########################################################## | ||||
|             // PLL discriminator | ||||
|             // Update PLL discriminator [rads/Ti -> Secs/Ti] | ||||
|             carr_error_hz = pll_cloop_two_quadrant_atan(d_correlator_outs[1]) / GPS_L5_TWO_PI; | ||||
|             // Carrier discriminator filter | ||||
|             carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz); | ||||
|             // New carrier Doppler frequency estimation | ||||
|             d_carrier_doppler_hz = d_acq_carrier_doppler_hz + carr_error_filt_hz; | ||||
|             // New code Doppler frequency estimation | ||||
|             d_code_freq_chips = GPS_L5i_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L5i_CODE_RATE_HZ) / GPS_L5_FREQ_HZ); | ||||
|  | ||||
|             // ################## DLL ########################################################## | ||||
|             // DLL discriminator | ||||
|             code_error_chips = dll_nc_e_minus_l_normalized(d_correlator_outs[0], d_correlator_outs[2]);  // [chips/Ti] | ||||
|             // Code discriminator filter | ||||
|             code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips);  //[chips/second] | ||||
|             double T_chip_seconds = 1.0 / static_cast<double>(d_code_freq_chips); | ||||
|             double T_prn_seconds = T_chip_seconds * GPS_L5i_CODE_LENGTH_CHIPS; | ||||
|             double code_error_filt_secs = (T_prn_seconds * code_error_filt_chips * T_chip_seconds);  //[seconds] | ||||
|             //double code_error_filt_secs = (GPS_L5i_PERIOD * code_error_filt_chips) / GPS_L5i_CODE_RATE_HZ; //[seconds] | ||||
|  | ||||
|             // ################## CARRIER AND CODE NCO BUFFER ALIGNMENT ####################### | ||||
|             // keep alignment parameters for the next input buffer | ||||
|             // Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation | ||||
|             double T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in); | ||||
|             double K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast<double>(d_fs_in); | ||||
|             d_current_prn_length_samples = round(K_blk_samples);  // round to a discrete number of samples | ||||
|  | ||||
|             //################### PLL COMMANDS ################################################# | ||||
|             // carrier phase step (NCO phase increment per sample) [rads/sample] | ||||
|             d_carrier_phase_step_rad = GPS_L5_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in); | ||||
|             // remnant carrier phase to prevent overflow in the code NCO | ||||
|             d_rem_carr_phase_rad = d_rem_carr_phase_rad + d_carrier_phase_step_rad * d_current_prn_length_samples; | ||||
|             d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_L5_TWO_PI); | ||||
|             // carrier phase accumulator | ||||
|             d_acc_carrier_phase_rad -= d_carrier_phase_step_rad * d_current_prn_length_samples; | ||||
|  | ||||
|             //################### DLL COMMANDS ################################################# | ||||
|             // code phase step (Code resampler phase increment per sample) [chips/sample] | ||||
|             d_code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in); | ||||
|             // remnant code phase [chips] | ||||
|             d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples;  // rounding error < 1 sample | ||||
|             d_rem_code_phase_chips = d_code_freq_chips * (d_rem_code_phase_samples / static_cast<double>(d_fs_in)); | ||||
|  | ||||
|             // ####### CN0 ESTIMATION AND LOCK DETECTORS ###### | ||||
|             if (d_cn0_estimation_counter < FLAGS_cn0_samples) | ||||
|                 { | ||||
|                     // fill buffer with prompt correlator output values | ||||
|                     d_Prompt_buffer[d_cn0_estimation_counter] = d_correlator_outs[1]; | ||||
|                     d_cn0_estimation_counter++; | ||||
|                 } | ||||
|             else | ||||
|                 { | ||||
|                     d_cn0_estimation_counter = 0; | ||||
|                     // Code lock indicator | ||||
|                     d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, FLAGS_cn0_samples, d_fs_in, GPS_L5i_CODE_LENGTH_CHIPS); | ||||
|                     // Carrier lock indicator | ||||
|                     d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, FLAGS_cn0_samples); | ||||
|                     // Loss of lock detection | ||||
|                     if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < FLAGS_cn0_min) | ||||
|                         { | ||||
|                             d_carrier_lock_fail_counter++; | ||||
|                         } | ||||
|                     else | ||||
