Remove pcps_acq_sc

Integrate cshort into pcps_acq_cc
This commit is contained in:
Antonio Ramos 2018-02-06 16:55:09 +01:00
parent 41712e4722
commit 25634963cc
15 changed files with 109 additions and 1349 deletions

View File

@ -91,21 +91,13 @@ GalileoE1PcpsAmbiguousAcquisition::GalileoE1PcpsAmbiguousAcquisition(
if (item_type_.compare("cshort") == 0 )
{
item_size_ = sizeof(lv_16sc_t);
acquisition_sc_ = pcps_make_acquisition_sc(sampled_ms_, max_dwells_,
doppler_max_, if_, fs_in_, samples_per_ms, code_length_,
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_,
dump_filename_);
DLOG(INFO) << "acquisition(" << acquisition_sc_->unique_id() << ")";
}
else
{
item_size_ = sizeof(gr_complex);
acquisition_cc_ = pcps_make_acquisition_cc(sampled_ms_, max_dwells_,
doppler_max_, if_, fs_in_, samples_per_ms, code_length_,
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_,
dump_filename_);
DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id() << ")";
}
else { item_size_ = sizeof(gr_complex); }
acquisition_cc_ = pcps_make_acquisition_cc(sampled_ms_, max_dwells_,
doppler_max_, if_, fs_in_, samples_per_ms, code_length_,
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_,
dump_filename_, item_size_);
DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id() << ")";
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id() << ")";
@ -132,14 +124,7 @@ GalileoE1PcpsAmbiguousAcquisition::~GalileoE1PcpsAmbiguousAcquisition()
void GalileoE1PcpsAmbiguousAcquisition::set_channel(unsigned int channel)
{
channel_ = channel;
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_channel(channel_);
}
else
{
acquisition_cc_->set_channel(channel_);
}
acquisition_cc_->set_channel(channel_);
}
@ -160,14 +145,7 @@ void GalileoE1PcpsAmbiguousAcquisition::set_threshold(float threshold)
DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold_;
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_threshold(threshold_);
}
else
{
acquisition_cc_->set_threshold(threshold_);
}
acquisition_cc_->set_threshold(threshold_);
}
@ -175,14 +153,7 @@ void GalileoE1PcpsAmbiguousAcquisition::set_doppler_max(unsigned int doppler_max
{
doppler_max_ = doppler_max;
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_doppler_max(doppler_max_);
}
else
{
acquisition_cc_->set_doppler_max(doppler_max_);
}
acquisition_cc_->set_doppler_max(doppler_max_);
}
@ -190,14 +161,7 @@ void GalileoE1PcpsAmbiguousAcquisition::set_doppler_step(unsigned int doppler_st
{
doppler_step_ = doppler_step;
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_doppler_step(doppler_step_);
}
else
{
acquisition_cc_->set_doppler_step(doppler_step_);
}
acquisition_cc_->set_doppler_step(doppler_step_);
}
@ -205,41 +169,19 @@ void GalileoE1PcpsAmbiguousAcquisition::set_gnss_synchro(Gnss_Synchro* gnss_sync
{
gnss_synchro_ = gnss_synchro;
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_gnss_synchro(gnss_synchro_);
}
else
{
acquisition_cc_->set_gnss_synchro(gnss_synchro_);
}
acquisition_cc_->set_gnss_synchro(gnss_synchro_);
}
signed int GalileoE1PcpsAmbiguousAcquisition::mag()
{
if (item_type_.compare("cshort") == 0)
{
return acquisition_sc_->mag();
}
else
{
return acquisition_cc_->mag();
}
return acquisition_cc_->mag();
}
void GalileoE1PcpsAmbiguousAcquisition::init()
{
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->init();
}
else
{
acquisition_cc_->init();
}
acquisition_cc_->init();
//set_local_code();
}
@ -271,42 +213,20 @@ void GalileoE1PcpsAmbiguousAcquisition::set_local_code()
memcpy(&(code_[i*code_length_]), code, sizeof(gr_complex)*code_length_);
}
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_local_code(code_);
}
else
{
acquisition_cc_->set_local_code(code_);
}
acquisition_cc_->set_local_code(code_);
delete[] code;
}
void GalileoE1PcpsAmbiguousAcquisition::reset()
{
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_active(true);
}
else
{
acquisition_cc_->set_active(true);
}
acquisition_cc_->set_active(true);
}
void GalileoE1PcpsAmbiguousAcquisition::set_state(int state)
{
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_state(state);
}
else
{
acquisition_cc_->set_state(state);
}
acquisition_cc_->set_state(state);
}
@ -339,7 +259,7 @@ void GalileoE1PcpsAmbiguousAcquisition::connect(gr::top_block_sptr top_block)
}
else if (item_type_.compare("cshort") == 0)
{
top_block->connect(stream_to_vector_, 0, acquisition_sc_, 0);
top_block->connect(stream_to_vector_, 0, acquisition_cc_, 0);
}
else if (item_type_.compare("cbyte") == 0)
{
@ -363,7 +283,7 @@ void GalileoE1PcpsAmbiguousAcquisition::disconnect(gr::top_block_sptr top_block)
}
else if (item_type_.compare("cshort") == 0)
{
top_block->disconnect(stream_to_vector_, 0, acquisition_sc_, 0);
top_block->disconnect(stream_to_vector_, 0, acquisition_cc_, 0);
}
else if (item_type_.compare("cbyte") == 0)
{
@ -405,13 +325,6 @@ gr::basic_block_sptr GalileoE1PcpsAmbiguousAcquisition::get_left_block()
gr::basic_block_sptr GalileoE1PcpsAmbiguousAcquisition::get_right_block()
{
if (item_type_.compare("cshort") == 0)
{
return acquisition_sc_;
}
else
{
return acquisition_cc_;
}
return acquisition_cc_;
}

View File

@ -38,7 +38,6 @@
#include "gnss_synchro.h"
#include "acquisition_interface.h"
#include "pcps_acquisition_cc.h"
#include "pcps_acquisition_sc.h"
#include "complex_byte_to_float_x2.h"
#include <volk_gnsssdr/volk_gnsssdr.h>
@ -136,7 +135,6 @@ public:
private:
ConfigurationInterface* configuration_;
pcps_acquisition_cc_sptr acquisition_cc_;
pcps_acquisition_sc_sptr acquisition_sc_;
gr::blocks::stream_to_vector::sptr stream_to_vector_;
gr::blocks::float_to_complex::sptr float_to_complex_;
complex_byte_to_float_x2_sptr cbyte_to_float_x2_;

