1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-06-14 17:19:58 +00:00
This commit is contained in:
Carles Fernandez 2018-12-03 16:25:11 +01:00
parent 395f93aeff
commit 0d408a6024
97 changed files with 596 additions and 596 deletions

View File

@ -1021,7 +1021,7 @@ int rtklib_pvt_cc::work(int noutput_items, gr_vector_const_void_star& input_item
if (gnss_observables_map.empty() == false)
{
double current_RX_time = gnss_observables_map.begin()->second.RX_time;
uint32_t current_RX_time_ms = static_cast<uint32_t>(current_RX_time * 1000.0);
auto current_RX_time_ms = static_cast<uint32_t>(current_RX_time * 1000.0);
if (current_RX_time_ms % d_output_rate_ms == 0)
{
flag_compute_pvt_output = true;

View File

@ -2878,7 +2878,7 @@ void Rinex_Printer::log_rinex_nav(std::fstream& out, const std::map<int32_t, Gps
line += std::string(1, ' ');
line += Rinex_Printer::doub2for(static_cast<double>(gps_ephemeris_iter->second.i_code_on_L2), 18, 2);
line += std::string(1, ' ');
double GPS_week_continuous_number = static_cast<double>(gps_ephemeris_iter->second.i_GPS_week + 1024); // valid until April 7, 2019 (check http://www.colorado.edu/geography/gcraft/notes/gps/gpseow.htm)
auto GPS_week_continuous_number = static_cast<double>(gps_ephemeris_iter->second.i_GPS_week + 1024); // valid until April 7, 2019 (check http://www.colorado.edu/geography/gcraft/notes/gps/gpseow.htm)
line += Rinex_Printer::doub2for(GPS_week_continuous_number, 18, 2);
line += std::string(1, ' ');
line += Rinex_Printer::doub2for(static_cast<double>(gps_ephemeris_iter->second.i_code_on_L2), 18, 2);
@ -3082,7 +3082,7 @@ void Rinex_Printer::log_rinex_nav(std::fstream& out, const std::map<int32_t, Gps
double my_zero = 0.0;
line += Rinex_Printer::doub2for(my_zero, 18, 2);
line += std::string(1, ' ');
double GPS_week_continuous_number = static_cast<double>(gps_ephemeris_iter->second.i_GPS_week + 1024); // valid until April 7, 2019 (check http://www.colorado.edu/geography/gcraft/notes/gps/gpseow.htm)
auto GPS_week_continuous_number = static_cast<double>(gps_ephemeris_iter->second.i_GPS_week + 1024); // valid until April 7, 2019 (check http://www.colorado.edu/geography/gcraft/notes/gps/gpseow.htm)
line += Rinex_Printer::doub2for(GPS_week_continuous_number, 18, 2);
line += std::string(1, ' ');
line += Rinex_Printer::doub2for(my_zero, 18, 2);
@ -3227,7 +3227,7 @@ void Rinex_Printer::log_rinex_nav(std::fstream& out, const std::map<int32_t, Gal
int32_t data_source_INAV = Rinex_Printer::toInt(iNAVE1B, 10);
line += Rinex_Printer::doub2for(static_cast<double>(data_source_INAV), 18, 2);
line += std::string(1, ' ');
double GST_week = static_cast<double>(galileo_ephemeris_iter->second.WN_5);
auto GST_week = static_cast<double>(galileo_ephemeris_iter->second.WN_5);
double num_GST_rollovers = floor((GST_week + 1024.0) / 4096.0);
double Galileo_week_continuous_number = GST_week + 1024.0 + num_GST_rollovers * 4096.0;
line += Rinex_Printer::doub2for(Galileo_week_continuous_number, 18, 2);
@ -7558,7 +7558,7 @@ void Rinex_Printer::log_rinex_obs(std::fstream& out, const Gps_Ephemeris& gps_ep
lineObs += std::to_string(static_cast<int32_t>(*it));
}
ret = total_glo_map.equal_range(*it);
for (std::multimap<uint32_t, Gnss_Synchro>::iterator iter = ret.first; iter != ret.second; ++iter)
for (auto iter = ret.first; iter != ret.second; ++iter)
{
/// \todo Need to account for pseudorange correction for glonass
//double leap_seconds = Rinex_Printer::get_leap_second(glonass_gnav_eph, gps_obs_time);
@ -7798,7 +7798,7 @@ void Rinex_Printer::log_rinex_obs(std::fstream& out, const Gps_CNAV_Ephemeris& g
lineObs += std::to_string(static_cast<int32_t>(*it));
ret = total_glo_map.equal_range(*it);
for (std::multimap<uint32_t, Gnss_Synchro>::iterator iter = ret.first; iter != ret.second; ++iter)
for (auto iter = ret.first; iter != ret.second; ++iter)
{
/// \todo Need to account for pseudorange correction for glonass
//double leap_seconds = Rinex_Printer::get_leap_second(glonass_gnav_eph, gps_obs_time);
@ -8035,7 +8035,7 @@ void Rinex_Printer::log_rinex_obs(std::fstream& out, const Galileo_Ephemeris& ga
if (static_cast<int32_t>(*it) < 10) lineObs += std::string(1, '0');
lineObs += std::to_string(static_cast<int32_t>(*it));
ret = total_glo_map.equal_range(*it);
for (std::multimap<uint32_t, Gnss_Synchro>::iterator iter = ret.first; iter != ret.second; ++iter)
for (auto iter = ret.first; iter != ret.second; ++iter)
{
lineObs += Rinex_Printer::rightJustify(asString(iter->second.Pseudorange_m, 3), 14);
@ -8616,7 +8616,7 @@ void Rinex_Printer::log_rinex_obs(std::fstream& out, const Gps_Ephemeris& eph, c
if (static_cast<int32_t>(*it) < 10) lineObs += std::string(1, '0');
lineObs += std::to_string(static_cast<int32_t>(*it));
ret = total_mmap.equal_range(*it);
for (std::multimap<uint32_t, Gnss_Synchro>::iterator iter = ret.first; iter != ret.second; ++iter)
for (auto iter = ret.first; iter != ret.second; ++iter)
{
lineObs += Rinex_Printer::rightJustify(asString(iter->second.Pseudorange_m, 3), 14);
@ -8856,7 +8856,7 @@ void Rinex_Printer::log_rinex_obs(std::fstream& out, const Galileo_Ephemeris& ep
if (static_cast<int32_t>(*it) < 10) lineObs += std::string(1, '0');
lineObs += std::to_string(static_cast<int32_t>(*it));
ret = total_map.equal_range(*it);
for (std::multimap<uint32_t, Gnss_Synchro>::iterator iter = ret.first; iter != ret.second; ++iter)
for (auto iter = ret.first; iter != ret.second; ++iter)
{
lineObs += Rinex_Printer::rightJustify(asString(iter->second.Pseudorange_m, 3), 14);
@ -9110,7 +9110,7 @@ void Rinex_Printer::log_rinex_obs(std::fstream& out, const Gps_Ephemeris& gps_ep
if (static_cast<int32_t>(*it) < 10) lineObs += std::string(1, '0');
lineObs += std::to_string(static_cast<int32_t>(*it));
ret = total_gal_map.equal_range(*it);
for (std::multimap<uint32_t, Gnss_Synchro>::iterator iter = ret.first; iter != ret.second; ++iter)
for (auto iter = ret.first; iter != ret.second; ++iter)
{
lineObs += Rinex_Printer::rightJustify(asString(iter->second.Pseudorange_m, 3), 14);
@ -9339,7 +9339,7 @@ void Rinex_Printer::log_rinex_obs(std::fstream& out, const Gps_CNAV_Ephemeris& e
if (static_cast<int32_t>(*it) < 10) lineObs += std::string(1, '0');
lineObs += std::to_string(static_cast<int32_t>(*it));
ret = total_gps_map.equal_range(*it);
for (std::multimap<uint32_t, Gnss_Synchro>::iterator iter = ret.first; iter != ret.second; ++iter)
for (auto iter = ret.first; iter != ret.second; ++iter)
{
lineObs += Rinex_Printer::rightJustify(asString(iter->second.Pseudorange_m, 3), 14);
@ -9398,7 +9398,7 @@ void Rinex_Printer::log_rinex_obs(std::fstream& out, const Gps_CNAV_Ephemeris& e
if (static_cast<int32_t>(*it) < 10) lineObs += std::string(1, '0');
lineObs += std::to_string(static_cast<int32_t>(*it));
ret = total_gal_map.equal_range(*it);
for (std::multimap<uint32_t, Gnss_Synchro>::iterator iter = ret.first; iter != ret.second; ++iter)
for (auto iter = ret.first; iter != ret.second; ++iter)
{
lineObs += Rinex_Printer::rightJustify(asString(iter->second.Pseudorange_m, 3), 14);
@ -9648,7 +9648,7 @@ void Rinex_Printer::log_rinex_obs(std::fstream& out, const Gps_Ephemeris& gps_ep
if (static_cast<int32_t>(*it) < 10) lineObs += std::string(1, '0');
lineObs += std::to_string(static_cast<int32_t>(*it));
ret = total_gps_map.equal_range(*it);
for (std::multimap<uint32_t, Gnss_Synchro>::iterator iter = ret.first; iter != ret.second; ++iter)
for (auto iter = ret.first; iter != ret.second; ++iter)
{
lineObs += Rinex_Printer::rightJustify(asString(iter->second.Pseudorange_m, 3), 14);
@ -9707,7 +9707,7 @@ void Rinex_Printer::log_rinex_obs(std::fstream& out, const Gps_Ephemeris& gps_ep
if (static_cast<int32_t>(*it) < 10) lineObs += std::string(1, '0');
lineObs += std::to_string(static_cast<int32_t>(*it));
ret = total_gal_map.equal_range(*it);
for (std::multimap<uint32_t, Gnss_Synchro>::iterator iter = ret.first; iter != ret.second; ++iter)
for (auto iter = ret.first; iter != ret.second; ++iter)
{
lineObs += Rinex_Printer::rightJustify(asString(iter->second.Pseudorange_m, 3), 14);

View File

@ -137,34 +137,34 @@ bool rtklib_solver::save_matfile()
return false;
}
uint32_t *TOW_at_current_symbol_ms = new uint32_t[num_epoch];
uint32_t *week = new uint32_t[num_epoch];
double *RX_time = new double[num_epoch];
double *user_clk_offset = new double[num_epoch];
double *pos_x = new double[num_epoch];
double *pos_y = new double[num_epoch];
double *pos_z = new double[num_epoch];
double *vel_x = new double[num_epoch];
double *vel_y = new double[num_epoch];
double *vel_z = new double[num_epoch];
double *cov_xx = new double[num_epoch];
double *cov_yy = new double[num_epoch];
double *cov_zz = new double[num_epoch];
double *cov_xy = new double[num_epoch];
double *cov_yz = new double[num_epoch];
double *cov_zx = new double[num_epoch];
double *latitude = new double[num_epoch];
double *longitude = new double[num_epoch];
double *height = new double[num_epoch];
uint8_t *valid_sats = new uint8_t[num_epoch];
uint8_t *solution_status = new uint8_t[num_epoch];
uint8_t *solution_type = new uint8_t[num_epoch];
float *AR_ratio_factor = new float[num_epoch];
float *AR_ratio_threshold = new float[num_epoch];
double *gdop = new double[num_epoch];
double *pdop = new double[num_epoch];
double *hdop = new double[num_epoch];
double *vdop = new double[num_epoch];
auto *TOW_at_current_symbol_ms = new uint32_t[num_epoch];
auto *week = new uint32_t[num_epoch];
auto *RX_time = new double[num_epoch];
auto *user_clk_offset = new double[num_epoch];
auto *pos_x = new double[num_epoch];
auto *pos_y = new double[num_epoch];
auto *pos_z = new double[num_epoch];
auto *vel_x = new double[num_epoch];
auto *vel_y = new double[num_epoch];
auto *vel_z = new double[num_epoch];
auto *cov_xx = new double[num_epoch];
auto *cov_yy = new double[num_epoch];
auto *cov_zz = new double[num_epoch];
auto *cov_xy = new double[num_epoch];
auto *cov_yz = new double[num_epoch];
auto *cov_zx = new double[num_epoch];
auto *latitude = new double[num_epoch];
auto *longitude = new double[num_epoch];
auto *height = new double[num_epoch];
auto *valid_sats = new uint8_t[num_epoch];
auto *solution_status = new uint8_t[num_epoch];
auto *solution_type = new uint8_t[num_epoch];
auto *AR_ratio_factor = new float[num_epoch];
auto *AR_ratio_threshold = new float[num_epoch];
auto *gdop = new double[num_epoch];
auto *pdop = new double[num_epoch];
auto *hdop = new double[num_epoch];
auto *vdop = new double[num_epoch];
try
{
@ -548,7 +548,7 @@ bool rtklib_solver::get_PVT(const std::map<int, Gnss_Synchro> &gnss_observables_
// convert ephemeris from GNSS-SDR class to RTKLIB structure
eph_data[valid_obs] = eph_to_rtklib(galileo_ephemeris_iter->second);
// convert observation from GNSS-SDR class to RTKLIB structure
unsigned char default_code_ = static_cast<unsigned char>(CODE_NONE);
auto default_code_ = static_cast<unsigned char>(CODE_NONE);
obsd_t newobs = {{0, 0}, '0', '0', {}, {},
{default_code_, default_code_, default_code_},
{}, {0.0, 0.0, 0.0}, {}};
@ -624,7 +624,7 @@ bool rtklib_solver::get_PVT(const std::map<int, Gnss_Synchro> &gnss_observables_
// convert ephemeris from GNSS-SDR class to RTKLIB structure
eph_data[valid_obs] = eph_to_rtklib(gps_cnav_ephemeris_iter->second);
// convert observation from GNSS-SDR class to RTKLIB structure
unsigned char default_code_ = static_cast<unsigned char>(CODE_NONE);
auto default_code_ = static_cast<unsigned char>(CODE_NONE);
obsd_t newobs = {{0, 0}, '0', '0', {}, {},
{default_code_, default_code_, default_code_},
{}, {0.0, 0.0, 0.0}, {}};
@ -671,7 +671,7 @@ bool rtklib_solver::get_PVT(const std::map<int, Gnss_Synchro> &gnss_observables_
// convert ephemeris from GNSS-SDR class to RTKLIB structure
eph_data[valid_obs] = eph_to_rtklib(gps_cnav_ephemeris_iter->second);
// convert observation from GNSS-SDR class to RTKLIB structure
unsigned char default_code_ = static_cast<unsigned char>(CODE_NONE);
auto default_code_ = static_cast<unsigned char>(CODE_NONE);
obsd_t newobs = {{0, 0}, '0', '0', {}, {},
{default_code_, default_code_, default_code_},
{}, {0.0, 0.0, 0.0}, {}};

View File

@ -224,7 +224,7 @@ void GalileoE1Pcps8msAmbiguousAcquisition::set_local_code()
bool cboc = configuration_->property(
"Acquisition" + std::to_string(channel_) + ".cboc", false);
std::complex<float>* code = new std::complex<float>[code_length_];
auto* code = new std::complex<float>[code_length_];
galileo_e1_code_gen_complex_sampled(code, gnss_synchro_->Signal,
cboc, gnss_synchro_->PRN, fs_in_, 0, false);
@ -263,9 +263,9 @@ float GalileoE1Pcps8msAmbiguousAcquisition::calculate_threshold(float pfa)
unsigned int ncells = vector_length_ * frequency_bins;
double exponent = 1 / static_cast<double>(ncells);
double val = pow(1.0 - pfa, exponent);
double lambda = double(vector_length_);
auto lambda = double(vector_length_);
boost::math::exponential_distribution<double> mydist(lambda);
float threshold = static_cast<float>(quantile(mydist, val));
auto threshold = static_cast<float>(quantile(mydist, val));
return threshold;
}

View File

@ -221,7 +221,7 @@ void GalileoE1PcpsAmbiguousAcquisition::set_local_code()
bool cboc = configuration_->property(
"Acquisition" + std::to_string(channel_) + ".cboc", false);
std::complex<float>* code = new std::complex<float>[code_length_];
auto* code = new std::complex<float>[code_length_];
if (acquire_pilot_ == true)
{
@ -272,9 +272,9 @@ float GalileoE1PcpsAmbiguousAcquisition::calculate_threshold(float pfa)
unsigned int ncells = vector_length_ * frequency_bins;
double exponent = 1 / static_cast<double>(ncells);
double val = pow(1.0 - pfa, exponent);
double lambda = double(vector_length_);
auto lambda = double(vector_length_);
boost::math::exponential_distribution<double> mydist(lambda);
float threshold = static_cast<float>(quantile(mydist, val));
auto threshold = static_cast<float>(quantile(mydist, val));
return threshold;
}

View File

@ -258,7 +258,7 @@ void GalileoE1PcpsQuickSyncAmbiguousAcquisition::set_local_code()
bool cboc = configuration_->property(
"Acquisition" + std::to_string(channel_) + ".cboc", false);
std::complex<float>* code = new std::complex<float>[code_length_];
auto* code = new std::complex<float>[code_length_];
galileo_e1_code_gen_complex_sampled(code, gnss_synchro_->Signal,
cboc, gnss_synchro_->PRN, fs_in_, 0, false);
@ -311,7 +311,7 @@ float GalileoE1PcpsQuickSyncAmbiguousAcquisition::calculate_threshold(float pfa)
double val = pow(1.0 - pfa, exponent);
double lambda = static_cast<double>(code_length_) / static_cast<double>(folding_factor_);
boost::math::exponential_distribution<double> mydist(lambda);
float threshold = static_cast<float>(quantile(mydist, val));
auto threshold = static_cast<float>(quantile(mydist, val));
return threshold;
}

View File

@ -228,7 +228,7 @@ void GalileoE1PcpsTongAmbiguousAcquisition::set_local_code()
bool cboc = configuration_->property(
"Acquisition" + std::to_string(channel_) + ".cboc", false);
std::complex<float>* code = new std::complex<float>[code_length_];
auto* code = new std::complex<float>[code_length_];
galileo_e1_code_gen_complex_sampled(code, gnss_synchro_->Signal,
cboc, gnss_synchro_->PRN, fs_in_, 0, false);
@ -273,9 +273,9 @@ float GalileoE1PcpsTongAmbiguousAcquisition::calculate_threshold(float pfa)
unsigned int ncells = vector_length_ * frequency_bins;
double exponent = 1 / static_cast<double>(ncells);
double val = pow(1.0 - pfa, exponent);
double lambda = double(vector_length_);
auto lambda = double(vector_length_);
boost::math::exponential_distribution<double> mydist(lambda);
float threshold = static_cast<float>(quantile(mydist, val));
auto threshold = static_cast<float>(quantile(mydist, val));
return threshold;
}