|                         { | ||||
|                             if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--; | ||||
|                         } | ||||
|                     if (d_carrier_lock_fail_counter > FLAGS_max_lock_fail) | ||||
|                         { | ||||
|                             std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl; | ||||
|                             LOG(INFO) << "Loss of lock in channel " << d_channel << "!"; | ||||
|                             this->message_port_pub(pmt::mp("events"), pmt::from_long(3));  //3 -> loss of lock | ||||
|                             d_carrier_lock_fail_counter = 0; | ||||
|                             d_enable_tracking = false;  // TODO: check if disabling tracking is consistent with the channel state machine | ||||
|                         } | ||||
|                 } | ||||
|             // ########### Output the tracking data to navigation and PVT ########## | ||||
|             current_synchro_data.Prompt_I = static_cast<double>(d_correlator_outs[1].real()); | ||||
|             current_synchro_data.Prompt_Q = static_cast<double>(d_correlator_outs[1].imag()); | ||||
|             current_synchro_data.Tracking_sample_counter = d_sample_counter + d_current_prn_length_samples; | ||||
|             current_synchro_data.Code_phase_samples = d_rem_code_phase_samples; | ||||
|             current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad; | ||||
|             current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz; | ||||
|             current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz; | ||||
|             current_synchro_data.Flag_valid_symbol_output = true; | ||||
|             current_synchro_data.correlation_length_ms = 1; | ||||
|         } | ||||
|     else | ||||
|         { | ||||
|             for (int n = 0; n < d_n_correlator_taps; n++) | ||||
|                 { | ||||
|                     d_correlator_outs[n] = gr_complex(0, 0); | ||||
|                 } | ||||
|             current_synchro_data.Tracking_sample_counter = d_sample_counter + d_current_prn_length_samples; | ||||
|             current_synchro_data.correlation_length_ms = 1; | ||||
|         } | ||||
|     //assign the GNURadio block output data | ||||
|     current_synchro_data.fs = d_fs_in; | ||||
|     *out[0] = current_synchro_data; | ||||
|  | ||||
|     if (d_dump) | ||||
|         { | ||||
|             // MULTIPLEXED FILE RECORDING - Record results to file | ||||
|             float prompt_I; | ||||
|             float prompt_Q; | ||||
|             float tmp_E, tmp_P, tmp_L; | ||||
|             double tmp_double; | ||||
|             prompt_I = d_correlator_outs[1].real(); | ||||
|             prompt_Q = d_correlator_outs[1].imag(); | ||||
|             tmp_E = std::abs<float>(d_correlator_outs[0]); | ||||
|             tmp_P = std::abs<float>(d_correlator_outs[1]); | ||||
|             tmp_L = std::abs<float>(d_correlator_outs[2]); | ||||
|             try | ||||
|                 { | ||||
|                     // EPR | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&tmp_E), sizeof(float)); | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&tmp_P), sizeof(float)); | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&tmp_L), sizeof(float)); | ||||
|                     // PROMPT I and Q (to analyze navigation symbols) | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&prompt_I), sizeof(float)); | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&prompt_Q), sizeof(float)); | ||||
|                     // PRN start sample stamp | ||||
|                     //tmp_float=(float)d_sample_counter; | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&d_sample_counter), sizeof(unsigned long int)); | ||||
|                     // accumulated carrier phase | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&d_acc_carrier_phase_rad), sizeof(double)); | ||||
|  | ||||
|                     // carrier and code frequency | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&d_carrier_doppler_hz), sizeof(double)); | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&d_code_freq_chips), sizeof(double)); | ||||
|  | ||||
|                     //PLL commands | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&carr_error_hz), sizeof(double)); | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&d_carrier_doppler_hz), sizeof(double)); | ||||
|  | ||||
|                     //DLL commands | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&code_error_chips), sizeof(double)); | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&code_error_filt_chips), sizeof(double)); | ||||
|  | ||||
|                     // CN0 and carrier lock test | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&d_CN0_SNV_dB_Hz), sizeof(double)); | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&d_carrier_lock_test), sizeof(double)); | ||||