View File

@ -84,20 +84,15 @@ GlonassL1CaPcpsAcquisition::GlonassL1CaPcpsAcquisition(
if (item_type_.compare("cshort") == 0 )
{
item_size_ = sizeof(lv_16sc_t);
acquisition_sc_ = pcps_make_acquisition_sc(sampled_ms_, max_dwells_,
doppler_max_, if_, fs_in_, code_length_, code_length_,
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_, dump_filename_);
DLOG(INFO) << "acquisition(" << acquisition_sc_->unique_id() << ")";
}
else
{
item_size_ = sizeof(gr_complex);
acquisition_cc_ = pcps_make_acquisition_cc(sampled_ms_, max_dwells_,
doppler_max_, if_, fs_in_, code_length_, code_length_,
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_, dump_filename_);
DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id() << ")";
}
acquisition_cc_ = pcps_make_acquisition_cc(sampled_ms_, max_dwells_,
doppler_max_, if_, fs_in_, code_length_, code_length_,
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_, dump_filename_, item_size_);
DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id() << ")";
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id() << ")";
@ -124,14 +119,7 @@ GlonassL1CaPcpsAcquisition::~GlonassL1CaPcpsAcquisition()
void GlonassL1CaPcpsAcquisition::set_channel(unsigned int channel)
{
channel_ = channel;
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_channel(channel_);
}
else
{
acquisition_cc_->set_channel(channel_);
}
acquisition_cc_->set_channel(channel_);
}
@ -150,14 +138,7 @@ void GlonassL1CaPcpsAcquisition::set_threshold(float threshold)
DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold_;
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_threshold(threshold_);
}
else
{
acquisition_cc_->set_threshold(threshold_);
}
acquisition_cc_->set_threshold(threshold_);
}
@ -165,14 +146,7 @@ void GlonassL1CaPcpsAcquisition::set_doppler_max(unsigned int doppler_max)
{
doppler_max_ = doppler_max;
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_doppler_max(doppler_max_);
}
else
{
acquisition_cc_->set_doppler_max(doppler_max_);
}
acquisition_cc_->set_doppler_max(doppler_max_);
}
@ -180,14 +154,7 @@ void GlonassL1CaPcpsAcquisition::set_doppler_step(unsigned int doppler_step)
{
doppler_step_ = doppler_step;
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_doppler_step(doppler_step_);
}
else
{
acquisition_cc_->set_doppler_step(doppler_step_);
}
acquisition_cc_->set_doppler_step(doppler_step_);
}
@ -195,40 +162,19 @@ void GlonassL1CaPcpsAcquisition::set_gnss_synchro(Gnss_Synchro* gnss_synchro)
{
gnss_synchro_ = gnss_synchro;
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_gnss_synchro(gnss_synchro_);
}
else
{
acquisition_cc_->set_gnss_synchro(gnss_synchro_);
}
acquisition_cc_->set_gnss_synchro(gnss_synchro_);
}
signed int GlonassL1CaPcpsAcquisition::mag()
{
if (item_type_.compare("cshort") == 0)
{
return acquisition_sc_->mag();
}
else
{
return acquisition_cc_->mag();
}
return acquisition_cc_->mag();
}
void GlonassL1CaPcpsAcquisition::init()
{
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->init();
}
else
{
acquisition_cc_->init();
}
acquisition_cc_->init();
set_local_code();
}
@ -246,42 +192,20 @@ void GlonassL1CaPcpsAcquisition::set_local_code()
sizeof(gr_complex)*code_length_);
}
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_local_code(code_);
}
else
{
acquisition_cc_->set_local_code(code_);
}
acquisition_cc_->set_local_code(code_);
delete[] code;
}
void GlonassL1CaPcpsAcquisition::reset()
{
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_active(true);
}
else
{
acquisition_cc_->set_active(true);
}
acquisition_cc_->set_active(true);
}
void GlonassL1CaPcpsAcquisition::set_state(int state)
{
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_state(state);
}
else
{
acquisition_cc_->set_state(state);
}
acquisition_cc_->set_state(state);
}
@ -318,7 +242,7 @@ void GlonassL1CaPcpsAcquisition::connect(gr::top_block_sptr top_block)
}
else if (item_type_.compare("cshort") == 0)
{
top_block->connect(stream_to_vector_, 0, acquisition_sc_, 0);
top_block->connect(stream_to_vector_, 0, acquisition_cc_, 0);
}
else if (item_type_.compare("cbyte") == 0)
{
@ -342,7 +266,7 @@ void GlonassL1CaPcpsAcquisition::disconnect(gr::top_block_sptr top_block)
}
else if (item_type_.compare("cshort") == 0)
{
top_block->disconnect(stream_to_vector_, 0, acquisition_sc_, 0);
top_block->disconnect(stream_to_vector_, 0, acquisition_cc_, 0);
}
else if (item_type_.compare("cbyte") == 0)
{
@ -384,12 +308,5 @@ gr::basic_block_sptr GlonassL1CaPcpsAcquisition::get_left_block()
gr::basic_block_sptr GlonassL1CaPcpsAcquisition::get_right_block()
{
if (item_type_.compare("cshort") == 0)
{
return acquisition_sc_;
}
else
{
return acquisition_cc_;
}
return acquisition_cc_;
}

View File

@ -40,7 +40,6 @@
#include "gnss_synchro.h"
#include "acquisition_interface.h"
#include "pcps_acquisition_cc.h"
#include "pcps_acquisition_sc.h"
#include "complex_byte_to_float_x2.h"
@ -137,7 +136,6 @@ public:
private:
ConfigurationInterface* configuration_;
pcps_acquisition_cc_sptr acquisition_cc_;
pcps_acquisition_sc_sptr acquisition_sc_;
gr::blocks::stream_to_vector::sptr stream_to_vector_;
gr::blocks::float_to_complex::sptr float_to_complex_;
complex_byte_to_float_x2_sptr cbyte_to_float_x2_;

