mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2025-01-16 20:23:02 +00:00
Clean pcps acquisition
This commit is contained in:
parent
419957bec6
commit
188df6c5b8
@ -127,13 +127,9 @@ pcps_acquisition_cc::pcps_acquisition_cc(
|
||||
// For dumping samples into a file
|
||||
d_dump = dump;
|
||||
d_dump_filename = dump_filename;
|
||||
|
||||
d_gnss_synchro = 0;
|
||||
d_grid_doppler_wipeoffs = 0;
|
||||
|
||||
d_done = false;
|
||||
d_blocking = blocking;
|
||||
d_new_data_available = false;
|
||||
d_worker_active = false;
|
||||
d_data_buffer = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||
}
|
||||
@ -160,19 +156,6 @@ pcps_acquisition_cc::~pcps_acquisition_cc()
|
||||
{
|
||||
d_dump_file.close();
|
||||
}
|
||||
|
||||
// Let the worker thread know that we are done and then wait to join
|
||||
if( d_worker_thread.joinable() )
|
||||
{
|
||||
{
|
||||
std::lock_guard<std::mutex> lk( d_mutex );
|
||||
d_done = true;
|
||||
d_cond.notify_one();
|
||||
}
|
||||
|
||||
d_worker_thread.join();
|
||||
}
|
||||
|
||||
volk_gnsssdr_free( d_data_buffer );
|
||||
}
|
||||
|
||||
@ -233,9 +216,6 @@ void pcps_acquisition_cc::init()
|
||||
int doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
|
||||
update_local_carrier(d_grid_doppler_wipeoffs[doppler_index], d_fft_size, d_freq + doppler);
|
||||
}
|
||||
|
||||
d_new_data_available = false;
|
||||
d_done = false;
|
||||
d_worker_active = false;
|
||||
}
|
||||
|
||||
@ -253,6 +233,7 @@ void pcps_acquisition_cc::set_state(int state)
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
d_test_statistics = 0.0;
|
||||
d_active = true;
|
||||
}
|
||||
else if (d_state == 0)
|
||||
{}
|
||||
@ -299,7 +280,7 @@ void pcps_acquisition_cc::send_negative_acquisition()
|
||||
}
|
||||
|
||||
|
||||
int pcps_acquisition_cc::general_work(int noutput_items,
|
||||
int pcps_acquisition_cc::general_work(int noutput_items __attribute__((unused)),
|
||||
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
|
||||
gr_vector_void_star &output_items __attribute__((unused)))
|
||||
{
|
||||
@ -314,193 +295,157 @@ int pcps_acquisition_cc::general_work(int noutput_items,
|
||||
* 6. Declare positive or negative acquisition using a message port
|
||||
*/
|
||||
|
||||
switch (d_state)
|
||||
gr::thread::scoped_lock lk(d_setlock);
|
||||
if(!d_active || d_worker_active)
|
||||
{
|
||||
d_sample_counter += d_fft_size * ninput_items[0];
|
||||
consume_each(ninput_items[0]);
|
||||
return 0;
|
||||
}
|
||||
|
||||
switch(d_state)
|
||||
{
|
||||
case 0:
|
||||
{
|
||||
if (d_active)
|
||||
{
|
||||
//restart acquisition variables
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
d_gnss_synchro->Acq_doppler_hz = 0.0;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = 0;
|
||||
d_well_count = 0;
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
d_test_statistics = 0.0;
|
||||
d_state = 1;
|
||||
}
|
||||
|
||||
//restart acquisition variables
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
d_gnss_synchro->Acq_doppler_hz = 0.0;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = 0;
|
||||
d_well_count = 0;
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
d_test_statistics = 0.0;
|
||||
d_state = 1;
|
||||
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
|
||||
consume_each(ninput_items[0]);
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case 1:
|
||||
{
|
||||
std::unique_lock<std::mutex> lk( d_mutex );
|
||||
|
||||
int num_items_consumed = 1;
|
||||
|
||||
if( d_worker_active )
|
||||
// Copy the data to the core and let it know that new data is available
|
||||
memcpy(d_data_buffer, input_items[0], d_fft_size * sizeof(gr_complex));
|
||||
if(d_blocking)
|
||||
{
|
||||
if( d_blocking )
|
||||
{
|
||||
// Should never get here:
|
||||
std::string msg = "pcps_acquisition_cc: Entered general work with worker active in blocking mode, should never happen";
|
||||