View File

@ -231,8 +231,8 @@ void GalileoE5aNoncoherentIQAcquisitionCaf::set_local_code()
{
if (item_type_ == "gr_complex")
{
std::complex<float>* codeI = new std::complex<float>[code_length_];
std::complex<float>* codeQ = new std::complex<float>[code_length_];
auto* codeI = new std::complex<float>[code_length_];
auto* codeQ = new std::complex<float>[code_length_];
if (gnss_synchro_->Signal[0] == '5' && gnss_synchro_->Signal[1] == 'X')
{
@ -305,9 +305,9 @@ float GalileoE5aNoncoherentIQAcquisitionCaf::calculate_threshold(float pfa)
unsigned int ncells = vector_length_ * frequency_bins;
double exponent = 1 / static_cast<double>(ncells);
double val = pow(1.0 - pfa, exponent);
double lambda = double(vector_length_);
auto lambda = double(vector_length_);
boost::math::exponential_distribution<double> mydist(lambda);
float threshold = static_cast<float>(quantile(mydist, val));
auto threshold = static_cast<float>(quantile(mydist, val));
return threshold;
}

View File

@ -208,7 +208,7 @@ void GalileoE5aPcpsAcquisition::init()
void GalileoE5aPcpsAcquisition::set_local_code()
{
gr_complex* code = new gr_complex[code_length_];
auto* code = new gr_complex[code_length_];
char signal_[3];
if (acq_iq_)
@ -253,9 +253,9 @@ float GalileoE5aPcpsAcquisition::calculate_threshold(float pfa)
unsigned int ncells = vector_length_ * frequency_bins;
double exponent = 1 / static_cast<double>(ncells);
double val = pow(1.0 - pfa, exponent);
double lambda = double(vector_length_);
auto lambda = double(vector_length_);
boost::math::exponential_distribution<double> mydist(lambda);
float threshold = static_cast<float>(quantile(mydist, val));
auto threshold = static_cast<float>(quantile(mydist, val));
return threshold;
}

View File

@ -213,7 +213,7 @@ void GlonassL1CaPcpsAcquisition::init()
void GlonassL1CaPcpsAcquisition::set_local_code()
{
std::complex<float>* code = new std::complex<float>[code_length_];
auto* code = new std::complex<float>[code_length_];
glonass_l1_ca_code_gen_complex_sampled(code, /* gnss_synchro_->PRN,*/ fs_in_, 0);
@ -257,9 +257,9 @@ float GlonassL1CaPcpsAcquisition::calculate_threshold(float pfa)
unsigned int ncells = vector_length_ * frequency_bins;
double exponent = 1 / static_cast<double>(ncells);
double val = pow(1.0 - pfa, exponent);
double lambda = static_cast<double>(vector_length_);
auto lambda = static_cast<double>(vector_length_);
boost::math::exponential_distribution<double> mydist(lambda);
float threshold = static_cast<float>(quantile(mydist, val));
auto threshold = static_cast<float>(quantile(mydist, val));
return threshold;
}

View File

@ -212,7 +212,7 @@ void GlonassL2CaPcpsAcquisition::init()
void GlonassL2CaPcpsAcquisition::set_local_code()
{
std::complex<float>* code = new std::complex<float>[code_length_];
auto* code = new std::complex<float>[code_length_];
glonass_l2_ca_code_gen_complex_sampled(code, /* gnss_synchro_->PRN,*/ fs_in_, 0);
@ -256,9 +256,9 @@ float GlonassL2CaPcpsAcquisition::calculate_threshold(float pfa)
unsigned int ncells = vector_length_ * frequency_bins;
double exponent = 1 / static_cast<double>(ncells);
double val = pow(1.0 - pfa, exponent);
double lambda = static_cast<double>(vector_length_);
auto lambda = static_cast<double>(vector_length_);
boost::math::exponential_distribution<double> mydist(lambda);
float threshold = static_cast<float>(quantile(mydist, val));
auto threshold = static_cast<float>(quantile(mydist, val));
return threshold;
}

View File

@ -206,7 +206,7 @@ void GpsL1CaPcpsAcquisition::init()
void GpsL1CaPcpsAcquisition::set_local_code()
{
std::complex<float>* code = new std::complex<float>[code_length_];
auto* code = new std::complex<float>[code_length_];
gps_l1_ca_code_gen_complex_sampled(code, gnss_synchro_->PRN, fs_in_, 0);
@ -245,9 +245,9 @@ float GpsL1CaPcpsAcquisition::calculate_threshold(float pfa)
unsigned int ncells = vector_length_ * frequency_bins;
double exponent = 1 / static_cast<double>(ncells);
double val = pow(1.0 - pfa, exponent);
double lambda = double(vector_length_);
auto lambda = double(vector_length_);
boost::math::exponential_distribution<double> mydist(lambda);
float threshold = static_cast<float>(quantile(mydist, val));
auto threshold = static_cast<float>(quantile(mydist, val));
return threshold;
}

View File

@ -68,7 +68,7 @@ GpsL1CaPcpsQuickSyncAcquisition::GpsL1CaPcpsQuickSyncAcquisition(
code_length_ = round(fs_in_ / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS));
/*Calculate the folding factor value based on the calculations*/
unsigned int temp = static_cast<unsigned int>(ceil(sqrt(log2(code_length_))));
auto temp = static_cast<unsigned int>(ceil(sqrt(log2(code_length_))));
folding_factor_ = configuration_->property(role + ".folding_factor", temp);
if (sampled_ms_ % folding_factor_ != 0)
@ -249,7 +249,7 @@ void GpsL1CaPcpsQuickSyncAcquisition::set_local_code()
{
if (item_type_ == "gr_complex")
{
std::complex<float>* code = new std::complex<float>[code_length_]();
auto* code = new std::complex<float>[code_length_]();
gps_l1_ca_code_gen_complex_sampled(code, gnss_synchro_->PRN, fs_in_, 0);
@ -299,7 +299,7 @@ float GpsL1CaPcpsQuickSyncAcquisition::calculate_threshold(float pfa)
double val = pow(1.0 - pfa, exponent);
double lambda = static_cast<double>(code_length_) / static_cast<double>(folding_factor_);
boost::math::exponential_distribution<double> mydist(lambda);
float threshold = static_cast<float>(quantile(mydist, val));
auto threshold = static_cast<float>(quantile(mydist, val));
return threshold;
}

View File

@ -210,7 +210,7 @@ void GpsL1CaPcpsTongAcquisition::set_local_code()
{
if (item_type_ == "gr_complex")
{
std::complex<float>* code = new std::complex<float>[code_length_];
auto* code = new std::complex<float>[code_length_];
gps_l1_ca_code_gen_complex_sampled(code, gnss_synchro_->PRN, fs_in_, 0);
@ -259,9 +259,9 @@ float GpsL1CaPcpsTongAcquisition::calculate_threshold(float pfa)
unsigned int ncells = vector_length_ * frequency_bins;
double exponent = 1 / static_cast<double>(ncells);
double val = pow(1.0 - pfa, exponent);
double lambda = double(vector_length_);
auto lambda = double(vector_length_);
boost::math::exponential_distribution<double> mydist(lambda);
float threshold = static_cast<float>(quantile(mydist, val));
auto threshold = static_cast<float>(quantile(mydist, val));
return threshold;
}

View File

@ -221,7 +221,7 @@ void GpsL2MPcpsAcquisition::init()
void GpsL2MPcpsAcquisition::set_local_code()
{
std::complex<float>* code = new std::complex<float>[code_length_];
auto* code = new std::complex<float>[code_length_];
gps_l2c_m_code_gen_complex_sampled(code, gnss_synchro_->PRN, fs_in_);
@ -259,9 +259,9 @@ float GpsL2MPcpsAcquisition::calculate_threshold(float pfa)
unsigned int ncells = vector_length_ * frequency_bins;
double exponent = 1.0 / static_cast<double>(ncells);
double val = pow(1.0 - pfa, exponent);
double lambda = double(vector_length_);
auto lambda = double(vector_length_);
boost::math::exponential_distribution<double> mydist(lambda);
float threshold = static_cast<float>(quantile(mydist, val));
auto threshold = static_cast<float>(quantile(mydist, val));
return threshold;
}

View File

@ -209,7 +209,7 @@ void GpsL5iPcpsAcquisition::init()
void GpsL5iPcpsAcquisition::set_local_code()
{
std::complex<float>* code = new std::complex<float>[code_length_];
auto* code = new std::complex<float>[code_length_];
gps_l5i_code_gen_complex_sampled(code, gnss_synchro_->PRN, fs_in_);
@ -247,9 +247,9 @@ float GpsL5iPcpsAcquisition::calculate_threshold(float pfa)
unsigned int ncells = vector_length_ * frequency_bins;
double exponent = 1.0 / static_cast<double>(ncells);
double val = pow(1.0 - pfa, exponent);
double lambda = double(vector_length_);
auto lambda = double(vector_length_);
boost::math::exponential_distribution<double> mydist(lambda);
float threshold = static_cast<float>(quantile(mydist, val));
auto threshold = static_cast<float>(quantile(mydist, val));
return threshold;
}

View File

@ -393,7 +393,7 @@ int galileo_e5a_noncoherentIQ_acquisition_caf_cc::general_work(int noutput_items
}
case 1:
{
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]); //Get the input samples pointer
const auto *in = reinterpret_cast<const gr_complex *>(input_items[0]); //Get the input samples pointer
unsigned int buff_increment;
if ((ninput_items[0] + d_buffer_count) <= d_fft_size)
{
@ -417,7 +417,7 @@ int galileo_e5a_noncoherentIQ_acquisition_caf_cc::general_work(int noutput_items
case 2:
{
// Fill last part of the buffer and reset counter
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]); //Get the input samples pointer
const auto *in = reinterpret_cast<const gr_complex *>(input_items[0]); //Get the input samples pointer
if (d_buffer_count < d_fft_size)
{
memcpy(&d_inbuffer[d_buffer_count], in, sizeof(gr_complex) * (d_fft_size - d_buffer_count));
@ -674,7 +674,7 @@ int galileo_e5a_noncoherentIQ_acquisition_caf_cc::general_work(int noutput_items
if (d_CAF_window_hz > 0)
{
int CAF_bins_half;
float *accum = static_cast<float *>(volk_gnsssdr_malloc(sizeof(float), volk_gnsssdr_get_alignment()));
auto *accum = static_cast<float *>(volk_gnsssdr_malloc(sizeof(float), volk_gnsssdr_get_alignment()));
CAF_bins_half = d_CAF_window_hz / (2 * d_doppler_step);
float weighting_factor;
weighting_factor = 0.5 / static_cast<float>(CAF_bins_half);

View File

@ -246,7 +246,7 @@ int galileo_pcps_8ms_acquisition_cc::general_work(int noutput_items,
float magt = 0.0;
float magt_A = 0.0;
float magt_B = 0.0;
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]); //Get the input samples pointer
const auto *in = reinterpret_cast<const gr_complex *>(input_items[0]); //Get the input samples pointer
float fft_normalization_factor = static_cast<float>(d_fft_size) * static_cast<float>(d_fft_size);
d_input_power = 0.0;
d_mag = 0.0;

View File

@ -472,7 +472,7 @@ void pcps_acquisition::dump_results(int32_t effective_fft_size)
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
float aux = static_cast<float>(d_gnss_synchro->Acq_doppler_hz);
auto aux = static_cast<float>(d_gnss_synchro->Acq_doppler_hz);
matvar = Mat_VarCreate("acq_doppler_hz", MAT_C_SINGLE, MAT_T_SINGLE, 1, dims, &aux, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
@ -927,7 +927,7 @@ int pcps_acquisition::general_work(int noutput_items __attribute__((unused)),
uint32_t buff_increment;
if (d_cshort)
{
const lv_16sc_t* in = reinterpret_cast<const lv_16sc_t*>(input_items[0]); // Get the input samples pointer
const auto* in = reinterpret_cast<const lv_16sc_t*>(input_items[0]); // Get the input samples pointer
if ((ninput_items[0] + d_buffer_count) <= d_consumed_samples)
{
buff_increment = ninput_items[0];
@ -940,7 +940,7 @@ int pcps_acquisition::general_work(int noutput_items __attribute__((unused)),
}
else
{
const gr_complex* in = reinterpret_cast<const gr_complex*>(input_items[0]); // Get the input samples pointer
const auto* in = reinterpret_cast<const gr_complex*>(input_items[0]); // Get the input samples pointer
if ((ninput_items[0] + d_buffer_count) <= d_consumed_samples)
{
buff_increment = ninput_items[0];

View File

@ -337,7 +337,7 @@ double pcps_acquisition_fine_doppler_cc::compute_CAF()
float pcps_acquisition_fine_doppler_cc::estimate_input_power(gr_vector_const_void_star &input_items)
{
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]); //Get the input samples pointer
const auto *in = reinterpret_cast<const gr_complex *>(input_items[0]); //Get the input samples pointer
// Compute the input signal power estimation
float power = 0;
volk_32fc_magnitude_squared_32f(d_magnitude, in, d_fft_size);
@ -350,7 +350,7 @@ float pcps_acquisition_fine_doppler_cc::estimate_input_power(gr_vector_const_voi
int pcps_acquisition_fine_doppler_cc::compute_and_accumulate_grid(gr_vector_const_void_star &input_items)
{
// initialize acquisition algorithm
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]); //Get the input samples pointer
const auto *in = reinterpret_cast<const gr_complex *>(input_items[0]); //Get the input samples pointer
DLOG(INFO) << "Channel: " << d_channel
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
@ -359,7 +359,7 @@ int pcps_acquisition_fine_doppler_cc::compute_and_accumulate_grid(gr_vector_cons
<< ", doppler_step: " << d_doppler_step;
// 2- Doppler frequency search loop
float *p_tmp_vector = static_cast<float *>(volk_gnsssdr_malloc(d_fft_size * sizeof(float), volk_gnsssdr_get_alignment()));
auto *p_tmp_vector = static_cast<float *>(volk_gnsssdr_malloc(d_fft_size * sizeof(float), volk_gnsssdr_get_alignment()));
for (int doppler_index = 0; doppler_index < d_num_doppler_points; doppler_index++)
{
@ -405,12 +405,12 @@ int pcps_acquisition_fine_doppler_cc::estimate_Doppler()
int signal_samples = prn_replicas * d_fft_size;
//int fft_size_extended = nextPowerOf2(signal_samples * zero_padding_factor);
int fft_size_extended = signal_samples * zero_padding_factor;
gr::fft::fft_complex *fft_operator = new gr::fft::fft_complex(fft_size_extended, true);
auto *fft_operator = new gr::fft::fft_complex(fft_size_extended, true);
//zero padding the entire vector
std::fill_n(fft_operator->get_inbuf(), fft_size_extended, gr_complex(0.0, 0.0));
//1. generate local code aligned with the acquisition code phase estimation
gr_complex *code_replica = static_cast<gr_complex *>(volk_gnsssdr_malloc(signal_samples * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
auto *code_replica = static_cast<gr_complex *>(volk_gnsssdr_malloc(signal_samples * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
gps_l1_ca_code_gen_complex_sampled(code_replica, d_gnss_synchro->PRN, d_fs_in, 0);
@ -433,7 +433,7 @@ int pcps_acquisition_fine_doppler_cc::estimate_Doppler()
fft_operator->execute();
// 4. Compute the magnitude and find the maximum
float *p_tmp_vector = static_cast<float *>(volk_gnsssdr_malloc(fft_size_extended * sizeof(float), volk_gnsssdr_get_alignment()));
auto *p_tmp_vector = static_cast<float *>(volk_gnsssdr_malloc(fft_size_extended * sizeof(float), volk_gnsssdr_get_alignment()));
volk_32fc_magnitude_squared_32f(p_tmp_vector, fft_operator->get_outbuf(), fft_size_extended);
@ -442,7 +442,7 @@ int pcps_acquisition_fine_doppler_cc::estimate_Doppler()
//case even
int counter = 0;
float *fftFreqBins = new float[fft_size_extended];
auto *fftFreqBins = new float[fft_size_extended];
std::fill_n(fftFreqBins, fft_size_extended, 0.0);
@ -699,7 +699,7 @@ void pcps_acquisition_fine_doppler_cc::dump_results(int effective_fft_size)
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
float aux = static_cast<float>(d_gnss_synchro->Acq_doppler_hz);
auto aux = static_cast<float>(d_gnss_synchro->Acq_doppler_hz);
matvar = Mat_VarCreate("acq_doppler_hz", MAT_C_SINGLE, MAT_T_SINGLE, 1, dims, &aux, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);

View File

@ -301,9 +301,9 @@ double pcps_assisted_acquisition_cc::search_maximum()
float pcps_assisted_acquisition_cc::estimate_input_power(gr_vector_const_void_star &input_items)
{
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]); //Get the input samples pointer
const auto *in = reinterpret_cast<const gr_complex *>(input_items[0]); //Get the input samples pointer
// 1- Compute the input signal power estimation
float *p_tmp_vector = static_cast<float *>(volk_gnsssdr_malloc(d_fft_size * sizeof(float), volk_gnsssdr_get_alignment()));
auto *p_tmp_vector = static_cast<float *>(volk_gnsssdr_malloc(d_fft_size * sizeof(float), volk_gnsssdr_get_alignment()));
volk_32fc_magnitude_squared_32f(p_tmp_vector, in, d_fft_size);
@ -318,7 +318,7 @@ float pcps_assisted_acquisition_cc::estimate_input_power(gr_vector_const_void_st
int pcps_assisted_acquisition_cc::compute_and_accumulate_grid(gr_vector_const_void_star &input_items)
{
// initialize acquisition algorithm
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]); //Get the input samples pointer
const auto *in = reinterpret_cast<const gr_complex *>(input_items[0]); //Get the input samples pointer
DLOG(INFO) << "Channel: " << d_channel
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " "
@ -328,7 +328,7 @@ int pcps_assisted_acquisition_cc::compute_and_accumulate_grid(gr_vector_const_vo
<< ", doppler_step: " << d_doppler_step;
// 2- Doppler frequency search loop
float *p_tmp_vector = static_cast<float *>(volk_gnsssdr_malloc(d_fft_size * sizeof(float), volk_gnsssdr_get_alignment()));
auto *p_tmp_vector = static_cast<float *>(volk_gnsssdr_malloc(d_fft_size * sizeof(float), volk_gnsssdr_get_alignment()));
for (int doppler_index = 0; doppler_index < d_num_doppler_points; doppler_index++)
{