View File

@ -85,19 +85,15 @@ GpsL1CaPcpsAcquisition::GpsL1CaPcpsAcquisition(
if (item_type_.compare("cshort") == 0 )
{
item_size_ = sizeof(lv_16sc_t);
acquisition_sc_ = pcps_make_acquisition_sc(sampled_ms_, max_dwells_,
doppler_max_, if_, fs_in_, code_length_, code_length_,
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_, dump_filename_);
DLOG(INFO) << "acquisition(" << acquisition_sc_->unique_id() << ")";
}
else
{
item_size_ = sizeof(gr_complex);
acquisition_cc_ = pcps_make_acquisition_cc(sampled_ms_, max_dwells_,
doppler_max_, if_, fs_in_, code_length_, code_length_,
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_, dump_filename_);
DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id() << ")";
}
acquisition_cc_ = pcps_make_acquisition_cc(sampled_ms_, max_dwells_,
doppler_max_, if_, fs_in_, code_length_, code_length_,
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_, dump_filename_, item_size_);
DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id() << ")";
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id() << ")";
@ -124,14 +120,7 @@ GpsL1CaPcpsAcquisition::~GpsL1CaPcpsAcquisition()
void GpsL1CaPcpsAcquisition::set_channel(unsigned int channel)
{
channel_ = channel;
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_channel(channel_);
}
else
{
acquisition_cc_->set_channel(channel_);
}
acquisition_cc_->set_channel(channel_);
}
@ -150,15 +139,7 @@ void GpsL1CaPcpsAcquisition::set_threshold(float threshold)
DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold_;
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_threshold(threshold_);
}
else
{
acquisition_cc_->set_threshold(threshold_);
}
acquisition_cc_->set_threshold(threshold_);
}
@ -166,14 +147,7 @@ void GpsL1CaPcpsAcquisition::set_doppler_max(unsigned int doppler_max)
{
doppler_max_ = doppler_max;
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_doppler_max(doppler_max_);
}
else
{
acquisition_cc_->set_doppler_max(doppler_max_);
}
acquisition_cc_->set_doppler_max(doppler_max_);
}
@ -181,14 +155,7 @@ void GpsL1CaPcpsAcquisition::set_doppler_step(unsigned int doppler_step)
{
doppler_step_ = doppler_step;
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_doppler_step(doppler_step_);
}
else
{
acquisition_cc_->set_doppler_step(doppler_step_);
}
acquisition_cc_->set_doppler_step(doppler_step_);
}
@ -196,41 +163,19 @@ void GpsL1CaPcpsAcquisition::set_gnss_synchro(Gnss_Synchro* gnss_synchro)
{
gnss_synchro_ = gnss_synchro;
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_gnss_synchro(gnss_synchro_);
}
else
{
acquisition_cc_->set_gnss_synchro(gnss_synchro_);
}
acquisition_cc_->set_gnss_synchro(gnss_synchro_);
}
signed int GpsL1CaPcpsAcquisition::mag()
{
if (item_type_.compare("cshort") == 0)
{
return acquisition_sc_->mag();
}
else
{
return acquisition_cc_->mag();
}
return acquisition_cc_->mag();
}
void GpsL1CaPcpsAcquisition::init()
{
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->init();
}
else
{
acquisition_cc_->init();
}
acquisition_cc_->init();
//set_local_code();
}
@ -247,42 +192,20 @@ void GpsL1CaPcpsAcquisition::set_local_code()
sizeof(gr_complex)*code_length_);
}
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_local_code(code_);
}
else
{
acquisition_cc_->set_local_code(code_);
}
acquisition_cc_->set_local_code(code_);
delete[] code;
}
void GpsL1CaPcpsAcquisition::reset()
{
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_active(true);
}
else
{
acquisition_cc_->set_active(true);
}
acquisition_cc_->set_active(true);
}
void GpsL1CaPcpsAcquisition::set_state(int state)
{
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_state(state);
}
else
{
acquisition_cc_->set_state(state);
}
acquisition_cc_->set_state(state);
}
@ -315,7 +238,7 @@ void GpsL1CaPcpsAcquisition::connect(gr::top_block_sptr top_block)
}
else if (item_type_.compare("cshort") == 0)
{
top_block->connect(stream_to_vector_, 0, acquisition_sc_, 0);
top_block->connect(stream_to_vector_, 0, acquisition_cc_, 0);
}
else if (item_type_.compare("cbyte") == 0)
{
@ -339,7 +262,7 @@ void GpsL1CaPcpsAcquisition::disconnect(gr::top_block_sptr top_block)
}
else if (item_type_.compare("cshort") == 0)
{
top_block->disconnect(stream_to_vector_, 0, acquisition_sc_, 0);
top_block->disconnect(stream_to_vector_, 0, acquisition_cc_, 0);
}
else if (item_type_.compare("cbyte") == 0)
{
@ -381,13 +304,6 @@ gr::basic_block_sptr GpsL1CaPcpsAcquisition::get_left_block()
gr::basic_block_sptr GpsL1CaPcpsAcquisition::get_right_block()
{
if (item_type_.compare("cshort") == 0)
{
return acquisition_sc_;
}
else
{
return acquisition_cc_;
}
return acquisition_cc_;
}

View File

@ -42,7 +42,6 @@
#include "gnss_synchro.h"
#include "acquisition_interface.h"
#include "pcps_acquisition_cc.h"
#include "pcps_acquisition_sc.h"
#include "complex_byte_to_float_x2.h"
#include <volk_gnsssdr/volk_gnsssdr.h>
@ -141,7 +140,6 @@ public:
private:
ConfigurationInterface* configuration_;
pcps_acquisition_cc_sptr acquisition_cc_;
pcps_acquisition_sc_sptr acquisition_sc_;
gr::blocks::stream_to_vector::sptr stream_to_vector_;
gr::blocks::float_to_complex::sptr float_to_complex_;
complex_byte_to_float_x2_sptr cbyte_to_float_x2_;

View File

@ -85,21 +85,16 @@ GpsL2MPcpsAcquisition::GpsL2MPcpsAcquisition(
if (item_type_.compare("cshort") == 0 )
{
item_size_ = sizeof(lv_16sc_t);
acquisition_sc_ = pcps_make_acquisition_sc(1, max_dwells_,
doppler_max_, if_, fs_in_, code_length_, code_length_,
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_, dump_filename_);
DLOG(INFO) << "acquisition(" << acquisition_sc_->unique_id() << ")";
}
else
{
item_size_ = sizeof(gr_complex);
acquisition_cc_ = pcps_make_acquisition_cc(1, max_dwells_,
}
acquisition_cc_ = pcps_make_acquisition_cc(1, max_dwells_,
doppler_max_, if_, fs_in_, code_length_, code_length_,
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_,
dump_filename_);
dump_filename_, item_size_);
DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id() << ")";
}
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id() << ")";
@ -126,14 +121,7 @@ GpsL2MPcpsAcquisition::~GpsL2MPcpsAcquisition()
void GpsL2MPcpsAcquisition::set_channel(unsigned int channel)
{
channel_ = channel;
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_channel(channel_);
}
else
{
acquisition_cc_->set_channel(channel_);
}
acquisition_cc_->set_channel(channel_);
}
@ -156,14 +144,7 @@ void GpsL2MPcpsAcquisition::set_threshold(float threshold)
DLOG(INFO) << "Channel " << channel_ <<" Threshold = " << threshold_;
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_threshold(threshold_);
}
else
{
acquisition_cc_->set_threshold(threshold_);
}
acquisition_cc_->set_threshold(threshold_);
}
@ -171,14 +152,7 @@ void GpsL2MPcpsAcquisition::set_doppler_max(unsigned int doppler_max)
{
doppler_max_ = doppler_max;
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_doppler_max(doppler_max_);
}
else
{
acquisition_cc_->set_doppler_max(doppler_max_);
}
acquisition_cc_->set_doppler_max(doppler_max_);
}
@ -188,14 +162,7 @@ void GpsL2MPcpsAcquisition::set_doppler_step(unsigned int doppler_step)
{
doppler_step_ = doppler_step;
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_doppler_step(doppler_step_);
}
else
{
acquisition_cc_->set_doppler_step(doppler_step_);
}
acquisition_cc_->set_doppler_step(doppler_step_);
}
@ -203,41 +170,19 @@ void GpsL2MPcpsAcquisition::set_gnss_synchro(Gnss_Synchro* gnss_synchro)
{
gnss_synchro_ = gnss_synchro;
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_gnss_synchro(gnss_synchro_);
}
else
{
acquisition_cc_->set_gnss_synchro(gnss_synchro_);
}
acquisition_cc_->set_gnss_synchro(gnss_synchro_);
}
signed int GpsL2MPcpsAcquisition::mag()
{
if (item_type_.compare("cshort") == 0)
{
return acquisition_sc_->mag();
}
else
{
return acquisition_cc_->mag();
}
return acquisition_cc_->mag();
}
void GpsL2MPcpsAcquisition::init()
{
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->init();
}
else
{
acquisition_cc_->init();
}
acquisition_cc_->init();
//set_local_code();
}
@ -247,49 +192,18 @@ void GpsL2MPcpsAcquisition::set_local_code()
gps_l2c_m_code_gen_complex_sampled(code_, gnss_synchro_->PRN, fs_in_);
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_local_code(code_);
}
else
{
acquisition_cc_->set_local_code(code_);
}
// //debug
// std::ofstream d_dump_file;
// std::stringstream filename;
// std::streamsize n = 2 * sizeof(float) * (code_length_); // complex file write
// filename.str("");
// filename << "../data/local_prn_sampled.dat";
// d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary);
// d_dump_file.write(reinterpret_cast<char*>(code_), n);
// d_dump_file.close();
acquisition_cc_->set_local_code(code_);
}
void GpsL2MPcpsAcquisition::reset()
{
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_active(true);
}
else
{
acquisition_cc_->set_active(true);
}
acquisition_cc_->set_active(true);
}
void GpsL2MPcpsAcquisition::set_state(int state)
{
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_state(state);
}
else
{
acquisition_cc_->set_state(state);
}
acquisition_cc_->set_state(state);
}
@ -322,7 +236,7 @@ void GpsL2MPcpsAcquisition::connect(gr::top_block_sptr top_block)
}
else if (item_type_.compare("cshort") == 0)
{
top_block->connect(stream_to_vector_, 0, acquisition_sc_, 0);
top_block->connect(stream_to_vector_, 0, acquisition_cc_, 0);
}
else if (item_type_.compare("cbyte") == 0)
{
@ -346,7 +260,7 @@ void GpsL2MPcpsAcquisition::disconnect(gr::top_block_sptr top_block)
}
else if (item_type_.compare("cshort") == 0)
{
top_block->disconnect(stream_to_vector_, 0, acquisition_sc_, 0);
top_block->disconnect(stream_to_vector_, 0, acquisition_cc_, 0);
}
else if (item_type_.compare("cbyte") == 0)
{
@ -388,13 +302,6 @@ gr::basic_block_sptr GpsL2MPcpsAcquisition::get_left_block()
gr::basic_block_sptr GpsL2MPcpsAcquisition::get_right_block()
{
if (item_type_.compare("cshort") == 0)
{
return acquisition_sc_;
}
else
{
return acquisition_cc_;
}
return acquisition_cc_;
}