LOG(WARNING) << msg;
|
||||
std::cout << msg << std::endl;
|
||||
d_cond.wait( lk, [&]{ return !this->d_worker_active; } );
|
||||
}
|
||||
else
|
||||
{
|
||||
num_items_consumed = ninput_items[0];
|
||||
d_sample_counter += d_fft_size * num_items_consumed;
|
||||
}
|
||||
lk.unlock();
|
||||
acquisition_core();
|
||||
}
|
||||
else
|
||||
{
|
||||
// Copy the data to the core and let it know that new data is available
|
||||
memcpy( d_data_buffer, input_items[0], d_fft_size * sizeof( gr_complex ) );
|
||||
d_new_data_available = true;
|
||||
d_cond.notify_one();
|
||||
|
||||
if( d_blocking )
|
||||
{
|
||||
d_cond.wait( lk, [&]{ return !this->d_new_data_available; } );
|
||||
|
||||
}
|
||||
gr::thread::thread d_worker(&pcps_acquisition_cc::acquisition_core, this);
|
||||
d_worker_active = true;
|
||||
}
|
||||
|
||||
consume_each(num_items_consumed);
|
||||
|
||||
consume_each(1);
|
||||
break;
|
||||
} // case 1, switch d_state
|
||||
|
||||
} // switch d_state
|
||||
|
||||
return noutput_items;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
void pcps_acquisition_cc::acquisition_core( void )
|
||||
{
|
||||
d_worker_active = false;
|
||||
while( 1 )
|
||||
gr::thread::scoped_lock lk(d_setlock);
|
||||
|
||||
unsigned long int sample_counter = d_sample_counter; // sample counter
|
||||
// initialize acquisition algorithm
|
||||
int doppler;
|
||||
uint32_t indext = 0;
|
||||
float magt = 0.0;
|
||||
const gr_complex *in = d_data_buffer; //Get the input samples pointer
|
||||
|
||||
int effective_fft_size = ( d_bit_transition_flag ? d_fft_size/2 : d_fft_size );
|
||||
|
||||
float fft_normalization_factor = static_cast<float>(d_fft_size) * static_cast<float>(d_fft_size);
|
||||
|
||||
d_input_power = 0.0;
|
||||
d_mag = 0.0;
|
||||
d_well_count++;
|
||||
|
||||
DLOG(INFO) << "Channel: " << d_channel
|
||||
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
|
||||
<< " ,sample stamp: " << sample_counter << ", threshold: "
|
||||
<< d_threshold << ", doppler_max: " << d_doppler_max
|
||||
<< ", doppler_step: " << d_doppler_step
|
||||
<< ", use_CFAR_algorithm_flag: " << ( d_use_CFAR_algorithm_flag ? "true" : "false" );
|
||||
|
||||
lk.unlock();
|
||||
if (d_use_CFAR_algorithm_flag)
|
||||
{
|
||||
std::unique_lock<std::mutex> lk( d_mutex );
|
||||
d_cond.wait( lk, [&]{ return this->d_new_data_available or this->d_done; } );
|
||||
d_worker_active = !d_done;
|
||||
unsigned long int sample_counter = d_sample_counter; // sample counter
|
||||
lk.unlock();
|
||||
// 1- (optional) Compute the input signal power estimation
|
||||
volk_32fc_magnitude_squared_32f(d_magnitude, in, d_fft_size);
|
||||
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);
|
||||
d_input_power /= static_cast<float>(d_fft_size);
|
||||
}
|
||||
// 2- Doppler frequency search loop
|
||||
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
|
||||
{
|
||||
// doppler search steps
|
||||
doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
|
||||
|
||||
if( d_done )
|
||||
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
|
||||
|
||||
// 3- Perform the FFT-based convolution (parallel time search)
|
||||
// Compute the FFT of the carrier wiped--off incoming signal
|
||||
d_fft_if->execute();
|
||||
|
||||
// Multiply carrier wiped--off, Fourier transformed incoming signal
|
||||
// with the local FFT'd code reference using SIMD operations with VOLK library
|
||||
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
|
||||
|
||||
// compute the inverse FFT
|
||||
d_ifft->execute();
|
||||
|
||||
// Search maximum
|
||||
size_t offset = ( d_bit_transition_flag ? effective_fft_size : 0 );
|
||||
volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf() + offset, effective_fft_size);
|
||||
volk_gnsssdr_32f_index_max_32u(&indext, d_magnitude, effective_fft_size);
|
||||
magt = d_magnitude[indext];
|
||||
|
||||
if (d_use_CFAR_algorithm_flag)
|
||||
{