View File

@ -261,7 +261,7 @@ int pcps_cccwsr_acquisition_cc::general_work(int noutput_items,
float magt = 0.0;
float magt_plus = 0.0;
float magt_minus = 0.0;
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]); //Get the input samples pointer
const auto *in = reinterpret_cast<const gr_complex *>(input_items[0]); //Get the input samples pointer
float fft_normalization_factor = static_cast<float>(d_fft_size) * static_cast<float>(d_fft_size);
d_sample_counter += static_cast<uint64_t>(d_fft_size); // sample counter

View File

@ -304,18 +304,18 @@ int pcps_quicksync_acquisition_cc::general_work(int noutput_items,
int doppler;
uint32_t indext = 0;
float magt = 0.0;
const gr_complex* in = reinterpret_cast<const gr_complex*>(input_items[0]); //Get the input samples pointer
const auto* in = reinterpret_cast<const gr_complex*>(input_items[0]); //Get the input samples pointer
gr_complex* in_temp = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_samples_per_code * d_folding_factor * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
gr_complex* in_temp_folded = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
auto* in_temp = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_samples_per_code * d_folding_factor * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
auto* in_temp_folded = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
/*Create a signal to store a signal of size 1ms, to perform correlation
in time. No folding on this data is required*/
gr_complex* in_1code = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_samples_per_code * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
auto* in_1code = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_samples_per_code * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
/*Stores the values of the correlation output between the local code
and the signal with doppler shift corrected */
gr_complex* corr_output = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_samples_per_code * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
auto* corr_output = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_samples_per_code * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
/*Stores a copy of the folded version of the signal.This is used for
the FFT operations in future steps of execution*/

View File

@ -282,7 +282,7 @@ int pcps_tong_acquisition_cc::general_work(int noutput_items,
int doppler;
uint32_t indext = 0;
float magt = 0.0;
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]); //Get the input samples pointer
const auto *in = reinterpret_cast<const gr_complex *>(input_items[0]); //Get the input samples pointer
float fft_normalization_factor = static_cast<float>(d_fft_size) * static_cast<float>(d_fft_size);
d_input_power = 0.0;
d_mag = 0.0;

View File

@ -54,8 +54,8 @@ int interleaved_byte_to_complex_byte::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const int8_t *in = reinterpret_cast<const int8_t *>(input_items[0]);
lv_8sc_t *out = reinterpret_cast<lv_8sc_t *>(output_items[0]);
const auto *in = reinterpret_cast<const int8_t *>(input_items[0]);
auto *out = reinterpret_cast<lv_8sc_t *>(output_items[0]);
// This could be put into a Volk kernel
int8_t real_part;
int8_t imag_part;

View File

@ -54,8 +54,8 @@ int interleaved_byte_to_complex_short::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const int8_t *in = reinterpret_cast<const int8_t *>(input_items[0]);
lv_16sc_t *out = reinterpret_cast<lv_16sc_t *>(output_items[0]);
const auto *in = reinterpret_cast<const int8_t *>(input_items[0]);
auto *out = reinterpret_cast<lv_16sc_t *>(output_items[0]);
// This could be put into a Volk kernel
int8_t real_part;
int8_t imag_part;

View File

@ -54,8 +54,8 @@ int interleaved_short_to_complex_short::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const int16_t *in = reinterpret_cast<const int16_t *>(input_items[0]);
lv_16sc_t *out = reinterpret_cast<lv_16sc_t *>(output_items[0]);
const auto *in = reinterpret_cast<const int16_t *>(input_items[0]);
auto *out = reinterpret_cast<lv_16sc_t *>(output_items[0]);
// This could be put into a Volk kernel
int16_t real_part;
int16_t imag_part;

View File

@ -399,7 +399,7 @@ void FirFilter::init()
// those bands, and the weight given to the error in those bands.
std::vector<double> taps_d = gr::filter::pm_remez(number_of_taps - 1, bands, ampl, error_w, filter_type, grid_density);
taps_.reserve(taps_d.size());
for (std::vector<double>::iterator it = taps_d.begin(); it != taps_d.end(); it++)
for (auto it = taps_d.begin(); it != taps_d.end(); it++)
{
taps_.push_back(float(*it));
}

View File

@ -108,7 +108,7 @@ FreqXlatingFirFilter::FreqXlatingFirFilter(ConfigurationInterface* configuration
int grid_density = config_->property(role_ + ".grid_density", default_grid_density);
taps_d = gr::filter::pm_remez(number_of_taps - 1, bands, ampl, error_w, filter_type, grid_density);
taps_.reserve(taps_d.size());
for (std::vector<double>::iterator it = taps_d.begin(); it != taps_d.end(); it++)
for (auto it = taps_d.begin(); it != taps_d.end(); it++)
{
taps_.push_back(static_cast<float>(*it));
}

View File

@ -69,7 +69,7 @@ beamformer::~beamformer()
int beamformer::work(int noutput_items, gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
gr_complex *out = reinterpret_cast<gr_complex *>(output_items[0]);
auto *out = reinterpret_cast<gr_complex *>(output_items[0]);
// channel output buffers
// gr_complex *ch1 = (gr_complex *) input_items[0];
// gr_complex *ch2 = (gr_complex *) input_items[1];

View File

@ -100,8 +100,8 @@ int Notch::general_work(int noutput_items, gr_vector_int &ninput_items __attribu
float sig2dB = 0.0;
float sig2lin = 0.0;
lv_32fc_t dot_prod_;
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]);
gr_complex *out = reinterpret_cast<gr_complex *>(output_items[0]);
const auto *in = reinterpret_cast<const gr_complex *>(input_items[0]);
auto *out = reinterpret_cast<gr_complex *>(output_items[0]);
in++;
while ((index_out + length_) < noutput_items)
{

View File

@ -103,8 +103,8 @@ int NotchLite::general_work(int noutput_items, gr_vector_int &ninput_items __att
float sig2dB = 0.0;
float sig2lin = 0.0;
lv_32fc_t dot_prod_;
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]);
gr_complex *out = reinterpret_cast<gr_complex *>(output_items[0]);
const auto *in = reinterpret_cast<const gr_complex *>(input_items[0]);
auto *out = reinterpret_cast<gr_complex *>(output_items[0]);
in++;
while ((index_out + length_) < noutput_items)
{

View File

@ -89,9 +89,9 @@ void pulse_blanking_cc::forecast(int noutput_items __attribute__((unused)), gr_v
int pulse_blanking_cc::general_work(int noutput_items, gr_vector_int &ninput_items __attribute__((unused)),
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]);
gr_complex *out = reinterpret_cast<gr_complex *>(output_items[0]);
float *magnitude = static_cast<float *>(volk_malloc(noutput_items * sizeof(float), volk_get_alignment()));
const auto *in = reinterpret_cast<const gr_complex *>(input_items[0]);
auto *out = reinterpret_cast<gr_complex *>(output_items[0]);
auto *magnitude = static_cast<float *>(volk_malloc(noutput_items * sizeof(float), volk_get_alignment()));
volk_32fc_magnitude_squared_32f(magnitude, in, noutput_items);
int32_t sample_index = 0;
float segment_energy;

View File

@ -53,9 +53,9 @@ int byte_x2_to_complex_byte::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const int8_t *in0 = reinterpret_cast<const int8_t *>(input_items[0]);
const int8_t *in1 = reinterpret_cast<const int8_t *>(input_items[1]);
lv_8sc_t *out = reinterpret_cast<lv_8sc_t *>(output_items[0]);
const auto *in0 = reinterpret_cast<const int8_t *>(input_items[0]);
const auto *in1 = reinterpret_cast<const int8_t *>(input_items[1]);
auto *out = reinterpret_cast<lv_8sc_t *>(output_items[0]);
// This could be put into a volk kernel
int8_t real_part;
int8_t imag_part;

View File

@ -53,9 +53,9 @@ int complex_byte_to_float_x2::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const lv_8sc_t *in = reinterpret_cast<const lv_8sc_t *>(input_items[0]);
float *out0 = reinterpret_cast<float *>(output_items[0]);
float *out1 = reinterpret_cast<float *>(output_items[1]);
const auto *in = reinterpret_cast<const lv_8sc_t *>(input_items[0]);
auto *out0 = reinterpret_cast<float *>(output_items[0]);
auto *out1 = reinterpret_cast<float *>(output_items[1]);
const float scalar = 1;
volk_8ic_s32f_deinterleave_32f_x2(out0, out1, in, scalar, noutput_items);
return noutput_items;

View File

@ -53,8 +53,8 @@ int complex_float_to_complex_byte::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]);
lv_8sc_t *out = reinterpret_cast<lv_8sc_t *>(output_items[0]);
const auto *in = reinterpret_cast<const gr_complex *>(input_items[0]);
auto *out = reinterpret_cast<lv_8sc_t *>(output_items[0]);
volk_gnsssdr_32fc_convert_8ic(out, in, noutput_items);
return noutput_items;
}

View File

@ -52,8 +52,8 @@ int conjugate_cc::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]);
gr_complex *out = reinterpret_cast<gr_complex *>(output_items[0]);
const auto *in = reinterpret_cast<const gr_complex *>(input_items[0]);
auto *out = reinterpret_cast<gr_complex *>(output_items[0]);
volk_32fc_conjugate_32fc(out, in, noutput_items);
return noutput_items;
}

View File

@ -52,8 +52,8 @@ int conjugate_ic::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const lv_8sc_t *in = reinterpret_cast<const lv_8sc_t *>(input_items[0]);
lv_8sc_t *out = reinterpret_cast<lv_8sc_t *>(output_items[0]);
const auto *in = reinterpret_cast<const lv_8sc_t *>(input_items[0]);
auto *out = reinterpret_cast<lv_8sc_t *>(output_items[0]);
volk_gnsssdr_8ic_conjugate_8ic(out, in, noutput_items);
return noutput_items;
}

View File

@ -52,8 +52,8 @@ int conjugate_sc::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const lv_16sc_t *in = reinterpret_cast<const lv_16sc_t *>(input_items[0]);
lv_16sc_t *out = reinterpret_cast<lv_16sc_t *>(output_items[0]);
const auto *in = reinterpret_cast<const lv_16sc_t *>(input_items[0]);
auto *out = reinterpret_cast<lv_16sc_t *>(output_items[0]);
volk_gnsssdr_16ic_conjugate_16ic(out, in, noutput_items);
return noutput_items;
}

View File

@ -53,9 +53,9 @@ int cshort_to_float_x2::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const lv_16sc_t *in = reinterpret_cast<const lv_16sc_t *>(input_items[0]);
float *out0 = reinterpret_cast<float *>(output_items[0]);
float *out1 = reinterpret_cast<float *>(output_items[1]);
const auto *in = reinterpret_cast<const lv_16sc_t *>(input_items[0]);
auto *out0 = reinterpret_cast<float *>(output_items[0]);
auto *out1 = reinterpret_cast<float *>(output_items[1]);
const float scalar = 1;
volk_16ic_s32f_deinterleave_32f_x2(out0, out1, in, scalar, noutput_items);
return noutput_items;

View File

@ -71,7 +71,7 @@ void galileo_e1_code_gen_int(int* _dest, char _Signal[3], int32_t _prn)
void galileo_e1_sinboc_11_gen_int(int* _dest, int* _prn, uint32_t _length_out)
{
const uint32_t _length_in = Galileo_E1_B_CODE_LENGTH_CHIPS;
uint32_t _period = static_cast<uint32_t>(_length_out / _length_in);
auto _period = static_cast<uint32_t>(_length_out / _length_in);
for (uint32_t i = 0; i < _length_in; i++)
{
for (uint32_t j = 0; j < (_period / 2); j++)
@ -89,7 +89,7 @@ void galileo_e1_sinboc_11_gen_int(int* _dest, int* _prn, uint32_t _length_out)
void galileo_e1_sinboc_61_gen_int(int* _dest, int* _prn, uint32_t _length_out)
{
const uint32_t _length_in = Galileo_E1_B_CODE_LENGTH_CHIPS;
uint32_t _period = static_cast<uint32_t>(_length_out / _length_in);
auto _period = static_cast<uint32_t>(_length_out / _length_in);
for (uint32_t i = 0; i < _length_in; i++)
{
@ -108,7 +108,7 @@ void galileo_e1_sinboc_61_gen_int(int* _dest, int* _prn, uint32_t _length_out)
void galileo_e1_code_gen_sinboc11_float(float* _dest, char _Signal[3], uint32_t _prn)
{
std::string _galileo_signal = _Signal;
const uint32_t _codeLength = static_cast<uint32_t>(Galileo_E1_B_CODE_LENGTH_CHIPS);
const auto _codeLength = static_cast<uint32_t>(Galileo_E1_B_CODE_LENGTH_CHIPS);
int32_t primary_code_E1_chips[4092]; // _codeLength not accepted by Clang
galileo_e1_code_gen_int(primary_code_E1_chips, _Signal, _prn); //generate Galileo E1 code, 1 sample per chip
for (uint32_t i = 0; i < _codeLength; i++)
@ -159,8 +159,8 @@ void galileo_e1_code_gen_float_sampled(float* _dest, char _Signal[3],
std::string _galileo_signal = _Signal;
uint32_t _samplesPerCode;
const int32_t _codeFreqBasis = Galileo_E1_CODE_CHIP_RATE_HZ; // Hz
uint32_t _codeLength = static_cast<uint32_t>(Galileo_E1_B_CODE_LENGTH_CHIPS);
int32_t* primary_code_E1_chips = static_cast<int32_t*>(volk_gnsssdr_malloc(static_cast<uint32_t>(Galileo_E1_B_CODE_LENGTH_CHIPS) * sizeof(int32_t), volk_gnsssdr_get_alignment()));
auto _codeLength = static_cast<uint32_t>(Galileo_E1_B_CODE_LENGTH_CHIPS);
auto* primary_code_E1_chips = static_cast<int32_t*>(volk_gnsssdr_malloc(static_cast<uint32_t>(Galileo_E1_B_CODE_LENGTH_CHIPS) * sizeof(int32_t), volk_gnsssdr_get_alignment()));
_samplesPerCode = static_cast<uint32_t>(static_cast<double>(_fs) / (static_cast<double>(_codeFreqBasis) / static_cast<double>(_codeLength)));
const int32_t _samplesPerChip = (_cboc == true) ? 12 : 2;
@ -180,7 +180,7 @@ void galileo_e1_code_gen_float_sampled(float* _dest, char _Signal[3],
}
else
{
int32_t* _signal_E1_int = static_cast<int32_t*>(volk_gnsssdr_malloc(_codeLength * sizeof(int32_t), volk_gnsssdr_get_alignment()));
auto* _signal_E1_int = static_cast<int32_t*>(volk_gnsssdr_malloc(_codeLength * sizeof(int32_t), volk_gnsssdr_get_alignment()));
galileo_e1_sinboc_11_gen_int(_signal_E1_int, primary_code_E1_chips, _codeLength); // generate sinboc(1,1) 2 samples per chip
for (uint32_t ii = 0; ii < _codeLength; ++ii)
@ -192,7 +192,7 @@ void galileo_e1_code_gen_float_sampled(float* _dest, char _Signal[3],
if (_fs != _samplesPerChip * _codeFreqBasis)
{
float* _resampled_signal = new float[_samplesPerCode];
auto* _resampled_signal = new float[_samplesPerCode];
resampler(_signal_E1, _resampled_signal, _samplesPerChip * _codeFreqBasis, _fs,
_codeLength, _samplesPerCode); // resamples code to fs
@ -203,7 +203,7 @@ void galileo_e1_code_gen_float_sampled(float* _dest, char _Signal[3],
if (_galileo_signal.rfind("1C") != std::string::npos && _galileo_signal.length() >= 2 && _secondary_flag)
{
float* _signal_E1C_secondary = new float[static_cast<int32_t>(Galileo_E1_C_SECONDARY_CODE_LENGTH) * _samplesPerCode];
auto* _signal_E1C_secondary = new float[static_cast<int32_t>(Galileo_E1_C_SECONDARY_CODE_LENGTH) * _samplesPerCode];
for (uint32_t i = 0; i < static_cast<uint32_t>(Galileo_E1_C_SECONDARY_CODE_LENGTH); i++)
{
@ -235,7 +235,7 @@ void galileo_e1_code_gen_complex_sampled(std::complex<float>* _dest, char _Signa
{
std::string _galileo_signal = _Signal;
const int32_t _codeFreqBasis = Galileo_E1_CODE_CHIP_RATE_HZ; // Hz
uint32_t _samplesPerCode = static_cast<uint32_t>(static_cast<double>(_fs) /
auto _samplesPerCode = static_cast<uint32_t>(static_cast<double>(_fs) /
(static_cast<double>(_codeFreqBasis) / static_cast<double>(Galileo_E1_B_CODE_LENGTH_CHIPS)));
if (_galileo_signal.rfind("1C") != std::string::npos && _galileo_signal.length() >= 2 && _secondary_flag)
@ -243,7 +243,7 @@ void galileo_e1_code_gen_complex_sampled(std::complex<float>* _dest, char _Signa
_samplesPerCode *= static_cast<int32_t>(Galileo_E1_C_SECONDARY_CODE_LENGTH);
}
float* real_code = static_cast<float*>(volk_gnsssdr_malloc(_samplesPerCode * sizeof(float), volk_gnsssdr_get_alignment()));
auto* real_code = static_cast<float*>(volk_gnsssdr_malloc(_samplesPerCode * sizeof(float), volk_gnsssdr_get_alignment()));
galileo_e1_code_gen_float_sampled(real_code, _Signal, _cboc, _prn, _fs, _chip_shift, _secondary_flag);

View File

@ -108,7 +108,7 @@ void galileo_e5_a_code_gen_complex_sampled(std::complex<float>* _dest, char _Sig
const uint32_t _codeLength = Galileo_E5a_CODE_LENGTH_CHIPS;
const int32_t _codeFreqBasis = Galileo_E5a_CODE_CHIP_RATE_HZ;
std::complex<float>* _code = new std::complex<float>[_codeLength]();
auto* _code = new std::complex<float>[_codeLength]();
galileo_e5_a_code_gen_complex_primary(_code, _prn, _Signal);