View File

@ -40,7 +40,6 @@
#include "gnss_synchro.h"
#include "acquisition_interface.h"
#include "pcps_acquisition_cc.h"
#include "pcps_acquisition_sc.h"
#include "complex_byte_to_float_x2.h"
#include <volk_gnsssdr/volk_gnsssdr.h>
@ -139,7 +138,6 @@ public:
private:
ConfigurationInterface* configuration_;
pcps_acquisition_cc_sptr acquisition_cc_;
pcps_acquisition_sc_sptr acquisition_sc_;
gr::blocks::stream_to_vector::sptr stream_to_vector_;
gr::blocks::float_to_complex::sptr float_to_complex_;
complex_byte_to_float_x2_sptr cbyte_to_float_x2_;

View File

@ -84,21 +84,16 @@ GpsL5iPcpsAcquisition::GpsL5iPcpsAcquisition(
if (item_type_.compare("cshort") == 0 )
{
item_size_ = sizeof(lv_16sc_t);
acquisition_sc_ = pcps_make_acquisition_sc(1, max_dwells_,
doppler_max_, if_, fs_in_, code_length_, code_length_,
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_, dump_filename_);
DLOG(INFO) << "acquisition(" << acquisition_sc_->unique_id() << ")";
}
else
{
item_size_ = sizeof(gr_complex);
acquisition_cc_ = pcps_make_acquisition_cc(1, max_dwells_,
doppler_max_, if_, fs_in_, code_length_, code_length_,
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_,
dump_filename_);
DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id() << ")";
}
acquisition_cc_ = pcps_make_acquisition_cc(1, max_dwells_,
doppler_max_, if_, fs_in_, code_length_, code_length_,
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_,
dump_filename_, item_size_);
DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id() << ")";
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id() << ")";
@ -125,14 +120,7 @@ GpsL5iPcpsAcquisition::~GpsL5iPcpsAcquisition()
void GpsL5iPcpsAcquisition::set_channel(unsigned int channel)
{
channel_ = channel;
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_channel(channel_);
}
else
{
acquisition_cc_->set_channel(channel_);
}
acquisition_cc_->set_channel(channel_);
}
@ -155,14 +143,7 @@ void GpsL5iPcpsAcquisition::set_threshold(float threshold)
DLOG(INFO) << "Channel " << channel_ <<" Threshold = " << threshold_;
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_threshold(threshold_);
}
else
{
acquisition_cc_->set_threshold(threshold_);
}
acquisition_cc_->set_threshold(threshold_);
}
@ -170,14 +151,7 @@ void GpsL5iPcpsAcquisition::set_doppler_max(unsigned int doppler_max)
{
doppler_max_ = doppler_max;
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_doppler_max(doppler_max_);
}
else
{
acquisition_cc_->set_doppler_max(doppler_max_);
}
acquisition_cc_->set_doppler_max(doppler_max_);
}
@ -187,14 +161,7 @@ void GpsL5iPcpsAcquisition::set_doppler_step(unsigned int doppler_step)
{
doppler_step_ = doppler_step;
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_doppler_step(doppler_step_);
}
else
{
acquisition_cc_->set_doppler_step(doppler_step_);
}
acquisition_cc_->set_doppler_step(doppler_step_);
}
@ -202,41 +169,19 @@ void GpsL5iPcpsAcquisition::set_gnss_synchro(Gnss_Synchro* gnss_synchro)
{
gnss_synchro_ = gnss_synchro;
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_gnss_synchro(gnss_synchro_);
}
else
{
acquisition_cc_->set_gnss_synchro(gnss_synchro_);
}
acquisition_cc_->set_gnss_synchro(gnss_synchro_);
}
signed int GpsL5iPcpsAcquisition::mag()
{
if (item_type_.compare("cshort") == 0)
{
return acquisition_sc_->mag();
}
else
{
return acquisition_cc_->mag();
}
return acquisition_cc_->mag();
}
void GpsL5iPcpsAcquisition::init()
{
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->init();
}
else
{
acquisition_cc_->init();
}
acquisition_cc_->init();
}
void GpsL5iPcpsAcquisition::set_local_code()
@ -244,39 +189,18 @@ void GpsL5iPcpsAcquisition::set_local_code()
gps_l5i_code_gen_complex_sampled(code_, gnss_synchro_->PRN, fs_in_);
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_local_code(code_);
}
else
{
acquisition_cc_->set_local_code(code_);
}
acquisition_cc_->set_local_code(code_);
}
void GpsL5iPcpsAcquisition::reset()
{
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_active(true);
}
else
{
acquisition_cc_->set_active(true);
}
acquisition_cc_->set_active(true);
}
void GpsL5iPcpsAcquisition::set_state(int state)
{
if (item_type_.compare("cshort") == 0)
{
acquisition_sc_->set_state(state);
}
else
{
acquisition_cc_->set_state(state);
}
acquisition_cc_->set_state(state);
}
@ -309,7 +233,7 @@ void GpsL5iPcpsAcquisition::connect(gr::top_block_sptr top_block)
}
else if (item_type_.compare("cshort") == 0)
{
top_block->connect(stream_to_vector_, 0, acquisition_sc_, 0);
top_block->connect(stream_to_vector_, 0, acquisition_cc_, 0);
}
else if (item_type_.compare("cbyte") == 0)
{
@ -333,7 +257,7 @@ void GpsL5iPcpsAcquisition::disconnect(gr::top_block_sptr top_block)
}
else if (item_type_.compare("cshort") == 0)
{
top_block->disconnect(stream_to_vector_, 0, acquisition_sc_, 0);
top_block->disconnect(stream_to_vector_, 0, acquisition_cc_, 0);
}
else if (item_type_.compare("cbyte") == 0)
{
@ -375,13 +299,6 @@ gr::basic_block_sptr GpsL5iPcpsAcquisition::get_left_block()
gr::basic_block_sptr GpsL5iPcpsAcquisition::get_right_block()
{
if (item_type_.compare("cshort") == 0)
{
return acquisition_sc_;
}
else
{
return acquisition_cc_;
}
return acquisition_cc_;
}