|  | ||||
|                     // AUX vars (for debug purposes) | ||||
|                     tmp_double = d_rem_code_phase_samples; | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double)); | ||||
|                     tmp_double = static_cast<double>(d_sample_counter + d_current_prn_length_samples); | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double)); | ||||
|  | ||||
|                     // PRN | ||||
|                     unsigned int prn_ = d_acquisition_gnss_synchro->PRN; | ||||
|                     d_dump_file.write(reinterpret_cast<char *>(&prn_), sizeof(unsigned int)); | ||||
|                 } | ||||
|             catch (std::ifstream::failure &e) | ||||
|                 { | ||||
|                     LOG(WARNING) << "Exception writing trk dump file " << e.what(); | ||||
|                 } | ||||
|         } | ||||
|     consume_each(d_current_prn_length_samples);        // this is necessary in gr::block derivates | ||||
|     d_sample_counter += d_current_prn_length_samples;  // count for the processed samples | ||||
|     if (current_synchro_data.Flag_valid_symbol_output) | ||||
|         { | ||||
|             return 1; | ||||
|         } | ||||
|     else | ||||
|         { | ||||
|             return 0; | ||||
|         } | ||||
| } | ||||
|  | ||||
|  | ||||
| void gps_l5i_dll_pll_tracking_cc::set_channel(unsigned int channel) | ||||
| { | ||||
|     d_channel = channel; | ||||
|     LOG(INFO) << "Tracking Channel set to " << d_channel; | ||||
|     // ############# ENABLE DATA FILE LOG ################# | ||||
|     if (d_dump == true) | ||||
|         { | ||||
|             if (d_dump_file.is_open() == false) | ||||
|                 { | ||||
|                     try | ||||
|                         { | ||||
|                             d_dump_filename.append(boost::lexical_cast<std::string>(d_channel)); | ||||
|                             d_dump_filename.append(".dat"); | ||||
|                             d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit); | ||||
|                             d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary); | ||||
|                             LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str(); | ||||
|                         } | ||||
|                     catch (std::ifstream::failure &e) | ||||
|                         { | ||||
|                             LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what(); | ||||
|                         } | ||||
|                 } | ||||
|         } | ||||
| } | ||||
|  | ||||
|  | ||||
| void gps_l5i_dll_pll_tracking_cc::set_gnss_synchro(Gnss_Synchro *p_gnss_synchro) | ||||
| { | ||||
|     d_acquisition_gnss_synchro = p_gnss_synchro; | ||||
| } | ||||
| @@ -1,165 +0,0 @@ | ||||
| /*! | ||||
|  * \file gps_l5i_dll_pll_tracking_cc.h | ||||
|  * \brief Interface of a code DLL + carrier PLL tracking block for GPS L2C | ||||
|  * \author Javier Arribas, 2015. jarribas(at)cttc.es | ||||
|  * | ||||
|  * Code DLL + carrier PLL according to the algorithms described in: | ||||
|  * K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen, | ||||
|  * A Software-Defined GPS and Galileo Receiver. A Single-Frequency Approach, | ||||
|  * Birkhauser, 2007 | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
|  * | ||||
|  * Copyright (C) 2010-2015  (see AUTHORS file for a list of contributors) | ||||
|  * | ||||
|  * GNSS-SDR is a software defined Global Navigation | ||||
|  *          Satellite Systems receiver | ||||
|  * | ||||
|  * This file is part of GNSS-SDR. | ||||
|  * | ||||
|  * GNSS-SDR is free software: you can redistribute it and/or modify | ||||
|  * it under the terms of the GNU General Public License as published by | ||||
|  * the Free Software Foundation, either version 3 of the License, or | ||||
|  * (at your option) any later version. | ||||
|  * | ||||
|  * GNSS-SDR is distributed in the hope that it will be useful, | ||||
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|  * GNU General Public License for more details. | ||||
|  * | ||||
|  * You should have received a copy of the GNU General Public License | ||||
|  * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>. | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
|  */ | ||||
|  | ||||
| #ifndef GNSS_SDR_GPS_L5i_DLL_PLL_TRACKING_CC_H | ||||
| #define GNSS_SDR_GPS_L5i_DLL_PLL_TRACKING_CC_H | ||||
|  | ||||
| #include "gnss_synchro.h" | ||||
| #include "tracking_2nd_DLL_filter.h" | ||||
| #include "tracking_2nd_PLL_filter.h" | ||||
| #include "cpu_multicorrelator.h" | ||||
| #include <gnuradio/block.h> | ||||
| #include <fstream> | ||||
| #include <map> | ||||
| #include <string> | ||||
|  | ||||