View File

@ -71,7 +71,7 @@ int gnss_sdr_sample_counter::work(int noutput_items __attribute__((unused)),
gr_vector_const_void_star &input_items __attribute__((unused)),
gr_vector_void_star &output_items)
{
Gnss_Synchro *out = reinterpret_cast<Gnss_Synchro *>(output_items[0]);
auto *out = reinterpret_cast<Gnss_Synchro *>(output_items[0]);
out[0] = Gnss_Synchro();
out[0].Flag_valid_symbol_output = false;
out[0].Flag_valid_word = false;

View File

@ -82,7 +82,7 @@ int gnss_sdr_valve::work(int noutput_items,
{
if (d_ncopied_items >= d_nitems)
{
ControlMessageFactory *cmf = new ControlMessageFactory();
auto *cmf = new ControlMessageFactory();
d_queue->handle(cmf->GetQueueMessage(200, 0));
LOG(INFO) << "Stopping receiver, " << d_ncopied_items << " samples processed";
delete cmf;

View File

@ -55,7 +55,7 @@ void gps_l2c_m_code(int32_t* _dest, uint32_t _prn)
void gps_l2c_m_code_gen_complex(std::complex<float>* _dest, uint32_t _prn)
{
int32_t* _code = new int32_t[GPS_L2_M_CODE_LENGTH_CHIPS];
auto* _code = new int32_t[GPS_L2_M_CODE_LENGTH_CHIPS];
if (_prn > 0 and _prn < 51)
{
@ -73,7 +73,7 @@ void gps_l2c_m_code_gen_complex(std::complex<float>* _dest, uint32_t _prn)
void gps_l2c_m_code_gen_float(float* _dest, uint32_t _prn)
{
int32_t* _code = new int32_t[GPS_L2_M_CODE_LENGTH_CHIPS];
auto* _code = new int32_t[GPS_L2_M_CODE_LENGTH_CHIPS];
if (_prn > 0 and _prn < 51)
{
@ -94,7 +94,7 @@ void gps_l2c_m_code_gen_float(float* _dest, uint32_t _prn)
*/
void gps_l2c_m_code_gen_complex_sampled(std::complex<float>* _dest, uint32_t _prn, int32_t _fs)
{
int32_t* _code = new int32_t[GPS_L2_M_CODE_LENGTH_CHIPS];
auto* _code = new int32_t[GPS_L2_M_CODE_LENGTH_CHIPS];
if (_prn > 0 and _prn < 51)
{
gps_l2c_m_code(_code, _prn);

View File

@ -182,7 +182,7 @@ void make_l5q(int32_t* _dest, int32_t prn)
void gps_l5i_code_gen_complex(std::complex<float>* _dest, uint32_t _prn)
{
int32_t* _code = new int32_t[GPS_L5i_CODE_LENGTH_CHIPS];
auto* _code = new int32_t[GPS_L5i_CODE_LENGTH_CHIPS];
if (_prn > 0 and _prn < 51)
{
@ -200,7 +200,7 @@ void gps_l5i_code_gen_complex(std::complex<float>* _dest, uint32_t _prn)
void gps_l5i_code_gen_float(float* _dest, uint32_t _prn)
{
int32_t* _code = new int32_t[GPS_L5i_CODE_LENGTH_CHIPS];
auto* _code = new int32_t[GPS_L5i_CODE_LENGTH_CHIPS];
if (_prn > 0 and _prn < 51)
{
@ -221,7 +221,7 @@ void gps_l5i_code_gen_float(float* _dest, uint32_t _prn)
*/
void gps_l5i_code_gen_complex_sampled(std::complex<float>* _dest, uint32_t _prn, int32_t _fs)
{
int32_t* _code = new int32_t[GPS_L5i_CODE_LENGTH_CHIPS];
auto* _code = new int32_t[GPS_L5i_CODE_LENGTH_CHIPS];
if (_prn > 0 and _prn < 51)
{
make_l5i(_code, _prn - 1);
@ -267,7 +267,7 @@ void gps_l5i_code_gen_complex_sampled(std::complex<float>* _dest, uint32_t _prn,
void gps_l5q_code_gen_complex(std::complex<float>* _dest, uint32_t _prn)
{
int32_t* _code = new int32_t[GPS_L5q_CODE_LENGTH_CHIPS];
auto* _code = new int32_t[GPS_L5q_CODE_LENGTH_CHIPS];
if (_prn > 0 and _prn < 51)
{
@ -285,7 +285,7 @@ void gps_l5q_code_gen_complex(std::complex<float>* _dest, uint32_t _prn)
void gps_l5q_code_gen_float(float* _dest, uint32_t _prn)
{
int32_t* _code = new int32_t[GPS_L5q_CODE_LENGTH_CHIPS];
auto* _code = new int32_t[GPS_L5q_CODE_LENGTH_CHIPS];
if (_prn > 0 and _prn < 51)
{
@ -306,7 +306,7 @@ void gps_l5q_code_gen_float(float* _dest, uint32_t _prn)
*/
void gps_l5q_code_gen_complex_sampled(std::complex<float>* _dest, uint32_t _prn, int32_t _fs)
{
int32_t* _code = new int32_t[GPS_L5q_CODE_LENGTH_CHIPS];
auto* _code = new int32_t[GPS_L5q_CODE_LENGTH_CHIPS];
if (_prn > 0 and _prn < 51)
{
make_l5q(_code, _prn - 1);

View File

@ -51,7 +51,7 @@ obsd_t insert_obs_to_rtklib(obsd_t& rtklib_obs, const Gnss_Synchro& gnss_synchro
double CN0_dB_Hz_est = gnss_synchro.CN0_dB_hz;
if (CN0_dB_Hz_est > 63.75) CN0_dB_Hz_est = 63.75;
if (CN0_dB_Hz_est < 0.0) CN0_dB_Hz_est = 0.0;
unsigned char CN0_dB_Hz = static_cast<unsigned char>(std::round(CN0_dB_Hz_est / 0.25));
auto CN0_dB_Hz = static_cast<unsigned char>(std::round(CN0_dB_Hz_est / 0.25));
rtklib_obs.SNR[band] = CN0_dB_Hz;
//Galileo is the third satellite system for RTKLIB, so, add the required offset to discriminate Galileo ephemeris
switch (gnss_synchro.System)

View File

@ -250,7 +250,7 @@ void readsp3b(FILE *fp, char type, int *sats __attribute__((unused)), int ns, do
/* compare precise ephemeris -------------------------------------------------*/
int cmppeph(const void *p1, const void *p2)
{
peph_t *q1 = (peph_t *)p1, *q2 = (peph_t *)p2;
auto *q1 = (peph_t *)p1, *q2 = (peph_t *)p2;
double tt = timediff(q1->time, q2->time);
return tt < -1e-9 ? -1 : (tt > 1e-9 ? 1 : q1->index - q2->index);
}
@ -556,7 +556,7 @@ int readfcbf(const char *file, nav_t *nav)
/* compare satellite fcb -----------------------------------------------------*/
int cmpfcb(const void *p1, const void *p2)
{
fcbd_t *q1 = (fcbd_t *)p1, *q2 = (fcbd_t *)p2;
auto *q1 = (fcbd_t *)p1, *q2 = (fcbd_t *)p2;
double tt = timediff(q1->ts, q2->ts);
return tt < -1e-3 ? -1 : (tt > 1e-3 ? 1 : 0);
}

View File

@ -2731,7 +2731,7 @@ int geterp(const erp_t *erp, gtime_t time, double *erpv)
/* compare ephemeris ---------------------------------------------------------*/
int cmpeph(const void *p1, const void *p2)
{
eph_t *q1 = (eph_t *)p1, *q2 = (eph_t *)p2;
auto *q1 = (eph_t *)p1, *q2 = (eph_t *)p2;
return q1->ttr.time != q2->ttr.time ? (int)(q1->ttr.time - q2->ttr.time) : (q1->toe.time != q2->toe.time ? (int)(q1->toe.time - q2->toe.time) : q1->sat - q2->sat);
}
@ -2776,7 +2776,7 @@ void uniqeph(nav_t *nav)
/* compare glonass ephemeris -------------------------------------------------*/
int cmpgeph(const void *p1, const void *p2)
{
geph_t *q1 = (geph_t *)p1, *q2 = (geph_t *)p2;
auto *q1 = (geph_t *)p1, *q2 = (geph_t *)p2;
return q1->tof.time != q2->tof.time ? (int)(q1->tof.time - q2->tof.time) : (q1->toe.time != q2->toe.time ? (int)(q1->toe.time - q2->toe.time) : q1->sat - q2->sat);
}
@ -2822,7 +2822,7 @@ void uniqgeph(nav_t *nav)
/* compare sbas ephemeris ----------------------------------------------------*/
int cmpseph(const void *p1, const void *p2)
{
seph_t *q1 = (seph_t *)p1, *q2 = (seph_t *)p2;
auto *q1 = (seph_t *)p1, *q2 = (seph_t *)p2;
return q1->tof.time != q2->tof.time ? (int)(q1->tof.time - q2->tof.time) : (q1->t0.time != q2->t0.time ? (int)(q1->t0.time - q2->t0.time) : q1->sat - q2->sat);
}
@ -2892,7 +2892,7 @@ void uniqnav(nav_t *nav)
/* compare observation data -------------------------------------------------*/
int cmpobs(const void *p1, const void *p2)
{
obsd_t *q1 = (obsd_t *)p1, *q2 = (obsd_t *)p2;
auto *q1 = (obsd_t *)p1, *q2 = (obsd_t *)p2;
double tt = timediff(q1->time, q2->time);
if (fabs(tt) > DTTOL) return tt < 0 ? -1 : 1;
if (q1->rcv != q2->rcv) return (int)q1->rcv - (int)q2->rcv;

View File

@ -446,7 +446,7 @@ void decodefile(rtksvr_t *svr, int index)
/* rtk server thread ---------------------------------------------------------*/
void *rtksvrthread(void *arg)
{
rtksvr_t *svr = (rtksvr_t *)arg;
auto *svr = (rtksvr_t *)arg;
obs_t obs;
obsd_t data[MAXOBS * 2];
double tt;

View File

@ -603,7 +603,7 @@ void readmsgs(const char *file, int sel, gtime_t ts, gtime_t te,
/* compare sbas messages -----------------------------------------------------*/
int cmpmsgs(const void *p1, const void *p2)
{
sbsmsg_t *q1 = (sbsmsg_t *)p1, *q2 = (sbsmsg_t *)p2;
auto *q1 = (sbsmsg_t *)p1, *q2 = (sbsmsg_t *)p2;
return q1->week != q2->week ? q1->week - q2->week : (q1->tow < q2->tow ? -1 : (q1->tow > q2->tow ? 1 : q1->prn - q2->prn));
}

View File

@ -815,7 +815,7 @@ int readsoldata(FILE *fp, gtime_t ts, gtime_t te, double tint, int qflag,
/* compare solution data -----------------------------------------------------*/
int cmpsol(const void *p1, const void *p2)
{
sol_t *q1 = (sol_t *)p1, *q2 = (sol_t *)p2;
auto *q1 = (sol_t *)p1, *q2 = (sol_t *)p2;
double tt = timediff(q1->time, q2->time);
return tt < -0.0 ? -1 : (tt > 0.0 ? 1 : 0);
}
@ -1023,7 +1023,7 @@ void freesolstatbuf(solstatbuf_t *solstatbuf)
/* compare solution status ---------------------------------------------------*/
int cmpsolstat(const void *p1, const void *p2)
{
solstat_t *q1 = (solstat_t *)p1, *q2 = (solstat_t *)p2;
auto *q1 = (solstat_t *)p1, *q2 = (solstat_t *)p2;
double tt = timediff(q1->time, q2->time);
return tt < -0.0 ? -1 : (tt > 0.0 ? 1 : 0);
}

View File

@ -1534,7 +1534,7 @@ gtime_t nextdltime(const int *topts, int stat)
/* ftp thread ----------------------------------------------------------------*/
void *ftpthread(void *arg)
{
ftp_t *ftp = (ftp_t *)arg;
auto *ftp = (ftp_t *)arg;
FILE *fp;
gtime_t time;
char remote[1024], local[1024], tmpfile[1024], errfile[1024], *p;

View File

@ -53,9 +53,9 @@ int short_x2_to_cshort::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const short *in0 = reinterpret_cast<const short *>(input_items[0]);
const short *in1 = reinterpret_cast<const short *>(input_items[1]);
lv_16sc_t *out = reinterpret_cast<lv_16sc_t *>(output_items[0]);
const auto *in0 = reinterpret_cast<const short *>(input_items[0]);
const auto *in1 = reinterpret_cast<const short *>(input_items[1]);
auto *out = reinterpret_cast<lv_16sc_t *>(output_items[0]);
// This could be put into a volk kernel
short real_part;
short imag_part;

View File

@ -175,13 +175,13 @@ int32_t hybrid_observables_cc::save_matfile()
{
return 1;
}
double **RX_time = new double *[d_nchannels_out];
double **TOW_at_current_symbol_s = new double *[d_nchannels_out];
double **Carrier_Doppler_hz = new double *[d_nchannels_out];
double **Carrier_phase_cycles = new double *[d_nchannels_out];
double **Pseudorange_m = new double *[d_nchannels_out];
double **PRN = new double *[d_nchannels_out];
double **Flag_valid_pseudorange = new double *[d_nchannels_out];
auto **RX_time = new double *[d_nchannels_out];
auto **TOW_at_current_symbol_s = new double *[d_nchannels_out];
auto **Carrier_Doppler_hz = new double *[d_nchannels_out];
auto **Carrier_phase_cycles = new double *[d_nchannels_out];
auto **Pseudorange_m = new double *[d_nchannels_out];
auto **PRN = new double *[d_nchannels_out];
auto **Flag_valid_pseudorange = new double *[d_nchannels_out];
for (uint32_t i = 0; i < d_nchannels_out; i++)
{
@ -238,13 +238,13 @@ int32_t hybrid_observables_cc::save_matfile()
return 1;
}
double *RX_time_aux = new double[d_nchannels_out * num_epoch];
double *TOW_at_current_symbol_s_aux = new double[d_nchannels_out * num_epoch];
double *Carrier_Doppler_hz_aux = new double[d_nchannels_out * num_epoch];
double *Carrier_phase_cycles_aux = new double[d_nchannels_out * num_epoch];
double *Pseudorange_m_aux = new double[d_nchannels_out * num_epoch];
double *PRN_aux = new double[d_nchannels_out * num_epoch];
double *Flag_valid_pseudorange_aux = new double[d_nchannels_out * num_epoch];
auto *RX_time_aux = new double[d_nchannels_out * num_epoch];
auto *TOW_at_current_symbol_s_aux = new double[d_nchannels_out * num_epoch];
auto *Carrier_Doppler_hz_aux = new double[d_nchannels_out * num_epoch];
auto *Carrier_phase_cycles_aux = new double[d_nchannels_out * num_epoch];
auto *Pseudorange_m_aux = new double[d_nchannels_out * num_epoch];
auto *PRN_aux = new double[d_nchannels_out * num_epoch];
auto *Flag_valid_pseudorange_aux = new double[d_nchannels_out * num_epoch];
uint32_t k = 0U;
for (int64_t j = 0; j < num_epoch; j++)
{
@ -503,8 +503,8 @@ int hybrid_observables_cc::general_work(int noutput_items __attribute__((unused)
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const Gnss_Synchro **in = reinterpret_cast<const Gnss_Synchro **>(&input_items[0]);
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
const auto **in = reinterpret_cast<const Gnss_Synchro **>(&input_items[0]);
auto **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
// Push receiver clock into history buffer (connected to the last of the input channels)
// The clock buffer gives time to the channels to compute the tracking observables

View File

@ -93,8 +93,8 @@ int direct_resampler_conditioner_cb::general_work(int noutput_items,
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const lv_8sc_t *in = reinterpret_cast<const lv_8sc_t *>(input_items[0]);
lv_8sc_t *out = reinterpret_cast<lv_8sc_t *>(output_items[0]);
const auto *in = reinterpret_cast<const lv_8sc_t *>(input_items[0]);
auto *out = reinterpret_cast<lv_8sc_t *>(output_items[0]);
int lcv = 0;
int count = 0;

View File

@ -90,8 +90,8 @@ int direct_resampler_conditioner_cc::general_work(int noutput_items,
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]);
gr_complex *out = reinterpret_cast<gr_complex *>(output_items[0]);
const auto *in = reinterpret_cast<const gr_complex *>(input_items[0]);
auto *out = reinterpret_cast<gr_complex *>(output_items[0]);
int lcv = 0;
int count = 0;

View File

@ -91,8 +91,8 @@ int direct_resampler_conditioner_cs::general_work(int noutput_items,
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const lv_16sc_t *in = reinterpret_cast<const lv_16sc_t *>(input_items[0]);
lv_16sc_t *out = reinterpret_cast<lv_16sc_t *>(output_items[0]);
const auto *in = reinterpret_cast<const lv_16sc_t *>(input_items[0]);
auto *out = reinterpret_cast<lv_16sc_t *>(output_items[0]);
int lcv = 0;
int count = 0;

View File

@ -289,7 +289,7 @@ int signal_generator_c::general_work(int noutput_items __attribute__((unused)),
gr_vector_const_void_star &input_items __attribute__((unused)),
gr_vector_void_star &output_items)
{
gr_complex *out = reinterpret_cast<gr_complex *>(output_items[0]);
auto *out = reinterpret_cast<gr_complex *>(output_items[0]);
work_counter_++;

View File

@ -172,7 +172,7 @@ int labsat23_source::general_work(int noutput_items,
__attribute__((unused)) gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
gr_complex *out = reinterpret_cast<gr_complex *>(output_items[0]);
auto *out = reinterpret_cast<gr_complex *>(output_items[0]);
if (d_header_parsed == false)
{
@ -314,7 +314,7 @@ int labsat23_source::general_work(int noutput_items,
return -1;
}
byte_counter++;
uint8_t quantization = static_cast<uint8_t>(memblock[byte_counter]);
auto quantization = static_cast<uint8_t>(memblock[byte_counter]);
switch (quantization)
{
case 1:
@ -327,7 +327,7 @@ int labsat23_source::general_work(int noutput_items,
std::cout << "Unknown quantization ID " << static_cast<int>(quantization) << std::endl;
}
byte_counter++;
uint8_t channel_a_constellation = static_cast<uint8_t>(memblock[byte_counter]);
auto channel_a_constellation = static_cast<uint8_t>(memblock[byte_counter]);
switch (channel_a_constellation)
{
case 0:
@ -343,7 +343,7 @@ int labsat23_source::general_work(int noutput_items,
std::cout << "Unknown channel A constellation ID " << static_cast<int>(channel_a_constellation) << std::endl;
}
byte_counter++;
uint8_t channel_b_constellation = static_cast<uint8_t>(memblock[byte_counter]);
auto channel_b_constellation = static_cast<uint8_t>(memblock[byte_counter]);
switch (channel_b_constellation)
{
case 0:

View File

@ -205,7 +205,7 @@ void rtl_tcp_signal_source_c::set_agc_mode(bool agc)
void rtl_tcp_signal_source_c::set_gain(int gain)
{
unsigned clipped = static_cast<unsigned>(info_.clip_gain(gain) * 10.0);
auto clipped = static_cast<unsigned>(info_.clip_gain(gain) * 10.0);
boost::system::error_code ec = rtl_tcp_command(RTL_TCP_SET_GAIN, clipped, socket_);
if (ec)
{

View File

@ -138,8 +138,8 @@ int unpack_2bit_samples::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
signed char const *in = reinterpret_cast<signed char const *>(input_items[0]);
int8_t *out = reinterpret_cast<int8_t *>(output_items[0]);
auto const *in = reinterpret_cast<signed char const *>(input_items[0]);
auto *out = reinterpret_cast<int8_t *>(output_items[0]);
size_t ninput_bytes = noutput_items / 4;
size_t ninput_items = ninput_bytes / item_size_;

View File

@ -63,8 +63,8 @@ int unpack_byte_2bit_cpx_samples::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const signed char *in = reinterpret_cast<const signed char *>(input_items[0]);
short *out = reinterpret_cast<short *>(output_items[0]);
const auto *in = reinterpret_cast<const signed char *>(input_items[0]);
auto *out = reinterpret_cast<short *>(output_items[0]);
byte_2bit_struct sample;
int n = 0;

View File

@ -59,8 +59,8 @@ int unpack_byte_2bit_samples::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const signed char *in = reinterpret_cast<const signed char *>(input_items[0]);
float *out = reinterpret_cast<float *>(output_items[0]);
const auto *in = reinterpret_cast<const signed char *>(input_items[0]);
auto *out = reinterpret_cast<float *>(output_items[0]);
byte_2bit_struct sample;
int n = 0;

View File

@ -54,8 +54,8 @@ int unpack_byte_4bit_samples::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const signed char *in = reinterpret_cast<const signed char *>(input_items[0]);
signed char *out = reinterpret_cast<signed char *>(output_items[0]);
const auto *in = reinterpret_cast<const signed char *>(input_items[0]);
auto *out = reinterpret_cast<signed char *>(output_items[0]);
int n = 0;
unsigned char tmp_char2;
for (int i = 0; i < noutput_items / 2; i++)

View File

@ -54,8 +54,8 @@ int unpack_intspir_1bit_samples::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const signed int *in = reinterpret_cast<const signed int *>(input_items[0]);
float *out = reinterpret_cast<float *>(output_items[0]);
const auto *in = reinterpret_cast<const signed int *>(input_items[0]);
auto *out = reinterpret_cast<float *>(output_items[0]);
int n = 0;
int channel = 1;

View File

@ -123,8 +123,8 @@ void unpack_spir_gss6450_samples::decode_4bits_word(uint32_t input_uint32, gr_co
int unpack_spir_gss6450_samples::work(int noutput_items,
gr_vector_const_void_star& input_items, gr_vector_void_star& output_items)
{
const int32_t* in = reinterpret_cast<const int32_t*>(input_items[0]);
gr_complex* out = reinterpret_cast<gr_complex*>(output_items[0]);
const auto* in = reinterpret_cast<const int32_t*>(input_items[0]);
auto* out = reinterpret_cast<gr_complex*>(output_items[0]);
int n_sample = 0;
int in_counter = 0;
do

View File

@ -260,7 +260,7 @@ galileo_telemetry_decoder_cc::~galileo_telemetry_decoder_cc()
void galileo_telemetry_decoder_cc::decode_INAV_word(double *page_part_symbols, int32_t frame_length)
{
// 1. De-interleave
double *page_part_symbols_deint = static_cast<double *>(volk_gnsssdr_malloc(frame_length * sizeof(double), volk_gnsssdr_get_alignment()));
auto *page_part_symbols_deint = static_cast<double *>(volk_gnsssdr_malloc(frame_length * sizeof(double), volk_gnsssdr_get_alignment()));
deinterleaver(GALILEO_INAV_INTERLEAVER_ROWS, GALILEO_INAV_INTERLEAVER_COLS, page_part_symbols, page_part_symbols_deint);
// 2. Viterbi decoder
@ -274,7 +274,7 @@ void galileo_telemetry_decoder_cc::decode_INAV_word(double *page_part_symbols, i
}
}
int32_t *page_part_bits = static_cast<int32_t *>(volk_gnsssdr_malloc((frame_length / 2) * sizeof(int32_t), volk_gnsssdr_get_alignment()));
auto *page_part_bits = static_cast<int32_t *>(volk_gnsssdr_malloc((frame_length / 2) * sizeof(int32_t), volk_gnsssdr_get_alignment()));
viterbi_decoder(page_part_symbols_deint, page_part_bits);
volk_gnsssdr_free(page_part_symbols_deint);
@ -354,7 +354,7 @@ void galileo_telemetry_decoder_cc::decode_INAV_word(double *page_part_symbols, i
void galileo_telemetry_decoder_cc::decode_FNAV_word(double *page_symbols, int32_t frame_length)
{
// 1. De-interleave
double *page_symbols_deint = static_cast<double *>(volk_gnsssdr_malloc(frame_length * sizeof(double), volk_gnsssdr_get_alignment()));
auto *page_symbols_deint = static_cast<double *>(volk_gnsssdr_malloc(frame_length * sizeof(double), volk_gnsssdr_get_alignment()));
deinterleaver(GALILEO_FNAV_INTERLEAVER_ROWS, GALILEO_FNAV_INTERLEAVER_COLS, page_symbols, page_symbols_deint);
// 2. Viterbi decoder
@ -367,7 +367,7 @@ void galileo_telemetry_decoder_cc::decode_FNAV_word(double *page_symbols, int32_
page_symbols_deint[i] = -page_symbols_deint[i];
}
}
int32_t *page_bits = static_cast<int32_t *>(volk_gnsssdr_malloc((frame_length / 2) * sizeof(int32_t), volk_gnsssdr_get_alignment()));
auto *page_bits = static_cast<int32_t *>(volk_gnsssdr_malloc((frame_length / 2) * sizeof(int32_t), volk_gnsssdr_get_alignment()));
viterbi_decoder(page_symbols_deint, page_bits);
volk_gnsssdr_free(page_symbols_deint);
@ -460,8 +460,8 @@ int galileo_telemetry_decoder_cc::general_work(int noutput_items __attribute__((
int32_t corr_value = 0;
int32_t preamble_diff = 0;
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]); // Get the output buffer pointer
const Gnss_Synchro **in = reinterpret_cast<const Gnss_Synchro **>(&input_items[0]); // Get the input buffer pointer
auto **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]); // Get the output buffer pointer
const auto **in = reinterpret_cast<const Gnss_Synchro **>(&input_items[0]); // Get the input buffer pointer
Gnss_Synchro current_symbol; // structure to save the synchronization information and send the output object to the next block
// 1. Copy the current tracking output

View File

@ -265,8 +265,8 @@ int glonass_l1_ca_telemetry_decoder_cc::general_work(int noutput_items __attribu
int32_t corr_value = 0;
int32_t preamble_diff = 0;
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]); // Get the output buffer pointer
const Gnss_Synchro **in = reinterpret_cast<const Gnss_Synchro **>(&input_items[0]); // Get the input buffer pointer
auto **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]); // Get the output buffer pointer
const auto **in = reinterpret_cast<const Gnss_Synchro **>(&input_items[0]); // Get the input buffer pointer
Gnss_Synchro current_symbol; // structure to save the synchronization information and send the output object to the next block
// 1. Copy the current tracking output

View File

@ -265,8 +265,8 @@ int glonass_l2_ca_telemetry_decoder_cc::general_work(int noutput_items __attribu
int32_t corr_value = 0;
int32_t preamble_diff = 0;
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]); // Get the output buffer pointer
const Gnss_Synchro **in = reinterpret_cast<const Gnss_Synchro **>(&input_items[0]); // Get the input buffer pointer
auto **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]); // Get the output buffer pointer
const auto **in = reinterpret_cast<const Gnss_Synchro **>(&input_items[0]); // Get the input buffer pointer
Gnss_Synchro current_symbol; // structure to save the synchronization information and send the output object to the next block
// 1. Copy the current tracking output

View File

@ -311,8 +311,8 @@ int gps_l1_ca_telemetry_decoder_cc::general_work(int noutput_items __attribute__
{
int32_t preamble_diff_ms = 0;
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]); // Get the output buffer pointer
const Gnss_Synchro **in = reinterpret_cast<const Gnss_Synchro **>(&input_items[0]); // Get the input buffer pointer
auto **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]); // Get the output buffer pointer
const auto **in = reinterpret_cast<const Gnss_Synchro **>(&input_items[0]); // Get the input buffer pointer
Gnss_Synchro current_symbol; // structure to save the synchronization information and send the output object to the next block
// 1. Copy the current tracking output

View File

@ -129,8 +129,8 @@ int gps_l2c_telemetry_decoder_cc::general_work(int noutput_items __attribute__((
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
// get pointers on in- and output gnss-synchro objects
Gnss_Synchro *out = reinterpret_cast<Gnss_Synchro *>(output_items[0]); // Get the output buffer pointer
const Gnss_Synchro *in = reinterpret_cast<const Gnss_Synchro *>(input_items[0]); // Get the input buffer pointer
auto *out = reinterpret_cast<Gnss_Synchro *>(output_items[0]); // Get the output buffer pointer
const auto *in = reinterpret_cast<const Gnss_Synchro *>(input_items[0]); // Get the input buffer pointer
bool flag_new_cnav_frame = false;
cnav_msg_t msg;

View File

@ -141,8 +141,8 @@ int gps_l5_telemetry_decoder_cc::general_work(int noutput_items __attribute__((u
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
// get pointers on in- and output gnss-synchro objects
Gnss_Synchro *out = reinterpret_cast<Gnss_Synchro *>(output_items[0]); // Get the output buffer pointer
const Gnss_Synchro *in = reinterpret_cast<const Gnss_Synchro *>(input_items[0]); // Get the input buffer pointer
auto *out = reinterpret_cast<Gnss_Synchro *>(output_items[0]); // Get the output buffer pointer
const auto *in = reinterpret_cast<const Gnss_Synchro *>(input_items[0]); // Get the input buffer pointer
// UPDATE GNSS SYNCHRO DATA
Gnss_Synchro current_synchro_data; //structure to save the synchronization information and send the output object to the next block

View File

@ -222,13 +222,13 @@ bool sbas_l1_telemetry_decoder_cc::symbol_aligner_and_decoder::get_bits(const st
std::vector<double> symbols_vd1(symbols); // aligned symbol vector -> copy input symbol vector
std::vector<double> symbols_vd2; // shifted symbol vector -> add past sample in front of input vector
symbols_vd2.push_back(d_past_symbol);
for (std::vector<double>::const_iterator symbol_it = symbols.cbegin(); symbol_it != symbols.cend() - 1; ++symbol_it)
for (auto symbol_it = symbols.cbegin(); symbol_it != symbols.cend() - 1; ++symbol_it)
{
symbols_vd2.push_back(*symbol_it);
}
// arrays for decoded bits
int32_t *bits_vd1 = new int32_t[nbits_requested];
int32_t *bits_vd2 = new int32_t[nbits_requested];
auto *bits_vd1 = new int32_t[nbits_requested];
auto *bits_vd2 = new int32_t[nbits_requested];
// decode
float metric_vd1 = d_vd1->decode_continuous(symbols_vd1.data(), traceback_depth, bits_vd1, nbits_requested, nbits_decoded);
float metric_vd2 = d_vd2->decode_continuous(symbols_vd2.data(), traceback_depth, bits_vd2, nbits_requested, nbits_decoded);
@ -270,7 +270,7 @@ void sbas_l1_telemetry_decoder_cc::frame_detector::get_frame_candidates(const st
ss << "copy bits ";
int32_t count = 0;
// copy new bits into the working buffer
for (std::vector<int32_t>::const_iterator bit_it = bits.cbegin(); bit_it < bits.cend(); ++bit_it)
for (auto bit_it = bits.cbegin(); bit_it < bits.cend(); ++bit_it)
{
d_buffer.push_back(*bit_it);
ss << *bit_it;
@ -281,12 +281,12 @@ void sbas_l1_telemetry_decoder_cc::frame_detector::get_frame_candidates(const st
while (d_buffer.size() >= sbas_msg_length)
{
// compare with all preambles
for (std::vector<std::vector<int32_t>>::iterator preample_it = preambles.begin(); preample_it < preambles.end(); ++preample_it)
for (auto preample_it = preambles.begin(); preample_it < preambles.end(); ++preample_it)
{
bool preamble_detected = true;
bool inv_preamble_detected = true;
// compare the buffer bits with the preamble bits
for (std::vector<int32_t>::iterator preample_bit_it = preample_it->begin(); preample_bit_it < preample_it->end(); ++preample_bit_it)
for (auto preample_bit_it = preample_it->begin(); preample_bit_it < preample_it->end(); ++preample_bit_it)
{
preamble_detected = *preample_bit_it == d_buffer[preample_bit_it - preample_it->begin()] ? preamble_detected : false;
inv_preamble_detected = *preample_bit_it != d_buffer[preample_bit_it - preample_it->begin()] ? inv_preamble_detected : false;
@ -299,13 +299,13 @@ void sbas_l1_telemetry_decoder_cc::frame_detector::get_frame_candidates(const st
if (inv_preamble_detected)
{
// invert bits
for (std::vector<int32_t>::iterator candidate_bit_it = candidate.begin(); candidate_bit_it != candidate.end(); candidate_bit_it++)
for (auto candidate_bit_it = candidate.begin(); candidate_bit_it != candidate.end(); candidate_bit_it++)
*candidate_bit_it = *candidate_bit_it == 0 ? 1 : 0;
}
msg_candidates.push_back(std::pair<int32_t, std::vector<int32_t>>(relative_preamble_start, candidate));
ss.str("");
ss << "preamble " << preample_it - preambles.begin() << (inv_preamble_detected ? " inverted" : " normal") << " detected! candidate=";
for (std::vector<int32_t>::iterator bit_it = candidate.begin(); bit_it < candidate.end(); ++bit_it)
for (auto bit_it = candidate.begin(); bit_it < candidate.end(); ++bit_it)
ss << *bit_it;
VLOG(EVENT) << ss.str();
}
@ -329,7 +329,7 @@ void sbas_l1_telemetry_decoder_cc::crc_verifier::get_valid_frames(const std::vec
VLOG(FLOW) << "get_valid_frames(): "
<< "msg_candidates.size()=" << msg_candidates.size();
// for each candidate
for (std::vector<msg_candiate_int_t>::const_iterator candidate_it = msg_candidates.cbegin(); candidate_it < msg_candidates.cend(); ++candidate_it)
for (auto candidate_it = msg_candidates.cbegin(); candidate_it < msg_candidates.cend(); ++candidate_it)
{
// convert to bytes
std::vector<uint8_t> candidate_bytes;
@ -352,7 +352,7 @@ void sbas_l1_telemetry_decoder_cc::crc_verifier::get_valid_frames(const std::vec
ss << "Not a valid message.";
}
ss << " Relbitoffset=" << candidate_it->first << " content=";
for (std::vector<uint8_t>::iterator byte_it = candidate_bytes.begin(); byte_it < candidate_bytes.end(); ++byte_it)
for (auto byte_it = candidate_bytes.begin(); byte_it < candidate_bytes.end(); ++byte_it)
{
ss << std::setw(2) << std::setfill('0') << std::hex << static_cast<uint32_t>((*byte_it));
}
@ -367,7 +367,7 @@ void sbas_l1_telemetry_decoder_cc::crc_verifier::zerropad_back_and_convert_to_by
const size_t bits_per_byte = 8;
uint8_t byte = 0;
VLOG(LMORE) << "zerropad_back_and_convert_to_bytes():" << byte;
for (std::vector<int>::const_iterator candidate_bit_it = msg_candidate.cbegin(); candidate_bit_it < msg_candidate.cend(); ++candidate_bit_it)
for (auto candidate_bit_it = msg_candidate.cbegin(); candidate_bit_it < msg_candidate.cend(); ++candidate_bit_it)
{
int32_t idx_bit = candidate_bit_it - msg_candidate.begin();
int32_t bit_pos_in_current_byte = (bits_per_byte - 1) - (idx_bit % bits_per_byte);
@ -395,7 +395,7 @@ void sbas_l1_telemetry_decoder_cc::crc_verifier::zerropad_front_and_convert_to_b
uint8_t byte = 0;
int32_t idx_bit = 6; // insert 6 zeros at the front to fit the 250bits into a multiple of bytes
VLOG(LMORE) << "zerropad_front_and_convert_to_bytes():" << byte;
for (std::vector<int32_t>::const_iterator candidate_bit_it = msg_candidate.cbegin(); candidate_bit_it < msg_candidate.cend(); ++candidate_bit_it)
for (auto candidate_bit_it = msg_candidate.cbegin(); candidate_bit_it < msg_candidate.cend(); ++candidate_bit_it)
{
int32_t bit_pos_in_current_byte = (bits_per_byte - 1) - (idx_bit % bits_per_byte);
byte |= static_cast<uint8_t>(*candidate_bit_it) << bit_pos_in_current_byte;
@ -422,8 +422,8 @@ int sbas_l1_telemetry_decoder_cc::general_work(int noutput_items __attribute__((
VLOG(FLOW) << "general_work(): "
<< "noutput_items=" << noutput_items << "\toutput_items real size=" << output_items.size() << "\tninput_items size=" << ninput_items.size() << "\tinput_items real size=" << input_items.size() << "\tninput_items[0]=" << ninput_items[0];
// get pointers on in- and output gnss-synchro objects
Gnss_Synchro *out = reinterpret_cast<Gnss_Synchro *>(output_items[0]); // Get the output buffer pointer
const Gnss_Synchro *in = reinterpret_cast<const Gnss_Synchro *>(input_items[0]); // Get the input buffer pointer
auto *out = reinterpret_cast<Gnss_Synchro *>(output_items[0]); // Get the output buffer pointer
const auto *in = reinterpret_cast<const Gnss_Synchro *>(input_items[0]); // Get the input buffer pointer
Gnss_Synchro current_symbol; // structure to save the synchronization information and send the output object to the next block
// 1. Copy the current tracking output
@ -460,7 +460,7 @@ int sbas_l1_telemetry_decoder_cc::general_work(int noutput_items __attribute__((
// compute message sample stamp
// and fill messages in SBAS raw message objects
//std::vector<Sbas_Raw_Msg> sbas_raw_msgs;
for (std::vector<msg_candiate_char_t>::const_iterator it = valid_msgs.cbegin();
for (auto it = valid_msgs.cbegin();
it != valid_msgs.cend(); ++it)
{
int32_t message_sample_offset =