|
||||
break;
|
||||
// Normalize the maximum value to correct the scale factor introduced by FFTW
|
||||
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
|
||||
}
|
||||
|
||||
// initialize acquisition algorithm
|
||||
int doppler;
|
||||
uint32_t indext = 0;
|
||||
float magt = 0.0;
|
||||
const gr_complex *in = d_data_buffer; //Get the input samples pointer
|
||||
|
||||
int effective_fft_size = ( d_bit_transition_flag ? d_fft_size/2 : d_fft_size );
|
||||
|
||||
float fft_normalization_factor = static_cast<float>(d_fft_size) * static_cast<float>(d_fft_size);
|
||||
|
||||
d_input_power = 0.0;
|
||||
d_mag = 0.0;
|
||||
d_well_count++;
|
||||
|
||||
DLOG(INFO) << "Channel: " << d_channel
|
||||
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
|
||||
<< " ,sample stamp: " << sample_counter << ", threshold: "
|
||||
<< d_threshold << ", doppler_max: " << d_doppler_max
|
||||
<< ", doppler_step: " << d_doppler_step
|
||||
<< ", use_CFAR_algorithm_flag: " << ( d_use_CFAR_algorithm_flag ? "true" : "false" );
|
||||
|
||||
if (d_use_CFAR_algorithm_flag == true)
|
||||
// 4- record the maximum peak and the associated synchronization parameters
|
||||
if (d_mag < magt)
|
||||
{
|
||||
// 1- (optional) Compute the input signal power estimation
|
||||
volk_32fc_magnitude_squared_32f(d_magnitude, in, d_fft_size);
|
||||
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);
|
||||
d_input_power /= static_cast<float>(d_fft_size);
|
||||
}
|
||||
// 2- Doppler frequency search loop
|
||||
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
|
||||
{
|
||||
// doppler search steps
|
||||
doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
|
||||
d_mag = magt;
|
||||
|
||||
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in,
|
||||
d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
|
||||
|
||||
// 3- Perform the FFT-based convolution (parallel time search)
|
||||
// Compute the FFT of the carrier wiped--off incoming signal
|
||||
d_fft_if->execute();
|
||||
|
||||
// Multiply carrier wiped--off, Fourier transformed incoming signal
|
||||
// with the local FFT'd code reference using SIMD operations with VOLK library
|
||||
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(),
|
||||
d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
|
||||
|
||||
// compute the inverse FFT
|
||||
d_ifft->execute();
|
||||
|
||||
// Search maximum
|
||||
size_t offset = ( d_bit_transition_flag ? effective_fft_size : 0 );
|
||||
volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf() + offset, effective_fft_size);
|
||||
volk_gnsssdr_32f_index_max_32u(&indext, d_magnitude, effective_fft_size);
|
||||
magt = d_magnitude[indext];
|
||||
|
||||
if (d_use_CFAR_algorithm_flag == true)
|
||||
if (!d_use_CFAR_algorithm_flag)
|
||||
{
|
||||
// Normalize the maximum value to correct the scale factor introduced by FFTW
|
||||
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
|
||||
}
|
||||
// 4- record the maximum peak and the associated synchronization parameters
|
||||
if (d_mag < magt)
|
||||
{
|
||||
d_mag = magt;
|
||||
|
||||
if (d_use_CFAR_algorithm_flag == false)
|
||||
{
|
||||
// Search grid noise floor approximation for this doppler line
|
||||
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size);
|
||||
d_input_power = (d_input_power - d_mag) / (effective_fft_size - 1);
|
||||
}
|
||||
|
||||
// In case that d_bit_transition_flag = true, we compare the potentially
|
||||
// new maximum test statistics (d_mag/d_input_power) with the value in
|
||||
// d_test_statistics. When the second dwell is being processed, the value
|
||||
// of d_mag/d_input_power could be lower than d_test_statistics (i.e,
|
||||
// the maximum test statistics in the previous dwell is greater than
|
||||
// current d_mag/d_input_power). Note that d_test_statistics is not
|
||||
// restarted between consecutive dwells in multidwell operation.