| class gps_l5i_dll_pll_tracking_cc; | ||||
|  | ||||
| typedef boost::shared_ptr<gps_l5i_dll_pll_tracking_cc> | ||||
|     gps_l5i_dll_pll_tracking_cc_sptr; | ||||
|  | ||||
| gps_l5i_dll_pll_tracking_cc_sptr | ||||
| gps_l5i_dll_pll_make_tracking_cc(long if_freq, | ||||
|     long fs_in, unsigned int vector_length, | ||||
|     bool dump, | ||||
|     std::string dump_filename, | ||||
|     float pll_bw_hz, | ||||
|     float dll_bw_hz, | ||||
|     float early_late_space_chips); | ||||
|  | ||||
|  | ||||
| /*! | ||||
|  * \brief This class implements a DLL + PLL tracking loop block | ||||
|  */ | ||||
| class gps_l5i_dll_pll_tracking_cc : public gr::block | ||||
| { | ||||
| public: | ||||
|     ~gps_l5i_dll_pll_tracking_cc(); | ||||
|  | ||||
|     void set_channel(unsigned int channel); | ||||
|     void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro); | ||||
|     void start_tracking(); | ||||
|  | ||||
|     int general_work(int noutput_items, gr_vector_int& ninput_items, | ||||
|         gr_vector_const_void_star& input_items, gr_vector_void_star& output_items); | ||||
|  | ||||
|     void forecast(int noutput_items, gr_vector_int& ninput_items_required); | ||||
|  | ||||
| private: | ||||
|     friend gps_l5i_dll_pll_tracking_cc_sptr | ||||
|     gps_l5i_dll_pll_make_tracking_cc(long if_freq, | ||||
|         long fs_in, unsigned int vector_length, | ||||
|         bool dump, | ||||
|         std::string dump_filename, | ||||
|         float pll_bw_hz, | ||||
|         float dll_bw_hz, | ||||
|         float early_late_space_chips); | ||||
|  | ||||
|     gps_l5i_dll_pll_tracking_cc(long if_freq, | ||||
|         long fs_in, unsigned int vector_length, | ||||
|         bool dump, | ||||
|         std::string dump_filename, | ||||
|         float pll_bw_hz, | ||||
|         float dll_bw_hz, | ||||
|         float early_late_space_chips); | ||||
|  | ||||
|     // tracking configuration vars | ||||
|     unsigned int d_vector_length; | ||||
|     bool d_dump; | ||||
|  | ||||
|     Gnss_Synchro* d_acquisition_gnss_synchro; | ||||
|     unsigned int d_channel; | ||||
|     long d_if_freq; | ||||
|     long d_fs_in; | ||||
|  | ||||
|     double d_early_late_spc_chips; | ||||
|  | ||||
|     // remaining code phase and carrier phase between tracking loops | ||||
|     double d_rem_code_phase_samples; | ||||
|     double d_rem_code_phase_chips; | ||||
|     double d_rem_carr_phase_rad; | ||||
|  | ||||
|     // PLL and DLL filter library | ||||
|     Tracking_2nd_DLL_filter d_code_loop_filter; | ||||
|     Tracking_2nd_PLL_filter d_carrier_loop_filter; | ||||
|  | ||||
|     // acquisition | ||||
|     double d_acq_code_phase_samples; | ||||
|     double d_acq_carrier_doppler_hz; | ||||
|     // correlator | ||||
|     int d_n_correlator_taps; | ||||
|     gr_complex* d_ca_code; | ||||
|     float* d_local_code_shift_chips; | ||||
|     gr_complex* d_correlator_outs; | ||||
|     cpu_multicorrelator multicorrelator_cpu; | ||||
|  | ||||
|     // tracking vars | ||||
|     double d_code_freq_chips; | ||||
|     double d_code_phase_step_chips; | ||||
|     double d_carrier_doppler_hz; | ||||
|     double d_carrier_phase_step_rad; | ||||
|     double d_acc_carrier_phase_rad; | ||||
|     double d_code_phase_samples; | ||||
|  | ||||
|     // PRN period in samples | ||||
|     int d_current_prn_length_samples; | ||||
|  | ||||
|     // processing samples counters | ||||
|     unsigned long int d_sample_counter; | ||||
|     unsigned long int d_acq_sample_stamp; | ||||
|  | ||||
|     // CN0 estimation and lock detector | ||||
|     int d_cn0_estimation_counter; | ||||
|     gr_complex* d_Prompt_buffer; | ||||
|     double d_carrier_lock_test; | ||||
|     double d_CN0_SNV_dB_Hz; | ||||
|     double d_carrier_lock_threshold; | ||||
|     int d_carrier_lock_fail_counter; | ||||
|  | ||||
|     // control vars | ||||
|     bool d_enable_tracking; | ||||
|     bool d_pull_in; | ||||
|  | ||||
|     // file dump | ||||
|     std::string d_dump_filename; | ||||
|     std::ofstream d_dump_file; | ||||
|  | ||||
|     std::map<std::string, std::string> systemName; | ||||
|     std::string sys; | ||||
|  | ||||
|     int save_matfile(); | ||||
| }; | ||||
|  | ||||
| #endif  //GNSS_SDR_GPS_L5i_DLL_PLL_TRACKING_CC_H | ||||
| @@ -168,6 +168,7 @@ void GpsL2MPcpsAcquisitionTest::init() | ||||
|     config->set_property("Acquisition_2S.doppler_max", std::to_string(doppler_max)); | ||||
|     config->set_property("Acquisition_2S.doppler_step", std::to_string(doppler_step)); | ||||
|     config->set_property("Acquisition_2S.repeat_satellite", "false"); | ||||
|     config->set_property("Acquisition_2S.make_two_steps", "false"); | ||||
| } | ||||
|  | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Antonio Ramos
					Antonio Ramos