View File

@ -180,7 +180,7 @@ int Viterbi_Decoder::do_acs(const double sym[], int nbits)
int t, i, state_at_t;
float metric;
float max_val;
float* pm_t_next = new float[d_states];
auto* pm_t_next = new float[d_states];
/* t:
* - state: state at t

View File

@ -511,7 +511,7 @@ void dll_pll_veml_tracking::start_tracking()
}
else if (systemName == "Galileo" and signal_type == "5X")
{
gr_complex *aux_code = static_cast<gr_complex *>(volk_gnsssdr_malloc(sizeof(gr_complex) * d_code_length_chips, volk_gnsssdr_get_alignment()));
auto *aux_code = static_cast<gr_complex *>(volk_gnsssdr_malloc(sizeof(gr_complex) * d_code_length_chips, volk_gnsssdr_get_alignment()));
galileo_e5_a_code_gen_complex_primary(aux_code, d_acquisition_gnss_synchro->PRN, const_cast<char *>(signal_type.c_str()));
if (trk_parameters.track_pilot)
{
@ -1082,28 +1082,28 @@ int32_t dll_pll_veml_tracking::save_matfile()
{
return 1;
}
float *abs_VE = new float[num_epoch];
float *abs_E = new float[num_epoch];
float *abs_P = new float[num_epoch];
float *abs_L = new float[num_epoch];
float *abs_VL = new float[num_epoch];
float *Prompt_I = new float[num_epoch];
float *Prompt_Q = new float[num_epoch];
uint64_t *PRN_start_sample_count = new uint64_t[num_epoch];
float *acc_carrier_phase_rad = new float[num_epoch];
float *carrier_doppler_hz = new float[num_epoch];
float *carrier_doppler_rate_hz = new float[num_epoch];
float *code_freq_chips = new float[num_epoch];
float *code_freq_rate_chips = new float[num_epoch];
float *carr_error_hz = new float[num_epoch];
float *carr_error_filt_hz = new float[num_epoch];
float *code_error_chips = new float[num_epoch];
float *code_error_filt_chips = new float[num_epoch];
float *CN0_SNV_dB_Hz = new float[num_epoch];
float *carrier_lock_test = new float[num_epoch];
float *aux1 = new float[num_epoch];
double *aux2 = new double[num_epoch];
uint32_t *PRN = new uint32_t[num_epoch];
auto *abs_VE = new float[num_epoch];
auto *abs_E = new float[num_epoch];
auto *abs_P = new float[num_epoch];
auto *abs_L = new float[num_epoch];
auto *abs_VL = new float[num_epoch];
auto *Prompt_I = new float[num_epoch];
auto *Prompt_Q = new float[num_epoch];
auto *PRN_start_sample_count = new uint64_t[num_epoch];
auto *acc_carrier_phase_rad = new float[num_epoch];
auto *carrier_doppler_hz = new float[num_epoch];
auto *carrier_doppler_rate_hz = new float[num_epoch];
auto *code_freq_chips = new float[num_epoch];
auto *code_freq_rate_chips = new float[num_epoch];
auto *carr_error_hz = new float[num_epoch];
auto *carr_error_filt_hz = new float[num_epoch];
auto *code_error_chips = new float[num_epoch];
auto *code_error_filt_chips = new float[num_epoch];
auto *CN0_SNV_dB_Hz = new float[num_epoch];
auto *carrier_lock_test = new float[num_epoch];
auto *aux1 = new float[num_epoch];
auto *aux2 = new double[num_epoch];
auto *PRN = new uint32_t[num_epoch];
try
{
@ -1340,8 +1340,8 @@ int dll_pll_veml_tracking::general_work(int noutput_items __attribute__((unused)
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
gr::thread::scoped_lock l(d_setlock);
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]);
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
const auto *in = reinterpret_cast<const gr_complex *>(input_items[0]);
auto **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
Gnss_Synchro current_synchro_data = Gnss_Synchro();
switch (d_state)

View File

@ -525,7 +525,7 @@ int Galileo_E1_Tcp_Connector_Tracking_cc::general_work(int noutput_items __attri
// AUX vars (for debug purposes)
tmp_float = 0.0;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
double tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
auto tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
// PRN
uint32_t prn_ = d_acquisition_gnss_synchro->PRN;

View File

@ -379,24 +379,24 @@ int32_t glonass_l1_ca_dll_pll_c_aid_tracking_cc::save_matfile()
{
return 1;
}
float *abs_E = new float[num_epoch];
float *abs_P = new float[num_epoch];
float *abs_L = new float[num_epoch];
float *Prompt_I = new float[num_epoch];
float *Prompt_Q = new float[num_epoch];
uint64_t *PRN_start_sample_count = new uint64_t[num_epoch];
double *acc_carrier_phase_rad = new double[num_epoch];
double *carrier_doppler_hz = new double[num_epoch];
double *code_freq_chips = new double[num_epoch];
double *carr_error_hz = new double[num_epoch];
double *carr_error_filt_hz = new double[num_epoch];
double *code_error_chips = new double[num_epoch];
double *code_error_filt_chips = new double[num_epoch];
double *CN0_SNV_dB_Hz = new double[num_epoch];
double *carrier_lock_test = new double[num_epoch];
double *aux1 = new double[num_epoch];
double *aux2 = new double[num_epoch];
uint32_t *PRN = new uint32_t[num_epoch];
auto *abs_E = new float[num_epoch];
auto *abs_P = new float[num_epoch];
auto *abs_L = new float[num_epoch];
auto *Prompt_I = new float[num_epoch];
auto *Prompt_Q = new float[num_epoch];
auto *PRN_start_sample_count = new uint64_t[num_epoch];
auto *acc_carrier_phase_rad = new double[num_epoch];
auto *carrier_doppler_hz = new double[num_epoch];
auto *code_freq_chips = new double[num_epoch];
auto *carr_error_hz = new double[num_epoch];
auto *carr_error_filt_hz = new double[num_epoch];
auto *code_error_chips = new double[num_epoch];
auto *code_error_filt_chips = new double[num_epoch];
auto *CN0_SNV_dB_Hz = new double[num_epoch];
auto *carrier_lock_test = new double[num_epoch];
auto *aux1 = new double[num_epoch];
auto *aux2 = new double[num_epoch];
auto *PRN = new uint32_t[num_epoch];
try
{
@ -591,8 +591,8 @@ int glonass_l1_ca_dll_pll_c_aid_tracking_cc::general_work(int noutput_items __at
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
// Block input data and block output stream pointers
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]); // PRN start block alignment
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
const auto *in = reinterpret_cast<const gr_complex *>(input_items[0]); // PRN start block alignment
auto **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data = Gnss_Synchro();
@ -907,7 +907,7 @@ int glonass_l1_ca_dll_pll_c_aid_tracking_cc::general_work(int noutput_items __at
// AUX vars (for debug purposes)
tmp_float = d_code_error_chips_Ti * CURRENT_INTEGRATION_TIME_S;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
double tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
auto tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
// PRN
uint32_t prn_ = d_acquisition_gnss_synchro->PRN;

View File

@ -333,24 +333,24 @@ int32_t glonass_l1_ca_dll_pll_c_aid_tracking_sc::save_matfile()
{
return 1;
}
float *abs_E = new float[num_epoch];
float *abs_P = new float[num_epoch];
float *abs_L = new float[num_epoch];
float *Prompt_I = new float[num_epoch];
float *Prompt_Q = new float[num_epoch];
uint64_t *PRN_start_sample_count = new uint64_t[num_epoch];
double *acc_carrier_phase_rad = new double[num_epoch];
double *carrier_doppler_hz = new double[num_epoch];
double *code_freq_chips = new double[num_epoch];
double *carr_error_hz = new double[num_epoch];
double *carr_error_filt_hz = new double[num_epoch];
double *code_error_chips = new double[num_epoch];
double *code_error_filt_chips = new double[num_epoch];
double *CN0_SNV_dB_Hz = new double[num_epoch];
double *carrier_lock_test = new double[num_epoch];
double *aux1 = new double[num_epoch];
double *aux2 = new double[num_epoch];
uint32_t *PRN = new uint32_t[num_epoch];
auto *abs_E = new float[num_epoch];
auto *abs_P = new float[num_epoch];
auto *abs_L = new float[num_epoch];
auto *Prompt_I = new float[num_epoch];
auto *Prompt_Q = new float[num_epoch];
auto *PRN_start_sample_count = new uint64_t[num_epoch];
auto *acc_carrier_phase_rad = new double[num_epoch];
auto *carrier_doppler_hz = new double[num_epoch];
auto *code_freq_chips = new double[num_epoch];
auto *carr_error_hz = new double[num_epoch];
auto *carr_error_filt_hz = new double[num_epoch];
auto *code_error_chips = new double[num_epoch];
auto *code_error_filt_chips = new double[num_epoch];
auto *CN0_SNV_dB_Hz = new double[num_epoch];
auto *carrier_lock_test = new double[num_epoch];
auto *aux1 = new double[num_epoch];
auto *aux2 = new double[num_epoch];
auto *PRN = new uint32_t[num_epoch];
try
{
@ -582,8 +582,8 @@ int glonass_l1_ca_dll_pll_c_aid_tracking_sc::general_work(int noutput_items __at
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
// Block input data and block output stream pointers
const lv_16sc_t *in = reinterpret_cast<const lv_16sc_t *>(input_items[0]); // PRN start block alignment
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
const auto *in = reinterpret_cast<const lv_16sc_t *>(input_items[0]); // PRN start block alignment
auto **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data = Gnss_Synchro();
@ -896,7 +896,7 @@ int glonass_l1_ca_dll_pll_c_aid_tracking_sc::general_work(int noutput_items __at
// AUX vars (for debug purposes)
tmp_float = d_code_error_chips_Ti * CURRENT_INTEGRATION_TIME_S;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
double tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
auto tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
// PRN
uint32_t prn_ = d_acquisition_gnss_synchro->PRN;

View File

@ -331,24 +331,24 @@ int32_t Glonass_L1_Ca_Dll_Pll_Tracking_cc::save_matfile()
{
return 1;
}
float *abs_E = new float[num_epoch];
float *abs_P = new float[num_epoch];
float *abs_L = new float[num_epoch];
float *Prompt_I = new float[num_epoch];
float *Prompt_Q = new float[num_epoch];
uint64_t *PRN_start_sample_count = new uint64_t[num_epoch];
double *acc_carrier_phase_rad = new double[num_epoch];
double *carrier_doppler_hz = new double[num_epoch];
double *code_freq_chips = new double[num_epoch];
double *carr_error_hz = new double[num_epoch];
double *carr_error_filt_hz = new double[num_epoch];
double *code_error_chips = new double[num_epoch];
double *code_error_filt_chips = new double[num_epoch];
double *CN0_SNV_dB_Hz = new double[num_epoch];
double *carrier_lock_test = new double[num_epoch];
double *aux1 = new double[num_epoch];
double *aux2 = new double[num_epoch];
uint32_t *PRN = new uint32_t[num_epoch];
auto *abs_E = new float[num_epoch];
auto *abs_P = new float[num_epoch];
auto *abs_L = new float[num_epoch];
auto *Prompt_I = new float[num_epoch];
auto *Prompt_Q = new float[num_epoch];
auto *PRN_start_sample_count = new uint64_t[num_epoch];
auto *acc_carrier_phase_rad = new double[num_epoch];
auto *carrier_doppler_hz = new double[num_epoch];
auto *code_freq_chips = new double[num_epoch];
auto *carr_error_hz = new double[num_epoch];
auto *carr_error_filt_hz = new double[num_epoch];
auto *code_error_chips = new double[num_epoch];
auto *code_error_filt_chips = new double[num_epoch];
auto *CN0_SNV_dB_Hz = new double[num_epoch];
auto *carrier_lock_test = new double[num_epoch];
auto *aux1 = new double[num_epoch];
auto *aux2 = new double[num_epoch];
auto *PRN = new uint32_t[num_epoch];
try
{
@ -549,8 +549,8 @@ int Glonass_L1_Ca_Dll_Pll_Tracking_cc::general_work(int noutput_items __attribut
double code_error_filt_chips = 0.0;
// Block input data and block output stream pointers
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]); // PRN start block alignment
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
const auto *in = reinterpret_cast<const gr_complex *>(input_items[0]); // PRN start block alignment
auto **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data = Gnss_Synchro();
@ -749,7 +749,7 @@ int Glonass_L1_Ca_Dll_Pll_Tracking_cc::general_work(int noutput_items __attribut
// AUX vars (for debug purposes)
tmp_float = d_rem_code_phase_samples;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
double tmp_double = static_cast<double>(d_sample_counter + d_current_prn_length_samples);
auto tmp_double = static_cast<double>(d_sample_counter + d_current_prn_length_samples);
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
// PRN
uint32_t prn_ = d_acquisition_gnss_synchro->PRN;

View File

@ -376,24 +376,24 @@ int32_t glonass_l2_ca_dll_pll_c_aid_tracking_cc::save_matfile()
{
return 1;
}
float *abs_E = new float[num_epoch];
float *abs_P = new float[num_epoch];
float *abs_L = new float[num_epoch];
float *Prompt_I = new float[num_epoch];
float *Prompt_Q = new float[num_epoch];
uint64_t *PRN_start_sample_count = new uint64_t[num_epoch];
double *acc_carrier_phase_rad = new double[num_epoch];
double *carrier_doppler_hz = new double[num_epoch];
double *code_freq_chips = new double[num_epoch];
double *carr_error_hz = new double[num_epoch];
double *carr_error_filt_hz = new double[num_epoch];
double *code_error_chips = new double[num_epoch];
double *code_error_filt_chips = new double[num_epoch];
double *CN0_SNV_dB_Hz = new double[num_epoch];
double *carrier_lock_test = new double[num_epoch];
double *aux1 = new double[num_epoch];
double *aux2 = new double[num_epoch];
uint32_t *PRN = new uint32_t[num_epoch];
auto *abs_E = new float[num_epoch];
auto *abs_P = new float[num_epoch];
auto *abs_L = new float[num_epoch];
auto *Prompt_I = new float[num_epoch];
auto *Prompt_Q = new float[num_epoch];
auto *PRN_start_sample_count = new uint64_t[num_epoch];
auto *acc_carrier_phase_rad = new double[num_epoch];
auto *carrier_doppler_hz = new double[num_epoch];
auto *code_freq_chips = new double[num_epoch];
auto *carr_error_hz = new double[num_epoch];
auto *carr_error_filt_hz = new double[num_epoch];
auto *code_error_chips = new double[num_epoch];
auto *code_error_filt_chips = new double[num_epoch];
auto *CN0_SNV_dB_Hz = new double[num_epoch];
auto *carrier_lock_test = new double[num_epoch];
auto *aux1 = new double[num_epoch];
auto *aux2 = new double[num_epoch];
auto *PRN = new uint32_t[num_epoch];
try
{
@ -588,8 +588,8 @@ int glonass_l2_ca_dll_pll_c_aid_tracking_cc::general_work(int noutput_items __at
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
// Block input data and block output stream pointers
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]); // PRN start block alignment
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
const auto *in = reinterpret_cast<const gr_complex *>(input_items[0]); // PRN start block alignment
auto **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data = Gnss_Synchro();
@ -904,7 +904,7 @@ int glonass_l2_ca_dll_pll_c_aid_tracking_cc::general_work(int noutput_items __at
// AUX vars (for debug purposes)
tmp_float = d_code_error_chips_Ti * CURRENT_INTEGRATION_TIME_S;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
double tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
auto tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
// PRN
uint32_t prn_ = d_acquisition_gnss_synchro->PRN;

View File

@ -332,24 +332,24 @@ int32_t glonass_l2_ca_dll_pll_c_aid_tracking_sc::save_matfile()
{
return 1;
}
float *abs_E = new float[num_epoch];
float *abs_P = new float[num_epoch];
float *abs_L = new float[num_epoch];
float *Prompt_I = new float[num_epoch];
float *Prompt_Q = new float[num_epoch];
uint64_t *PRN_start_sample_count = new uint64_t[num_epoch];
double *acc_carrier_phase_rad = new double[num_epoch];
double *carrier_doppler_hz = new double[num_epoch];
double *code_freq_chips = new double[num_epoch];
double *carr_error_hz = new double[num_epoch];
double *carr_error_filt_hz = new double[num_epoch];
double *code_error_chips = new double[num_epoch];
double *code_error_filt_chips = new double[num_epoch];
double *CN0_SNV_dB_Hz = new double[num_epoch];
double *carrier_lock_test = new double[num_epoch];
double *aux1 = new double[num_epoch];
double *aux2 = new double[num_epoch];
uint32_t *PRN = new uint32_t[num_epoch];
auto *abs_E = new float[num_epoch];
auto *abs_P = new float[num_epoch];
auto *abs_L = new float[num_epoch];
auto *Prompt_I = new float[num_epoch];
auto *Prompt_Q = new float[num_epoch];
auto *PRN_start_sample_count = new uint64_t[num_epoch];
auto *acc_carrier_phase_rad = new double[num_epoch];
auto *carrier_doppler_hz = new double[num_epoch];
auto *code_freq_chips = new double[num_epoch];
auto *carr_error_hz = new double[num_epoch];
auto *carr_error_filt_hz = new double[num_epoch];
auto *code_error_chips = new double[num_epoch];
auto *code_error_filt_chips = new double[num_epoch];
auto *CN0_SNV_dB_Hz = new double[num_epoch];
auto *carrier_lock_test = new double[num_epoch];
auto *aux1 = new double[num_epoch];
auto *aux2 = new double[num_epoch];
auto *PRN = new uint32_t[num_epoch];
try
{
@ -581,8 +581,8 @@ int glonass_l2_ca_dll_pll_c_aid_tracking_sc::general_work(int noutput_items __at
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
// Block input data and block output stream pointers
const lv_16sc_t *in = reinterpret_cast<const lv_16sc_t *>(input_items[0]); // PRN start block alignment
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
const auto *in = reinterpret_cast<const lv_16sc_t *>(input_items[0]); // PRN start block alignment
auto **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data = Gnss_Synchro();
@ -895,7 +895,7 @@ int glonass_l2_ca_dll_pll_c_aid_tracking_sc::general_work(int noutput_items __at
// AUX vars (for debug purposes)
tmp_float = d_code_error_chips_Ti * CURRENT_INTEGRATION_TIME_S;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
double tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
auto tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
// PRN
uint32_t prn_ = d_acquisition_gnss_synchro->PRN;