View File

@ -40,7 +40,6 @@
#include "gnss_synchro.h"
#include "acquisition_interface.h"
#include "pcps_acquisition_cc.h"
#include "pcps_acquisition_sc.h"
#include "complex_byte_to_float_x2.h"
#include <volk_gnsssdr/volk_gnsssdr.h>
@ -139,7 +138,6 @@ public:
private:
ConfigurationInterface* configuration_;
pcps_acquisition_cc_sptr acquisition_cc_;
pcps_acquisition_sc_sptr acquisition_sc_;
gr::blocks::stream_to_vector::sptr stream_to_vector_;
gr::blocks::float_to_complex::sptr float_to_complex_;
complex_byte_to_float_x2_sptr cbyte_to_float_x2_;

View File

@ -19,7 +19,6 @@
set(ACQ_GR_BLOCKS_SOURCES
pcps_acquisition_cc.cc
pcps_acquisition_sc.cc
pcps_assisted_acquisition_cc.cc
pcps_acquisition_fine_doppler_cc.cc
pcps_tong_acquisition_cc.cc

View File

@ -39,7 +39,6 @@
#include <gnuradio/io_signature.h>
#include <matio.h>
#include <volk/volk.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include "GPS_L1_CA.h" //GPS_TWO_PI
#include "GLONASS_L1_CA.h" //GLONASS_TWO_PI
@ -53,11 +52,11 @@ pcps_acquisition_cc_sptr pcps_make_acquisition_cc(
int samples_per_ms, int samples_per_code,
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
bool dump, bool blocking,
std::string dump_filename)
std::string dump_filename, size_t it_size)
{
return pcps_acquisition_cc_sptr(
new pcps_acquisition_cc(sampled_ms, max_dwells, doppler_max, freq, fs_in, samples_per_ms,
samples_per_code, bit_transition_flag, use_CFAR_algorithm_flag, dump, blocking, dump_filename));
samples_per_code, bit_transition_flag, use_CFAR_algorithm_flag, dump, blocking, dump_filename, it_size));
}
@ -67,10 +66,10 @@ pcps_acquisition_cc::pcps_acquisition_cc(
int samples_per_ms, int samples_per_code,
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
bool dump, bool blocking,
std::string dump_filename) :
std::string dump_filename, size_t it_size) :
gr::block("pcps_acquisition_cc",
gr::io_signature::make(1, 1, sizeof(gr_complex) * sampled_ms * samples_per_ms * ( bit_transition_flag ? 2 : 1 )),
gr::io_signature::make(0, 0, sizeof(gr_complex) * sampled_ms * samples_per_ms * ( bit_transition_flag ? 2 : 1 )) )
gr::io_signature::make(1, 1, it_size * sampled_ms * samples_per_ms * ( bit_transition_flag ? 2 : 1 )),
gr::io_signature::make(0, 0, it_size * sampled_ms * samples_per_ms * ( bit_transition_flag ? 2 : 1 )) )
{
this->message_port_register_out(pmt::mp("events"));
@ -97,6 +96,8 @@ pcps_acquisition_cc::pcps_acquisition_cc(
d_code_phase = 0;
d_test_statistics = 0.0;
d_channel = 0;
if(it_size == sizeof(gr_complex)) { d_cshort = false; }
else { d_cshort = true; }
// COD:
// Experimenting with the overlap/save technique for handling bit trannsitions
@ -131,6 +132,10 @@ pcps_acquisition_cc::pcps_acquisition_cc(
d_blocking = blocking;
d_worker_active = false;
d_data_buffer = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
if(d_cshort)
{
d_data_buffer_sc = static_cast<lv_16sc_t*>(volk_gnsssdr_malloc(d_fft_size * sizeof(lv_16sc_t), volk_gnsssdr_get_alignment()));
}
grid_ = arma::fmat();
}
@ -150,6 +155,7 @@ pcps_acquisition_cc::~pcps_acquisition_cc()
delete d_ifft;
delete d_fft_if;
volk_gnsssdr_free(d_data_buffer);
if(d_cshort) { volk_gnsssdr_free(d_data_buffer_sc); }
}
@ -360,7 +366,8 @@ int pcps_acquisition_cc::general_work(int noutput_items __attribute__((unused)),
case 1:
{
// Copy the data to the core and let it know that new data is available
memcpy(d_data_buffer, input_items[0], d_fft_size * sizeof(gr_complex));
if(d_cshort) { memcpy(d_data_buffer_sc, input_items[0], d_fft_size * sizeof(lv_16sc_t)); }
else { memcpy(d_data_buffer, input_items[0], d_fft_size * sizeof(gr_complex)); }
if(d_blocking)
{
lk.unlock();
@ -388,10 +395,9 @@ void pcps_acquisition_cc::acquisition_core( unsigned long int samp_count )
int doppler;
uint32_t indext = 0;
float magt = 0.0;
const gr_complex *in = d_data_buffer; //Get the input samples pointer
const gr_complex* in = d_data_buffer; //Get the input samples pointer
int effective_fft_size = ( d_bit_transition_flag ? d_fft_size/2 : d_fft_size );
if(d_cshort) { volk_gnsssdr_16ic_convert_32fc(d_data_buffer, d_data_buffer_sc, d_fft_size); }
float fft_normalization_factor = static_cast<float>(d_fft_size) * static_cast<float>(d_fft_size);
d_input_power = 0.0;

View File

@ -57,6 +57,7 @@
#include <armadillo>
#include <gnuradio/block.h>
#include <gnuradio/fft/fft.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include "gnss_synchro.h"
@ -70,7 +71,7 @@ pcps_make_acquisition_cc(unsigned int sampled_ms, unsigned int max_dwells,
int samples_per_ms, int samples_per_code,
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
bool dump, bool blocking,
std::string dump_filename);
std::string dump_filename, size_t it_size);
/*!
* \brief This class implements a Parallel Code Phase Search Acquisition.
@ -87,14 +88,14 @@ private:
int samples_per_ms, int samples_per_code,
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
bool dump, bool blocking,
std::string dump_filename);
std::string dump_filename, size_t it_size);
pcps_acquisition_cc(unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code,
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
bool dump, bool blocking,
std::string dump_filename);
std::string dump_filename, size_t it_size);
void update_local_carrier(gr_complex* carrier_vector, int correlator_length_samples, float freq);
void update_grid_doppler_wipeoffs();
@ -112,6 +113,7 @@ private:
bool d_dump;
bool d_worker_active;
bool d_blocking;
bool d_cshort;
float d_threshold;
float d_mag;
float d_input_power;
@ -136,6 +138,7 @@ private:
gr_complex** d_grid_doppler_wipeoffs;
gr_complex* d_fft_codes;
gr_complex* d_data_buffer;
lv_16sc_t* d_data_buffer_sc;
gr::fft::fft_complex* d_fft_if;
gr::fft::fft_complex* d_ifft;
Gnss_Synchro* d_gnss_synchro;