|
||||
|
||||
if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag)
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
|
||||
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
|
||||
d_gnss_synchro->Acq_samplestamp_samples = sample_counter;
|
||||
|
||||
// 5- Compute the test statistics and compare to the threshold
|
||||
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
|
||||
d_test_statistics = d_mag / d_input_power;
|
||||
}
|
||||
// Search grid noise floor approximation for this doppler line
|
||||
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size);
|
||||
d_input_power = (d_input_power - d_mag) / (effective_fft_size - 1);
|
||||
}
|
||||
|
||||
// Record results to file if required
|
||||
if (d_dump)
|
||||
{
|
||||
std::stringstream filename;
|
||||
std::streamsize n = 2 * sizeof(float) * (d_fft_size); // complex file write
|
||||
filename.str("");
|
||||
// In case that d_bit_transition_flag = true, we compare the potentially
|
||||
// new maximum test statistics (d_mag/d_input_power) with the value in
|
||||
// d_test_statistics. When the second dwell is being processed, the value
|
||||
// of d_mag/d_input_power could be lower than d_test_statistics (i.e,
|
||||
// the maximum test statistics in the previous dwell is greater than
|
||||
// current d_mag/d_input_power). Note that d_test_statistics is not
|
||||
// restarted between consecutive dwells in multidwell operation.
|
||||
|
||||
boost::filesystem::path p = d_dump_filename;
|
||||
filename << p.parent_path().string()
|
||||
if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag)
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
|
||||
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
|
||||
d_gnss_synchro->Acq_samplestamp_samples = sample_counter;
|
||||
|
||||
// 5- Compute the test statistics and compare to the threshold
|
||||
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
|
||||
d_test_statistics = d_mag / d_input_power;
|
||||
}
|
||||
}
|
||||
// Record results to file if required
|
||||
if (d_dump)
|
||||
{
|
||||
std::stringstream filename;
|
||||
std::streamsize n = 2 * sizeof(float) * (d_fft_size); // complex file write
|
||||
filename.str("");
|
||||
boost::filesystem::path p = d_dump_filename;
|
||||
filename << p.parent_path().string()
|
||||
<< boost::filesystem::path::preferred_separator
|
||||
<< p.stem().string()
|
||||
<< "_" << d_gnss_synchro->System
|
||||
@ -509,15 +454,32 @@ void pcps_acquisition_cc::acquisition_core( void )
|
||||
<< doppler
|
||||
<< p.extension().string();
|
||||
|
||||
DLOG(INFO) << "Writing ACQ out to " << filename.str();
|
||||
DLOG(INFO) << "Writing ACQ out to " << filename.str();
|
||||
|
||||
d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary);
|
||||
d_dump_file.write(reinterpret_cast<char*>(d_ifft->get_outbuf()), n); //write directly |abs(x)|^2 in this Doppler bin?
|
||||
d_dump_file.close();
|
||||
}
|
||||
d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary);
|
||||
d_dump_file.write(reinterpret_cast<char*>(d_ifft->get_outbuf()), n); //write directly |abs(x)|^2 in this Doppler bin?