View File

@ -331,24 +331,24 @@ int32_t Glonass_L2_Ca_Dll_Pll_Tracking_cc::save_matfile()
{
return 1;
}
float *abs_E = new float[num_epoch];
float *abs_P = new float[num_epoch];
float *abs_L = new float[num_epoch];
float *Prompt_I = new float[num_epoch];
float *Prompt_Q = new float[num_epoch];
uint64_t *PRN_start_sample_count = new uint64_t[num_epoch];
double *acc_carrier_phase_rad = new double[num_epoch];
double *carrier_doppler_hz = new double[num_epoch];
double *code_freq_chips = new double[num_epoch];
double *carr_error_hz = new double[num_epoch];
double *carr_error_filt_hz = new double[num_epoch];
double *code_error_chips = new double[num_epoch];
double *code_error_filt_chips = new double[num_epoch];
double *CN0_SNV_dB_Hz = new double[num_epoch];
double *carrier_lock_test = new double[num_epoch];
double *aux1 = new double[num_epoch];
double *aux2 = new double[num_epoch];
uint32_t *PRN = new uint32_t[num_epoch];
auto *abs_E = new float[num_epoch];
auto *abs_P = new float[num_epoch];
auto *abs_L = new float[num_epoch];
auto *Prompt_I = new float[num_epoch];
auto *Prompt_Q = new float[num_epoch];
auto *PRN_start_sample_count = new uint64_t[num_epoch];
auto *acc_carrier_phase_rad = new double[num_epoch];
auto *carrier_doppler_hz = new double[num_epoch];
auto *code_freq_chips = new double[num_epoch];
auto *carr_error_hz = new double[num_epoch];
auto *carr_error_filt_hz = new double[num_epoch];
auto *code_error_chips = new double[num_epoch];
auto *code_error_filt_chips = new double[num_epoch];
auto *CN0_SNV_dB_Hz = new double[num_epoch];
auto *carrier_lock_test = new double[num_epoch];
auto *aux1 = new double[num_epoch];
auto *aux2 = new double[num_epoch];
auto *PRN = new uint32_t[num_epoch];
try
{
@ -549,8 +549,8 @@ int Glonass_L2_Ca_Dll_Pll_Tracking_cc::general_work(int noutput_items __attribut
double code_error_filt_chips = 0.0;
// Block input data and block output stream pointers
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]); // PRN start block alignment
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
const auto *in = reinterpret_cast<const gr_complex *>(input_items[0]); // PRN start block alignment
auto **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data = Gnss_Synchro();
@ -749,7 +749,7 @@ int Glonass_L2_Ca_Dll_Pll_Tracking_cc::general_work(int noutput_items __attribut
// AUX vars (for debug purposes)
tmp_float = d_rem_code_phase_samples;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
double tmp_double = static_cast<double>(d_sample_counter + d_current_prn_length_samples);
auto tmp_double = static_cast<double>(d_sample_counter + d_current_prn_length_samples);
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
// PRN
uint32_t prn_ = d_acquisition_gnss_synchro->PRN;

View File

@ -358,24 +358,24 @@ int32_t gps_l1_ca_dll_pll_c_aid_tracking_cc::save_matfile()
{
return 1;
}
float *abs_E = new float[num_epoch];
float *abs_P = new float[num_epoch];
float *abs_L = new float[num_epoch];
float *Prompt_I = new float[num_epoch];
float *Prompt_Q = new float[num_epoch];
uint64_t *PRN_start_sample_count = new uint64_t[num_epoch];
double *acc_carrier_phase_rad = new double[num_epoch];
double *carrier_doppler_hz = new double[num_epoch];
double *code_freq_chips = new double[num_epoch];
double *carr_error_hz = new double[num_epoch];
double *carr_error_filt_hz = new double[num_epoch];
double *code_error_chips = new double[num_epoch];
double *code_error_filt_chips = new double[num_epoch];
double *CN0_SNV_dB_Hz = new double[num_epoch];
double *carrier_lock_test = new double[num_epoch];
double *aux1 = new double[num_epoch];
double *aux2 = new double[num_epoch];
uint32_t *PRN = new uint32_t[num_epoch];
auto *abs_E = new float[num_epoch];
auto *abs_P = new float[num_epoch];
auto *abs_L = new float[num_epoch];
auto *Prompt_I = new float[num_epoch];
auto *Prompt_Q = new float[num_epoch];
auto *PRN_start_sample_count = new uint64_t[num_epoch];
auto *acc_carrier_phase_rad = new double[num_epoch];
auto *carrier_doppler_hz = new double[num_epoch];
auto *code_freq_chips = new double[num_epoch];
auto *carr_error_hz = new double[num_epoch];
auto *carr_error_filt_hz = new double[num_epoch];
auto *code_error_chips = new double[num_epoch];
auto *code_error_filt_chips = new double[num_epoch];
auto *CN0_SNV_dB_Hz = new double[num_epoch];
auto *carrier_lock_test = new double[num_epoch];
auto *aux1 = new double[num_epoch];
auto *aux2 = new double[num_epoch];
auto *PRN = new uint32_t[num_epoch];
try
{
@ -570,8 +570,8 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work(int noutput_items __attrib
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
// Block input data and block output stream pointers
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]);
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
const auto *in = reinterpret_cast<const gr_complex *>(input_items[0]);
auto **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data = Gnss_Synchro();
@ -885,7 +885,7 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work(int noutput_items __attrib
// AUX vars (for debug purposes)
tmp_float = d_code_error_chips_Ti * CURRENT_INTEGRATION_TIME_S;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
double tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
auto tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
// PRN
uint32_t prn_ = d_acquisition_gnss_synchro->PRN;

View File

@ -360,24 +360,24 @@ int32_t gps_l1_ca_dll_pll_c_aid_tracking_sc::save_matfile()
{
return 1;
}
float *abs_E = new float[num_epoch];
float *abs_P = new float[num_epoch];
float *abs_L = new float[num_epoch];
float *Prompt_I = new float[num_epoch];
float *Prompt_Q = new float[num_epoch];
uint64_t *PRN_start_sample_count = new uint64_t[num_epoch];
double *acc_carrier_phase_rad = new double[num_epoch];
double *carrier_doppler_hz = new double[num_epoch];
double *code_freq_chips = new double[num_epoch];
double *carr_error_hz = new double[num_epoch];
double *carr_error_filt_hz = new double[num_epoch];
double *code_error_chips = new double[num_epoch];
double *code_error_filt_chips = new double[num_epoch];
double *CN0_SNV_dB_Hz = new double[num_epoch];
double *carrier_lock_test = new double[num_epoch];
double *aux1 = new double[num_epoch];
double *aux2 = new double[num_epoch];
uint32_t *PRN = new uint32_t[num_epoch];
auto *abs_E = new float[num_epoch];
auto *abs_P = new float[num_epoch];
auto *abs_L = new float[num_epoch];
auto *Prompt_I = new float[num_epoch];
auto *Prompt_Q = new float[num_epoch];
auto *PRN_start_sample_count = new uint64_t[num_epoch];
auto *acc_carrier_phase_rad = new double[num_epoch];
auto *carrier_doppler_hz = new double[num_epoch];
auto *code_freq_chips = new double[num_epoch];
auto *carr_error_hz = new double[num_epoch];
auto *carr_error_filt_hz = new double[num_epoch];
auto *code_error_chips = new double[num_epoch];
auto *code_error_filt_chips = new double[num_epoch];
auto *CN0_SNV_dB_Hz = new double[num_epoch];
auto *carrier_lock_test = new double[num_epoch];
auto *aux1 = new double[num_epoch];
auto *aux2 = new double[num_epoch];
auto *PRN = new uint32_t[num_epoch];
try
{
@ -572,8 +572,8 @@ int gps_l1_ca_dll_pll_c_aid_tracking_sc::general_work(int noutput_items __attrib
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
// Block input data and block output stream pointers
const lv_16sc_t *in = reinterpret_cast<const lv_16sc_t *>(input_items[0]); //PRN start block alignment
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
const auto *in = reinterpret_cast<const lv_16sc_t *>(input_items[0]); //PRN start block alignment
auto **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data = Gnss_Synchro();
@ -886,7 +886,7 @@ int gps_l1_ca_dll_pll_c_aid_tracking_sc::general_work(int noutput_items __attrib
// AUX vars (for debug purposes)
tmp_float = d_code_error_chips_Ti * CURRENT_INTEGRATION_TIME_S;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
double tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
auto tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
// PRN
uint32_t prn_ = d_acquisition_gnss_synchro->PRN;

View File

@ -427,28 +427,28 @@ int32_t Gps_L1_Ca_Kf_Tracking_cc::save_matfile()
{
return 1;
}
float *abs_VE = new float[num_epoch];
float *abs_E = new float[num_epoch];
float *abs_P = new float[num_epoch];
float *abs_L = new float[num_epoch];
float *abs_VL = new float[num_epoch];
float *Prompt_I = new float[num_epoch];
float *Prompt_Q = new float[num_epoch];
uint64_t *PRN_start_sample_count = new uint64_t[num_epoch];
float *acc_carrier_phase_rad = new float[num_epoch];
float *carrier_doppler_hz = new float[num_epoch];
float *carrier_dopplerrate_hz2 = new float[num_epoch];
float *code_freq_chips = new float[num_epoch];
float *carr_error_hz = new float[num_epoch];
float *carr_noise_sigma2 = new float[num_epoch];
float *carr_error_filt_hz = new float[num_epoch];
float *code_error_chips = new float[num_epoch];
float *code_error_filt_chips = new float[num_epoch];
float *CN0_SNV_dB_Hz = new float[num_epoch];
float *carrier_lock_test = new float[num_epoch];
float *aux1 = new float[num_epoch];
double *aux2 = new double[num_epoch];
uint32_t *PRN = new uint32_t[num_epoch];
auto *abs_VE = new float[num_epoch];
auto *abs_E = new float[num_epoch];
auto *abs_P = new float[num_epoch];
auto *abs_L = new float[num_epoch];
auto *abs_VL = new float[num_epoch];
auto *Prompt_I = new float[num_epoch];
auto *Prompt_Q = new float[num_epoch];
auto *PRN_start_sample_count = new uint64_t[num_epoch];
auto *acc_carrier_phase_rad = new float[num_epoch];
auto *carrier_doppler_hz = new float[num_epoch];
auto *carrier_dopplerrate_hz2 = new float[num_epoch];
auto *code_freq_chips = new float[num_epoch];
auto *carr_error_hz = new float[num_epoch];
auto *carr_noise_sigma2 = new float[num_epoch];
auto *carr_error_filt_hz = new float[num_epoch];
auto *code_error_chips = new float[num_epoch];
auto *code_error_filt_chips = new float[num_epoch];
auto *CN0_SNV_dB_Hz = new float[num_epoch];
auto *carrier_lock_test = new float[num_epoch];
auto *aux1 = new float[num_epoch];
auto *aux2 = new double[num_epoch];
auto *PRN = new uint32_t[num_epoch];
try
{
@ -677,8 +677,8 @@ int Gps_L1_Ca_Kf_Tracking_cc::general_work(int noutput_items __attribute__((unus
double code_error_filt_chips = 0.0;
// Block input data and block output stream pointers
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]);
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
const auto *in = reinterpret_cast<const gr_complex *>(input_items[0]);
auto **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data = Gnss_Synchro();

View File

@ -562,7 +562,7 @@ int Gps_L1_Ca_Tcp_Connector_Tracking_cc::general_work(int noutput_items __attrib
// AUX vars (for debug purposes)
tmp_float = 0.0;
d_dump_file.write(reinterpret_cast<char *>(&tmp_float), sizeof(float));
double tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
auto tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
// PRN
uint32_t prn_ = d_acquisition_gnss_synchro->PRN;

View File

@ -94,7 +94,7 @@ std::string INIReader::MakeKey(std::string section, std::string name)
int INIReader::ValueHandler(void* user, const char* section, const char* name,
const char* value)
{
INIReader* reader = static_cast<INIReader*>(user);
auto* reader = static_cast<INIReader*>(user);
reader->_values[MakeKey(section, name)] = value;
return 1;
}

View File

@ -50,7 +50,7 @@ InMemoryConfiguration::~InMemoryConfiguration()
std::string InMemoryConfiguration::property(std::string property_name, std::string default_value)
{
std::map<std::string, std::string>::iterator iter = properties_.find(property_name);
auto iter = properties_.find(property_name);
if (iter != properties_.end())
{
return iter->second;

View File

@ -111,7 +111,7 @@ Gnss_Satellite& Gnss_Satellite::operator=(const Gnss_Satellite &rhs) {
void Gnss_Satellite::set_system(const std::string& system_)
{
// Set the satellite system {"GPS", "Glonass", "SBAS", "Galileo", "Compass"}
std::set<std::string>::iterator it = system_set.find(system_);
auto it = system_set.find(system_);
if (it != system_set.cend())
{