View File

@ -1,559 +0,0 @@
/*!
* \file pcps_acquisition_sc.cc
* \brief This class implements a Parallel Code Phase Search Acquisition
* \authors <ul>
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
* <li> Marc Molina, 2013. marc.molina.pena@gmail.com
* <li> Cillian O'Driscoll, 2017. cillian(at)ieee.org
* </ul>
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "pcps_acquisition_sc.h"
#include <sstream>
#include <cstring>
#include <matio.h>
#include <gnuradio/io_signature.h>
#include <glog/logging.h>
#include <volk/volk.h>
#include "control_message_factory.h"
#include "GPS_L1_CA.h" //GPS_TWO_PI
#include "GLONASS_L1_CA.h" //GLONASS_TWO_PI
using google::LogMessage;
pcps_acquisition_sc_sptr pcps_make_acquisition_sc(
unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code,
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
bool dump, bool blocking,
std::string dump_filename)
{
return pcps_acquisition_sc_sptr(
new pcps_acquisition_sc(sampled_ms, max_dwells, doppler_max, freq, fs_in, samples_per_ms,
samples_per_code, bit_transition_flag, use_CFAR_algorithm_flag, dump, blocking, dump_filename));
}
pcps_acquisition_sc::pcps_acquisition_sc(
unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code,
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
bool dump, bool blocking,
std::string dump_filename) :
gr::block("pcps_acquisition_sc",
gr::io_signature::make(1, 1, sizeof(lv_16sc_t) * sampled_ms * samples_per_ms * ( bit_transition_flag ? 2 : 1 )),
gr::io_signature::make(0, 0, sizeof(lv_16sc_t) * sampled_ms * samples_per_ms * ( bit_transition_flag ? 2 : 1 )) )
{
this->message_port_register_out(pmt::mp("events"));
d_sample_counter = 0; // SAMPLE COUNTER
d_active = false;
d_state = 0;
d_freq = freq;
d_old_freq = freq;
d_fs_in = fs_in;
d_samples_per_ms = samples_per_ms;
d_samples_per_code = samples_per_code;
d_sampled_ms = sampled_ms;
d_max_dwells = max_dwells;
d_well_count = 0;
d_doppler_max = doppler_max;
d_fft_size = d_sampled_ms * d_samples_per_ms;
d_mag = 0.0;
d_input_power = 0.0;
d_num_doppler_bins = 0;
d_bit_transition_flag = bit_transition_flag;
d_use_CFAR_algorithm_flag = use_CFAR_algorithm_flag;
d_threshold = 0.0;
d_doppler_step = 0;
d_code_phase = 0;
d_test_statistics = 0.0;
d_channel = 0;
// COD:
// Experimenting with the overlap/save technique for handling bit trannsitions
// The problem: Circular correlation is asynchronous with the received code.
// In effect the first code phase used in the correlation is the current
// estimate of the code phase at the start of the input buffer. If this is 1/2
// of the code period a bit transition would move all the signal energy into
// adjacent frequency bands at +/- 1/T where T is the integration time.
//
// We can avoid this by doing linear correlation, effectively doubling the
// size of the input buffer and padding the code with zeros.
if( d_bit_transition_flag )
{
d_fft_size *= 2;
d_max_dwells = 1; //Activation of d_bit_transition_flag invalidates the value of d_max_dwells
}
d_fft_codes = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
d_magnitude = static_cast<float*>(volk_gnsssdr_malloc(d_fft_size * sizeof(float), volk_gnsssdr_get_alignment()));
//temporary storage for the input conversion from 16sc to float 32fc
d_in_32fc = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
// Direct FFT
d_fft_if = new gr::fft::fft_complex(d_fft_size, true);
// Inverse FFT
d_ifft = new gr::fft::fft_complex(d_fft_size, false);
// For dumping samples into a file
d_dump = dump;
d_dump_filename = dump_filename;
d_gnss_synchro = 0;
d_grid_doppler_wipeoffs = 0;
d_blocking = blocking;
d_worker_active = false;
d_data_buffer = static_cast<lv_16sc_t*>(volk_gnsssdr_malloc(d_fft_size * sizeof(lv_16sc_t), volk_gnsssdr_get_alignment()));
grid_ = arma::fmat();
}
pcps_acquisition_sc::~pcps_acquisition_sc()
{
if (d_num_doppler_bins > 0)
{
for (unsigned int i = 0; i < d_num_doppler_bins; i++)
{
volk_gnsssdr_free(d_grid_doppler_wipeoffs[i]);
}
delete[] d_grid_doppler_wipeoffs;
}
volk_gnsssdr_free(d_fft_codes);
volk_gnsssdr_free(d_magnitude);
volk_gnsssdr_free(d_in_32fc);
delete d_ifft;
delete d_fft_if;
volk_gnsssdr_free(d_data_buffer);
}
void pcps_acquisition_sc::set_local_code(std::complex<float> * code)
{
// reset the intermediate frequency
d_freq = d_old_freq;
// This will check if it's fdma, if yes will update the intermediate frequency and the doppler grid
if( is_fdma() )
{
update_grid_doppler_wipeoffs();
}
// COD
// Here we want to create a buffer that looks like this:
// [ 0 0 0 ... 0 c_0 c_1 ... c_L]
// where c_i is the local code and there are L zeros and L chips
gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler
if( d_bit_transition_flag )
{
int offset = d_fft_size / 2;
std::fill_n( d_fft_if->get_inbuf(), offset, gr_complex( 0.0, 0.0 ) );
memcpy(d_fft_if->get_inbuf() + offset, code, sizeof(gr_complex) * offset);
}
else
{
memcpy(d_fft_if->get_inbuf(), code, sizeof(gr_complex) * d_fft_size);
}
d_fft_if->execute(); // We need the FFT of local code
volk_32fc_conjugate_32fc(d_fft_codes, d_fft_if->get_outbuf(), d_fft_size);
}
bool pcps_acquisition_sc::is_fdma()
{
// Dealing with FDMA system
if( strcmp(d_gnss_synchro->Signal,"1G") == 0 )
{
d_freq += DFRQ1_GLO * GLONASS_PRN.at(d_gnss_synchro->PRN);
LOG(INFO) << "Trying to acquire SV PRN " << d_gnss_synchro->PRN << " with freq " << DFRQ1_GLO * GLONASS_PRN.at(d_gnss_synchro->PRN) << " in Channel " << GLONASS_PRN.at(d_gnss_synchro->PRN) << std::endl;
return true;
}
else
{
return false;
}
}
void pcps_acquisition_sc::update_local_carrier(gr_complex* carrier_vector, int correlator_length_samples, float freq)
{
float phase_step_rad = GPS_TWO_PI * freq / static_cast<float>(d_fs_in);
float _phase[1];
_phase[0] = 0;
volk_gnsssdr_s32f_sincos_32fc(carrier_vector, - phase_step_rad, _phase, correlator_length_samples);
}
void pcps_acquisition_sc::init()
{
d_gnss_synchro->Flag_valid_acquisition = false;
d_gnss_synchro->Flag_valid_symbol_output = false;
d_gnss_synchro->Flag_valid_pseudorange = false;
d_gnss_synchro->Flag_valid_word = false;
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_mag = 0.0;
d_input_power = 0.0;
d_num_doppler_bins = ceil( static_cast<double>(static_cast<int>(d_doppler_max) - static_cast<int>(-d_doppler_max)) / static_cast<double>(d_doppler_step));
// Create the carrier Doppler wipeoff signals
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
d_grid_doppler_wipeoffs[doppler_index] = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
int doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
update_local_carrier(d_grid_doppler_wipeoffs[doppler_index], d_fft_size, d_freq + doppler);
}
d_worker_active = false;
if(d_dump)
{
unsigned int effective_fft_size = (d_bit_transition_flag ? (d_fft_size / 2) : d_fft_size);
grid_ = arma::fmat(effective_fft_size, d_num_doppler_bins, arma::fill::zeros);
}
}
void pcps_acquisition_sc::update_grid_doppler_wipeoffs()
{
// Create the carrier Doppler wipeoff signals
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
d_grid_doppler_wipeoffs[doppler_index] = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
int doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
update_local_carrier(d_grid_doppler_wipeoffs[doppler_index], d_fft_size, d_freq + doppler);
}
}
void pcps_acquisition_sc::set_state(int state)
{
gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler
d_state = state;
if (d_state == 1)
{
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_well_count = 0;
d_mag = 0.0;
d_input_power = 0.0;
d_test_statistics = 0.0;
d_active = true;
}
else if (d_state == 0)
{}
else
{
LOG(ERROR) << "State can only be set to 0 or 1";
}
}
void pcps_acquisition_sc::send_positive_acquisition()
{
// 6.1- Declare positive acquisition using a message port
//0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
DLOG(INFO) << "positive acquisition"
<< ", satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