|
||||
d_dump_file.close();
|
||||
}
|
||||
|
||||
if (!d_bit_transition_flag)
|
||||
}
|
||||
lk.lock();
|
||||
if (!d_bit_transition_flag)
|
||||
{
|
||||
if (d_test_statistics > d_threshold)
|
||||
{
|
||||
d_state = 0; // Positive acquisition
|
||||
d_active = false;
|
||||
send_positive_acquisition();
|
||||
}
|
||||
else if (d_well_count == d_max_dwells)
|
||||
{
|
||||
d_state = 0;
|
||||
d_active = false;
|
||||
send_negative_acquisition();
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (d_well_count == d_max_dwells) // d_max_dwells = 2
|
||||
{
|
||||
if (d_test_statistics > d_threshold)
|
||||
{
|
||||
@ -525,66 +487,13 @@ void pcps_acquisition_cc::acquisition_core( void )
|
||||
d_active = false;
|
||||
send_positive_acquisition();
|
||||
}
|
||||
else if (d_well_count == d_max_dwells)
|
||||
else
|
||||
{
|
||||
d_state = 0;
|
||||
d_state = 0; // Negative acquisition
|
||||
d_active = false;
|
||||
send_negative_acquisition();
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (d_well_count == d_max_dwells) // d_max_dwells = 2
|
||||
{
|
||||
if (d_test_statistics > d_threshold)
|
||||
{
|
||||
d_state = 0; // Positive acquisition
|
||||
d_active = false;
|
||||
send_positive_acquisition();
|
||||
}
|
||||
else
|
||||
{
|
||||
d_state = 0; // Negative acquisition
|
||||
d_active = false;
|
||||
send_negative_acquisition();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
lk.lock();
|
||||
d_worker_active = false;
|
||||
d_new_data_available = false;
|
||||
lk.unlock();
|
||||
d_cond.notify_one();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
bool pcps_acquisition_cc::start( void )
|
||||
{
|
||||
d_worker_active = false;
|
||||
d_done = false;
|
||||
|
||||
// Start the worker thread and wait for it to acknowledge:
|
||||
d_worker_thread = std::move( std::thread( &pcps_acquisition_cc::acquisition_core, this ) );
|
||||
|
||||
return gr::block::start();
|
||||
}
|
||||
|
||||
|
||||
bool pcps_acquisition_cc::stop( void )
|
||||
{
|
||||
// Let the worker thread know that we are done and then wait to join
|
||||
if( d_worker_thread.joinable() )
|
||||
{
|
||||
{
|
||||
std::lock_guard<std::mutex> lk( d_mutex );
|
||||
d_done = true;
|
||||
d_cond.notify_one();
|
||||
}
|
||||
|
||||
d_worker_thread.join();
|
||||
}
|
||||
return gr::block::stop();
|
||||
}
|
||||
|
||||
|
@ -21,6 +21,7 @@
|
||||
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
|
||||
* <li> Marc Molina, 2013. marc.molina.pena@gmail.com
|
||||
* <li> Cillian O'Driscoll, 2017. cillian(at)ieee.org
|
||||
* <li> Antonio Ramos, 2017. antonio.ramos@cttc.es
|
||||
* </ul>
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
@ -53,9 +54,6 @@
|
||||
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#include <mutex>
|
||||
#include <thread>
|
||||
#include <condition_variable>
|
||||
#include <gnuradio/block.h>
|
||||
#include <gnuradio/gr_complex.h>
|
||||
#include <gnuradio/fft/fft.h>
|
||||
@ -109,7 +107,6 @@ private:
|
||||
int d_samples_per_code;
|
||||
//unsigned int d_doppler_resolution;
|
||||
float d_threshold;
|
||||
std::string d_satellite_str;
|
||||
unsigned int d_doppler_max;
|
||||
unsigned int d_doppler_step;
|
||||
unsigned int d_sampled_ms;
|
||||
@ -137,16 +134,8 @@ private:
|
||||
bool d_dump;
|
||||
unsigned int d_channel;
|
||||
std::string d_dump_filename;
|
||||
|
||||
std::thread d_worker_thread;
|
||||
std::mutex d_mutex;
|
||||
|
||||
std::condition_variable d_cond;
|
||||
bool d_done;
|
||||
bool d_new_data_available;
|
||||
bool d_worker_active;
|
||||
bool d_blocking;
|
||||
|
||||
gr_complex *d_data_buffer;
|
||||
|
||||
public:
|
||||
@ -251,15 +240,6 @@ public:
|
||||
gr_vector_const_void_star &input_items,
|
||||
gr_vector_void_star &output_items);
|
||||
|
||||
/*!
|
||||
* Called by the flowgraph when processing is about to start.
|
||||
*/
|
||||
bool start( void );
|
||||
|
||||
/*!
|
||||
* Called by the flowgraph when processing is done.
|
||||
*/
|
||||
bool stop( void );
|
||||
};
|
||||
|
||||
#endif /* GNSS_SDR_PCPS_ACQUISITION_CC_H_*/
|
||||
|
Loading…
Reference in New Issue
Block a user