<< ", sample_stamp " << d_sample_counter
<< ", test statistics value " << d_test_statistics
<< ", test statistics threshold " << d_threshold
<< ", code phase " << d_gnss_synchro->Acq_delay_samples
<< ", doppler " << d_gnss_synchro->Acq_doppler_hz
<< ", magnitude " << d_mag
<< ", input signal power " << d_input_power;
this->message_port_pub(pmt::mp("events"), pmt::from_long(1));
}
void pcps_acquisition_sc::send_negative_acquisition()
{
// 6.2- Declare negative acquisition using a message port
//0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
DLOG(INFO) << "negative acquisition"
<< ", satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
<< ", sample_stamp " << d_sample_counter
<< ", test statistics value " << d_test_statistics
<< ", test statistics threshold " << d_threshold
<< ", code phase " << d_gnss_synchro->Acq_delay_samples
<< ", doppler " << d_gnss_synchro->Acq_doppler_hz
<< ", magnitude " << d_mag
<< ", input signal power " << d_input_power;
this->message_port_pub(pmt::mp("events"), pmt::from_long(2));
}
int pcps_acquisition_sc::general_work(int noutput_items __attribute__((unused)),
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items __attribute__((unused)))
{
/*
* By J.Arribas, L.Esteve and M.Molina
* Acquisition strategy (Kay Borre book + CFAR threshold):
* 1. Compute the input signal power estimation
* 2. Doppler serial search loop
* 3. Perform the FFT-based circular convolution (parallel time search)
* 4. Record the maximum peak and the associated synchronization parameters
* 5. Compute the test statistics and compare to the threshold
* 6. Declare positive or negative acquisition using a message port
*/
gr::thread::scoped_lock lk(d_setlock);
if(!d_active || d_worker_active)
{
d_sample_counter += d_fft_size * ninput_items[0];
consume_each(ninput_items[0]);
return 0;
}
switch(d_state)
{
case 0:
{
//restart acquisition variables
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_well_count = 0;
d_mag = 0.0;
d_input_power = 0.0;
d_test_statistics = 0.0;
d_state = 1;
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
consume_each(ninput_items[0]);
break;
}
case 1:
{
// Copy the data to the core and let it know that new data is available
memcpy(d_data_buffer, input_items[0], d_fft_size * sizeof(lv_16sc_t));
if(d_blocking)
{
lk.unlock();
acquisition_core(d_sample_counter);
}
else
{
gr::thread::thread d_worker(&pcps_acquisition_sc::acquisition_core, this, d_sample_counter);
d_worker_active = true;
}
d_sample_counter += d_fft_size;
consume_each(1);
break;
}
}
return 0;
}
void pcps_acquisition_sc::acquisition_core( unsigned long int samp_count )
{
gr::thread::scoped_lock lk(d_setlock);
// initialize acquisition algorithm
int doppler;
uint32_t indext = 0;
float magt = 0.0;
const lv_16sc_t *in = d_data_buffer; //Get the input samples pointer
int effective_fft_size = ( d_bit_transition_flag ? d_fft_size/2 : d_fft_size );
float fft_normalization_factor = static_cast<float>(d_fft_size) * static_cast<float>(d_fft_size);
d_input_power = 0.0;
d_mag = 0.0;
d_well_count++;
volk_gnsssdr_16ic_convert_32fc(d_in_32fc, in, effective_fft_size);
DLOG(INFO) << "Channel: " << d_channel
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
<< " ,sample stamp: " << samp_count << ", threshold: "
<< d_threshold << ", doppler_max: " << d_doppler_max
<< ", doppler_step: " << d_doppler_step
<< ", use_CFAR_algorithm_flag: " << ( d_use_CFAR_algorithm_flag ? "true" : "false" );
lk.unlock();
if (d_use_CFAR_algorithm_flag)
{
// 1- (optional) Compute the input signal power estimation
volk_32fc_magnitude_squared_32f(d_magnitude, d_in_32fc, d_fft_size);
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);
d_input_power /= static_cast<float>(d_fft_size);
}
// 2- Doppler frequency search loop
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
// doppler search steps
doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), d_in_32fc, d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
// 3- Perform the FFT-based convolution (parallel time search)
// Compute the FFT of the carrier wiped--off incoming signal
d_fft_if->execute();
// Multiply carrier wiped--off, Fourier transformed incoming signal
// with the local FFT'd code reference using SIMD operations with VOLK library
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
// compute the inverse FFT
d_ifft->execute();
// Search maximum
size_t offset = ( d_bit_transition_flag ? effective_fft_size : 0 );
volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf() + offset, effective_fft_size);
volk_gnsssdr_32f_index_max_32u(&indext, d_magnitude, effective_fft_size);
magt = d_magnitude[indext];
if (d_use_CFAR_algorithm_flag)
{
// Normalize the maximum value to correct the scale factor introduced by FFTW
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
}
// 4- record the maximum peak and the associated synchronization parameters
if (d_mag < magt)
{
d_mag = magt;
if (!d_use_CFAR_algorithm_flag)
{
// Search grid noise floor approximation for this doppler line
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size);
d_input_power = (d_input_power - d_mag) / (effective_fft_size - 1);
}
// In case that d_bit_transition_flag = true, we compare the potentially
// new maximum test statistics (d_mag/d_input_power) with the value in
// d_test_statistics. When the second dwell is being processed, the value
// of d_mag/d_input_power could be lower than d_test_statistics (i.e,
// the maximum test statistics in the previous dwell is greater than
// current d_mag/d_input_power). Note that d_test_statistics is not
// restarted between consecutive dwells in multidwell operation.
if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag)
{
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
d_gnss_synchro->Acq_samplestamp_samples = samp_count;
// 5- Compute the test statistics and compare to the threshold
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
d_test_statistics = d_mag / d_input_power;
}
}
// Record results to file if required
if (d_dump)
{
memcpy(grid_.colptr(doppler_index), d_magnitude, sizeof(float) * effective_fft_size);
if(doppler_index == (d_num_doppler_bins - 1))
{
std::string filename = d_dump_filename;
filename.append("_");
filename.append(1, d_gnss_synchro->System);
filename.append("_");
filename.append(1, d_gnss_synchro->Signal[0]);
filename.append(1, d_gnss_synchro->Signal[1]);
filename.append("_sat_");
filename.append(std::to_string(d_gnss_synchro->PRN));
filename.append(".mat");
mat_t* matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73);
if(matfp == NULL)
{
std::cout << "Unable to create or open Acquisition dump file" << std::endl;
d_dump = false;
}
else
{
size_t dims[2] = {static_cast<size_t>(effective_fft_size), static_cast<size_t>(d_num_doppler_bins)};
matvar_t* matvar = Mat_VarCreate("grid", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, grid_.memptr(), 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
dims[0] = static_cast<size_t>(1);
dims[1] = static_cast<size_t>(1);
matvar = Mat_VarCreate("doppler_max", MAT_C_SINGLE, MAT_T_UINT32, 1, dims, &d_doppler_max, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("doppler_step", MAT_C_SINGLE, MAT_T_UINT32, 1, dims, &d_doppler_step, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
Mat_Close(matfp);
}
}
}
}
lk.lock();
if (!d_bit_transition_flag)
{
if (d_test_statistics > d_threshold)
{
d_state = 0; // Positive acquisition
d_active = false;
send_positive_acquisition();
}
else if (d_well_count == d_max_dwells)
{
d_state = 0;
d_active = false;
send_negative_acquisition();
}
}
else
{
if (d_well_count == d_max_dwells) // d_max_dwells = 2
{
if (d_test_statistics > d_threshold)
{
d_state = 0; // Positive acquisition
d_active = false;
send_positive_acquisition();
}
else
{
d_state = 0; // Negative acquisition
d_active = false;
send_negative_acquisition();
}
}
}
d_worker_active = false;
}

View File

@ -1,249 +0,0 @@
/*!
* \file pcps_acquisition_sc.h
* \brief This class implements a Parallel Code Phase Search Acquisition
*
* Acquisition strategy (Kay Borre book + CFAR threshold).
* <ol>
* <li> Compute the input signal power estimation
* <li> Doppler serial search loop
* <li> Perform the FFT-based circular convolution (parallel time search)
* <li> Record the maximum peak and the associated synchronization parameters
* <li> Compute the test statistics and compare to the threshold
* <li> Declare positive or negative acquisition using a message port
* </ol>
*
* Kay Borre book: K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* "A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach", Birkhauser, 2007. pp 81-84
*
* \authors <ul>
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
* <li> Marc Molina, 2013. marc.molina.pena@gmail.com
* <li> Cillian O'Driscoll, 2017. cillian(at)ieee.org
* </ul>
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_PCPS_ACQUISITION_SC_H_
#define GNSS_SDR_PCPS_ACQUISITION_SC_H_
#include <string>
#include <armadillo>
#include <gnuradio/block.h>
#include <gnuradio/fft/fft.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include "gnss_synchro.h"
class pcps_acquisition_sc;
typedef boost::shared_ptr<pcps_acquisition_sc> pcps_acquisition_sc_sptr;
pcps_acquisition_sc_sptr
pcps_make_acquisition_sc(unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code,
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
bool dump, bool blocking,
std::string dump_filename);
/*!
* \brief This class implements a Parallel Code Phase Search Acquisition.
*
* Check \ref Navitec2012 "An Open Source Galileo E1 Software Receiver",
* Algorithm 1, for a pseudocode description of this implementation.
*/
class pcps_acquisition_sc: public gr::block
{
private:
friend pcps_acquisition_sc_sptr
pcps_make_acquisition_sc(unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code,
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
bool dump, bool blocking,
std::string dump_filename);
pcps_acquisition_sc(unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code,
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
bool dump, bool blocking,
std::string dump_filename);
void update_local_carrier(gr_complex* carrier_vector, int correlator_length_samples, float freq);
void acquisition_core( unsigned long int samp_count );
void update_grid_doppler_wipeoffs();
bool is_fdma();
void send_negative_acquisition();
void send_positive_acquisition();
bool d_bit_transition_flag;
bool d_use_CFAR_algorithm_flag;
bool d_active;
bool d_dump;
bool d_worker_active;
bool d_blocking;
float d_threshold;
float d_mag;
float d_input_power;
float d_test_statistics;
float* d_magnitude;
long d_fs_in;
long d_freq;
long d_old_freq;
int d_samples_per_ms;
int d_samples_per_code;
int d_state;
unsigned int d_channel;
unsigned int d_doppler_max;
unsigned int d_doppler_step;
unsigned int d_sampled_ms;
unsigned int d_max_dwells;
unsigned int d_well_count;
unsigned int d_fft_size;
unsigned int d_num_doppler_bins;
unsigned int d_code_phase;
unsigned long int d_sample_counter;
lv_16sc_t* d_data_buffer;
gr_complex** d_grid_doppler_wipeoffs;
gr_complex* d_fft_codes;
gr_complex* d_in_32fc;
gr::fft::fft_complex* d_fft_if;
gr::fft::fft_complex* d_ifft;
Gnss_Synchro* d_gnss_synchro;
std::string d_dump_filename;
arma::fmat grid_;
public:
/*!
* \brief Default destructor.
*/
~pcps_acquisition_sc();
/*!
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
* to exchange synchronization data between acquisition and tracking blocks.
* \param p_gnss_synchro Satellite information shared by the processing blocks.
*/
inline void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
{
gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler
d_gnss_synchro = p_gnss_synchro;
}
/*!
* \brief Returns the maximum peak of grid search.
*/
inline unsigned int mag() const
{
return d_mag;
}
/*!
* \brief Initializes acquisition algorithm.
*/
void init();
/*!
* \brief Sets local code for PCPS acquisition algorithm.
* \param code - Pointer to the PRN code.
*/
void set_local_code(std::complex<float> * code);
/*!
* \brief Starts acquisition algorithm, turning from standby mode to
* active mode
* \param active - bool that activates/deactivates the block.
*/
inline void set_active(bool active)
{
gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler
d_active = active;
}
/*!
* \brief If set to 1, ensures that acquisition starts at the
* first available sample.
* \param state - int=1 forces start of acquisition
*/
void set_state(int state);
/*!
* \brief Set acquisition channel unique ID
* \param channel - receiver channel.
*/
inline void set_channel(unsigned int channel)
{
gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler
d_channel = channel;
}
/*!
* \brief Set statistics threshold of PCPS algorithm.
* \param threshold - Threshold for signal detection (check \ref Navitec2012,
* Algorithm 1, for a definition of this threshold).
*/
inline void set_threshold(float threshold)
{
gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler
d_threshold = threshold;
}
/*!
* \brief Set maximum Doppler grid search
* \param doppler_max - Maximum Doppler shift considered in the grid search [Hz].
*/
inline void set_doppler_max(unsigned int doppler_max)
{
gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler
d_doppler_max = doppler_max;
}
/*!
* \brief Set Doppler steps for the grid search
* \param doppler_step - Frequency bin of the search grid [Hz].
*/
inline void set_doppler_step(unsigned int doppler_step)
{
gr::thread::scoped_lock lock(d_setlock); // require mutex with work function called by the scheduler
d_doppler_step = doppler_step;
}
/*!
* \brief Parallel Code Phase Search Acquisition signal processing.
*/
int general_work(int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items);
};
#endif /* GNSS_SDR_PCPS_ACQUISITION_SC_H_*/