View File

@ -227,7 +227,7 @@ std::string Rtcm::binary_data_to_bin(const std::string& s) const
for (uint32_t i = 0; i < s.length(); i++)
{
uint8_t val = static_cast<uint8_t>(s.at(i));
auto val = static_cast<uint8_t>(s.at(i));
std::bitset<8> bs(val);
ss << bs;
}
@ -488,7 +488,7 @@ std::bitset<58> Rtcm::get_MT1001_sat_content(const Gps_Ephemeris& eph, double ob
std::string Rtcm::print_MT1001(const Gps_Ephemeris& gps_eph, double obs_time, const std::map<int32_t, Gnss_Synchro>& observables, uint16_t station_id)
{
uint32_t ref_id = static_cast<uint32_t>(station_id);
auto ref_id = static_cast<uint32_t>(station_id);
uint32_t smooth_int = 0;
bool sync_flag = false;
bool divergence_free = false;
@ -537,7 +537,7 @@ std::string Rtcm::print_MT1001(const Gps_Ephemeris& gps_eph, double obs_time, co
std::string Rtcm::print_MT1002(const Gps_Ephemeris& gps_eph, double obs_time, const std::map<int32_t, Gnss_Synchro>& observables, uint16_t station_id)
{
uint32_t ref_id = static_cast<uint32_t>(station_id);
auto ref_id = static_cast<uint32_t>(station_id);
uint32_t smooth_int = 0;
bool sync_flag = false;
bool divergence_free = false;
@ -608,7 +608,7 @@ std::bitset<74> Rtcm::get_MT1002_sat_content(const Gps_Ephemeris& eph, double ob
std::string Rtcm::print_MT1003(const Gps_Ephemeris& ephL1, const Gps_CNAV_Ephemeris& ephL2, double obs_time, const std::map<int32_t, Gnss_Synchro>& observables, uint16_t station_id)
{
uint32_t ref_id = static_cast<uint32_t>(station_id);
auto ref_id = static_cast<uint32_t>(station_id);
uint32_t smooth_int = 0;
bool sync_flag = false;
bool divergence_free = false;
@ -717,7 +717,7 @@ std::bitset<101> Rtcm::get_MT1003_sat_content(const Gps_Ephemeris& ephL1, const
std::string Rtcm::print_MT1004(const Gps_Ephemeris& ephL1, const Gps_CNAV_Ephemeris& ephL2, double obs_time, const std::map<int32_t, Gnss_Synchro>& observables, uint16_t station_id)
{
uint32_t ref_id = static_cast<uint32_t>(station_id);
auto ref_id = static_cast<uint32_t>(station_id);
uint32_t smooth_int = 0;
bool sync_flag = false;
bool divergence_free = false;
@ -1169,7 +1169,7 @@ std::bitset<64> Rtcm::get_MT1009_sat_content(const Glonass_Gnav_Ephemeris& eph,
std::string Rtcm::print_MT1009(const Glonass_Gnav_Ephemeris& glonass_gnav_eph, double obs_time, const std::map<int32_t, Gnss_Synchro>& observables, uint16_t station_id)
{
uint32_t ref_id = static_cast<uint32_t>(station_id);
auto ref_id = static_cast<uint32_t>(station_id);
uint32_t smooth_int = 0;
bool sync_flag = false;
bool divergence_free = false;
@ -1218,7 +1218,7 @@ std::string Rtcm::print_MT1009(const Glonass_Gnav_Ephemeris& glonass_gnav_eph, d
std::string Rtcm::print_MT1010(const Glonass_Gnav_Ephemeris& glonass_gnav_eph, double obs_time, const std::map<int32_t, Gnss_Synchro>& observables, uint16_t station_id)
{
uint32_t ref_id = static_cast<uint32_t>(station_id);
auto ref_id = static_cast<uint32_t>(station_id);
uint32_t smooth_int = 0;
bool sync_flag = false;
bool divergence_free = false;
@ -1293,7 +1293,7 @@ std::bitset<79> Rtcm::get_MT1010_sat_content(const Glonass_Gnav_Ephemeris& eph,
std::string Rtcm::print_MT1011(const Glonass_Gnav_Ephemeris& ephL1, const Glonass_Gnav_Ephemeris& ephL2, double obs_time, const std::map<int32_t, Gnss_Synchro>& observables, uint16_t station_id)
{
uint32_t ref_id = static_cast<uint32_t>(station_id);
auto ref_id = static_cast<uint32_t>(station_id);
uint32_t smooth_int = 0;
bool sync_flag = false;
bool divergence_free = false;
@ -1404,7 +1404,7 @@ std::bitset<107> Rtcm::get_MT1011_sat_content(const Glonass_Gnav_Ephemeris& ephL
std::string Rtcm::print_MT1012(const Glonass_Gnav_Ephemeris& ephL1, const Glonass_Gnav_Ephemeris& ephL2, double obs_time, const std::map<int32_t, Gnss_Synchro>& observables, uint16_t station_id)
{
uint32_t ref_id = static_cast<uint32_t>(station_id);
auto ref_id = static_cast<uint32_t>(station_id);
uint32_t smooth_int = 0;
bool sync_flag = false;
bool divergence_free = false;
@ -3562,7 +3562,7 @@ int32_t Rtcm::set_DF003(uint32_t ref_station_ID)
int32_t Rtcm::set_DF004(double obs_time)
{
// TOW in milliseconds from the beginning of the GPS week, measured in GPS time
uint64_t tow = static_cast<uint64_t>(std::round(obs_time * 1000));
auto tow = static_cast<uint64_t>(std::round(obs_time * 1000));
if (tow > 604799999)
{
LOG(WARNING) << "To large TOW! Set to the last millisecond of the week";
@ -3653,7 +3653,7 @@ int32_t Rtcm::set_DF010(bool code_indicator)
int32_t Rtcm::set_DF011(const Gnss_Synchro& gnss_synchro)
{
double ambiguity = std::floor(gnss_synchro.Pseudorange_m / 299792.458);
uint64_t gps_L1_pseudorange = static_cast<uint64_t>(std::round((gnss_synchro.Pseudorange_m - ambiguity * 299792.458) / 0.02));
auto gps_L1_pseudorange = static_cast<uint64_t>(std::round((gnss_synchro.Pseudorange_m - ambiguity * 299792.458) / 0.02));
DF011 = std::bitset<24>(gps_L1_pseudorange);
return 0;
}
@ -3667,7 +3667,7 @@ int32_t Rtcm::set_DF012(const Gnss_Synchro& gnss_synchro)
double gps_L1_pseudorange_c = gps_L1_pseudorange * 0.02 + ambiguity * 299792.458;
double L1_phaserange_c = gnss_synchro.Carrier_phase_rads / GPS_TWO_PI;
double L1_phaserange_c_r = std::fmod(L1_phaserange_c - gps_L1_pseudorange_c / lambda + 1500.0, 3000.0) - 1500.0;
int64_t gps_L1_phaserange_minus_L1_pseudorange = static_cast<int64_t>(std::round(L1_phaserange_c_r * lambda / 0.0005));
auto gps_L1_phaserange_minus_L1_pseudorange = static_cast<int64_t>(std::round(L1_phaserange_c_r * lambda / 0.0005));
DF012 = std::bitset<20>(gps_L1_phaserange_minus_L1_pseudorange);
return 0;
}
@ -3685,7 +3685,7 @@ int32_t Rtcm::set_DF013(const Gps_Ephemeris& eph, double obs_time, const Gnss_Sy
int32_t Rtcm::set_DF014(const Gnss_Synchro& gnss_synchro)
{
uint32_t gps_L1_pseudorange_ambiguity = static_cast<uint32_t>(std::floor(gnss_synchro.Pseudorange_m / 299792.458));
auto gps_L1_pseudorange_ambiguity = static_cast<uint32_t>(std::floor(gnss_synchro.Pseudorange_m / 299792.458));
DF014 = std::bitset<8>(gps_L1_pseudorange_ambiguity);
return 0;
}
@ -3698,7 +3698,7 @@ int32_t Rtcm::set_DF015(const Gnss_Synchro& gnss_synchro)
{
CN0_dB_Hz_est = 63.75;
}
uint32_t CN0_dB_Hz = static_cast<uint32_t>(std::round(CN0_dB_Hz_est / 0.25));
auto CN0_dB_Hz = static_cast<uint32_t>(std::round(CN0_dB_Hz_est / 0.25));
DF015 = std::bitset<8>(CN0_dB_Hz);
return 0;
}
@ -3758,7 +3758,7 @@ int32_t Rtcm::set_DF020(const Gnss_Synchro& gnss_synchro)
{
CN0_dB_Hz_est = 63.75;
}
uint32_t CN0_dB_Hz = static_cast<uint32_t>(std::round(CN0_dB_Hz_est / 0.25));
auto CN0_dB_Hz = static_cast<uint32_t>(std::round(CN0_dB_Hz_est / 0.25));
DF020 = std::bitset<8>(CN0_dB_Hz);
return 0;
}
@ -3794,7 +3794,7 @@ int32_t Rtcm::set_DF024(bool galileo_indicator)
int32_t Rtcm::set_DF025(double antenna_ECEF_X_m)
{
int64_t ant_ref_x = static_cast<int64_t>(std::round(antenna_ECEF_X_m * 10000));
auto ant_ref_x = static_cast<int64_t>(std::round(antenna_ECEF_X_m * 10000));
DF025 = std::bitset<38>(ant_ref_x);
return 0;
}
@ -3802,7 +3802,7 @@ int32_t Rtcm::set_DF025(double antenna_ECEF_X_m)
int32_t Rtcm::set_DF026(double antenna_ECEF_Y_m)
{
int64_t ant_ref_y = static_cast<int64_t>(std::round(antenna_ECEF_Y_m * 10000));
auto ant_ref_y = static_cast<int64_t>(std::round(antenna_ECEF_Y_m * 10000));
DF026 = std::bitset<38>(ant_ref_y);
return 0;
}
@ -3810,7 +3810,7 @@ int32_t Rtcm::set_DF026(double antenna_ECEF_Y_m)
int32_t Rtcm::set_DF027(double antenna_ECEF_Z_m)
{
int64_t ant_ref_z = static_cast<int64_t>(std::round(antenna_ECEF_Z_m * 10000));
auto ant_ref_z = static_cast<int64_t>(std::round(antenna_ECEF_Z_m * 10000));
DF027 = std::bitset<38>(ant_ref_z);
return 0;
}
@ -3818,7 +3818,7 @@ int32_t Rtcm::set_DF027(double antenna_ECEF_Z_m)
int32_t Rtcm::set_DF028(double height)
{
uint32_t h_ = static_cast<uint32_t>(std::round(height * 10000));
auto h_ = static_cast<uint32_t>(std::round(height * 10000));
DF028 = std::bitset<16>(h_);
return 0;
}
@ -3834,7 +3834,7 @@ int32_t Rtcm::set_DF031(uint32_t antenna_setup_id)
int32_t Rtcm::set_DF034(double obs_time)
{
// TOW in milliseconds from the beginning of the GLONASS day, measured in GLONASS time
uint64_t tk = static_cast<uint64_t>(std::round(obs_time * 1000));
auto tk = static_cast<uint64_t>(std::round(obs_time * 1000));
if (tk > 86400999)
{
LOG(WARNING) << "To large GLONASS Epoch Time (tk)! Set to the last millisecond of the day";
@ -3945,7 +3945,7 @@ int32_t Rtcm::set_DF040(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
int32_t Rtcm::set_DF041(const Gnss_Synchro& gnss_synchro)
{
double ambiguity = std::floor(gnss_synchro.Pseudorange_m / 599584.92);
uint64_t glonass_L1_pseudorange = static_cast<uint64_t>(std::round((gnss_synchro.Pseudorange_m - ambiguity * 599584.92) / 0.02));
auto glonass_L1_pseudorange = static_cast<uint64_t>(std::round((gnss_synchro.Pseudorange_m - ambiguity * 599584.92) / 0.02));
DF041 = std::bitset<25>(glonass_L1_pseudorange);
return 0;
}
@ -3959,7 +3959,7 @@ int32_t Rtcm::set_DF042(const Gnss_Synchro& gnss_synchro)
double glonass_L1_pseudorange_c = glonass_L1_pseudorange * 0.02 + ambiguity * 299792.458;
double L1_phaserange_c = gnss_synchro.Carrier_phase_rads / GLONASS_TWO_PI;
double L1_phaserange_c_r = std::fmod(L1_phaserange_c - glonass_L1_pseudorange_c / lambda + 1500.0, 3000.0) - 1500.0;
int64_t glonass_L1_phaserange_minus_L1_pseudorange = static_cast<int64_t>(std::round(L1_phaserange_c_r * lambda / 0.0005));
auto glonass_L1_phaserange_minus_L1_pseudorange = static_cast<int64_t>(std::round(L1_phaserange_c_r * lambda / 0.0005));
DF042 = std::bitset<20>(glonass_L1_phaserange_minus_L1_pseudorange);
return 0;
}
@ -3977,7 +3977,7 @@ int32_t Rtcm::set_DF043(const Glonass_Gnav_Ephemeris& eph, double obs_time, cons
int32_t Rtcm::set_DF044(const Gnss_Synchro& gnss_synchro)
{
uint32_t glonass_L1_pseudorange_ambiguity = static_cast<uint32_t>(std::floor(gnss_synchro.Pseudorange_m / 599584.916));
auto glonass_L1_pseudorange_ambiguity = static_cast<uint32_t>(std::floor(gnss_synchro.Pseudorange_m / 599584.916));
DF044 = std::bitset<7>(glonass_L1_pseudorange_ambiguity);
return 0;
}
@ -3991,7 +3991,7 @@ int32_t Rtcm::set_DF045(const Gnss_Synchro& gnss_synchro)
LOG(WARNING) << "GLONASS L1 CNR must be between 0 and 63.75, but CNR " << CN0_dB_Hz_est << " was found. Setting to 63.75 dB-Hz";
CN0_dB_Hz_est = 63.75;
}
uint32_t CN0_dB_Hz = static_cast<uint32_t>(std::round(CN0_dB_Hz_est / 0.25));
auto CN0_dB_Hz = static_cast<uint32_t>(std::round(CN0_dB_Hz_est / 0.25));
DF045 = std::bitset<8>(CN0_dB_Hz);
return 0;
}
@ -4051,7 +4051,7 @@ int32_t Rtcm::set_DF050(const Gnss_Synchro& gnss_synchro)
{
CN0_dB_Hz_est = 63.75;
}
uint32_t CN0_dB_Hz = static_cast<uint32_t>(std::round(CN0_dB_Hz_est / 0.25));
auto CN0_dB_Hz = static_cast<uint32_t>(std::round(CN0_dB_Hz_est / 0.25));
DF050 = std::bitset<8>(CN0_dB_Hz);
return 0;
}
@ -4089,7 +4089,7 @@ int32_t Rtcm::set_DF052(const Gps_Ephemeris& gps_eph, double obs_time)
int32_t Rtcm::set_DF071(const Gps_Ephemeris& gps_eph)
{
uint32_t iode = static_cast<uint32_t>(gps_eph.d_IODE_SF2);
auto iode = static_cast<uint32_t>(gps_eph.d_IODE_SF2);
DF071 = std::bitset<8>(iode);
return 0;
}
@ -4097,7 +4097,7 @@ int32_t Rtcm::set_DF071(const Gps_Ephemeris& gps_eph)
int32_t Rtcm::set_DF076(const Gps_Ephemeris& gps_eph)
{
uint32_t week_number = static_cast<uint32_t>(gps_eph.i_GPS_week);
auto week_number = static_cast<uint32_t>(gps_eph.i_GPS_week);
DF076 = std::bitset<10>(week_number);
return 0;
}
@ -4105,7 +4105,7 @@ int32_t Rtcm::set_DF076(const Gps_Ephemeris& gps_eph)
int32_t Rtcm::set_DF077(const Gps_Ephemeris& gps_eph)
{
uint16_t ura = static_cast<uint16_t>(gps_eph.i_SV_accuracy);
auto ura = static_cast<uint16_t>(gps_eph.i_SV_accuracy);
DF077 = std::bitset<4>(ura);
return 0;
}
@ -4113,7 +4113,7 @@ int32_t Rtcm::set_DF077(const Gps_Ephemeris& gps_eph)
int32_t Rtcm::set_DF078(const Gps_Ephemeris& gps_eph)
{
uint16_t code_on_L2 = static_cast<uint16_t>(gps_eph.i_code_on_L2);
auto code_on_L2 = static_cast<uint16_t>(gps_eph.i_code_on_L2);
DF078 = std::bitset<2>(code_on_L2);
return 0;
}
@ -4121,7 +4121,7 @@ int32_t Rtcm::set_DF078(const Gps_Ephemeris& gps_eph)
int32_t Rtcm::set_DF079(const Gps_Ephemeris& gps_eph)
{
uint32_t idot = static_cast<uint32_t>(std::round(gps_eph.d_IDOT / I_DOT_LSB));
auto idot = static_cast<uint32_t>(std::round(gps_eph.d_IDOT / I_DOT_LSB));
DF079 = std::bitset<14>(idot);
return 0;
}
@ -4129,7 +4129,7 @@ int32_t Rtcm::set_DF079(const Gps_Ephemeris& gps_eph)
int32_t Rtcm::set_DF080(const Gps_Ephemeris& gps_eph)
{
uint16_t iode = static_cast<uint16_t>(gps_eph.d_IODE_SF2);
auto iode = static_cast<uint16_t>(gps_eph.d_IODE_SF2);
DF080 = std::bitset<8>(iode);
return 0;
}
@ -4137,7 +4137,7 @@ int32_t Rtcm::set_DF080(const Gps_Ephemeris& gps_eph)
int32_t Rtcm::set_DF081(const Gps_Ephemeris& gps_eph)
{
uint32_t toc = static_cast<uint32_t>(std::round(gps_eph.d_Toc / T_OC_LSB));
auto toc = static_cast<uint32_t>(std::round(gps_eph.d_Toc / T_OC_LSB));
DF081 = std::bitset<16>(toc);
return 0;
}
@ -4145,7 +4145,7 @@ int32_t Rtcm::set_DF081(const Gps_Ephemeris& gps_eph)
int32_t Rtcm::set_DF082(const Gps_Ephemeris& gps_eph)
{
int16_t af2 = static_cast<int16_t>(std::round(gps_eph.d_A_f2 / A_F2_LSB));
auto af2 = static_cast<int16_t>(std::round(gps_eph.d_A_f2 / A_F2_LSB));
DF082 = std::bitset<8>(af2);
return 0;
}
@ -4153,7 +4153,7 @@ int32_t Rtcm::set_DF082(const Gps_Ephemeris& gps_eph)
int32_t Rtcm::set_DF083(const Gps_Ephemeris& gps_eph)
{
int32_t af1 = static_cast<int32_t>(std::round(gps_eph.d_A_f1 / A_F1_LSB));
auto af1 = static_cast<int32_t>(std::round(gps_eph.d_A_f1 / A_F1_LSB));
DF083 = std::bitset<16>(af1);
return 0;
}
@ -4161,7 +4161,7 @@ int32_t Rtcm::set_DF083(const Gps_Ephemeris& gps_eph)
int32_t Rtcm::set_DF084(const Gps_Ephemeris& gps_eph)
{
int64_t af0 = static_cast<int64_t>(std::round(gps_eph.d_A_f0 / A_F0_LSB));
auto af0 = static_cast<int64_t>(std::round(gps_eph.d_A_f0 / A_F0_LSB));
DF084 = std::bitset<22>(af0);
return 0;
}
@ -4169,7 +4169,7 @@ int32_t Rtcm::set_DF084(const Gps_Ephemeris& gps_eph)
int32_t Rtcm::set_DF085(const Gps_Ephemeris& gps_eph)
{
uint32_t iodc = static_cast<uint32_t>(gps_eph.d_IODC);
auto iodc = static_cast<uint32_t>(gps_eph.d_IODC);
DF085 = std::bitset<10>(iodc);
return 0;
}
@ -4177,7 +4177,7 @@ int32_t Rtcm::set_DF085(const Gps_Ephemeris& gps_eph)
int32_t Rtcm::set_DF086(const Gps_Ephemeris& gps_eph)
{
int32_t crs = static_cast<int32_t>(std::round(gps_eph.d_Crs / C_RS_LSB));
auto crs = static_cast<int32_t>(std::round(gps_eph.d_Crs / C_RS_LSB));
DF086 = std::bitset<16>(crs);
return 0;
}
@ -4185,7 +4185,7 @@ int32_t Rtcm::set_DF086(const Gps_Ephemeris& gps_eph)
int32_t Rtcm::set_DF087(const Gps_Ephemeris& gps_eph)
{
int32_t delta_n = static_cast<int32_t>(std::round(gps_eph.d_Delta_n / DELTA_N_LSB));
auto delta_n = static_cast<int32_t>(std::round(gps_eph.d_Delta_n / DELTA_N_LSB));
DF087 = std::bitset<16>(delta_n);
return 0;
}
@ -4193,7 +4193,7 @@ int32_t Rtcm::set_DF087(const Gps_Ephemeris& gps_eph)
int32_t Rtcm::set_DF088(const Gps_Ephemeris& gps_eph)
{
int64_t m0 = static_cast<int64_t>(std::round(gps_eph.d_M_0 / M_0_LSB));
auto m0 = static_cast<int64_t>(std::round(gps_eph.d_M_0 / M_0_LSB));
DF088 = std::bitset<32>(m0);
return 0;
}
@ -4201,14 +4201,14 @@ int32_t Rtcm::set_DF088(const Gps_Ephemeris& gps_eph)
int32_t Rtcm::set_DF089(const Gps_Ephemeris& gps_eph)
{
int32_t cuc = static_cast<int32_t>(std::round(gps_eph.d_Cuc / C_UC_LSB));
auto cuc = static_cast<int32_t>(std::round(gps_eph.d_Cuc / C_UC_LSB));
DF089 = std::bitset<16>(cuc);
return 0;
}
int32_t Rtcm::set_DF090(const Gps_Ephemeris& gps_eph)
{
uint64_t ecc = static_cast<uint64_t>(std::round(gps_eph.d_e_eccentricity / E_LSB));
auto ecc = static_cast<uint64_t>(std::round(gps_eph.d_e_eccentricity / E_LSB));
DF090 = std::bitset<32>(ecc);
return 0;
}
@ -4216,7 +4216,7 @@ int32_t Rtcm::set_DF090(const Gps_Ephemeris& gps_eph)
int32_t Rtcm::set_DF091(const Gps_Ephemeris& gps_eph)
{
int32_t cus = static_cast<int32_t>(std::round(gps_eph.d_Cus / C_US_LSB));
auto cus = static_cast<int32_t>(std::round(gps_eph.d_Cus / C_US_LSB));
DF091 = std::bitset<16>(cus);
return 0;
}
@ -4224,7 +4224,7 @@ int32_t Rtcm::set_DF091(const Gps_Ephemeris& gps_eph)
int32_t Rtcm::set_DF092(const Gps_Ephemeris& gps_eph)
{
uint64_t sqr_a = static_cast<uint64_t>(std::round(gps_eph.d_sqrt_A / SQRT_A_LSB));
auto sqr_a = static_cast<uint64_t>(std::round(gps_eph.d_sqrt_A / SQRT_A_LSB));
DF092 = std::bitset<32>(sqr_a);
return 0;
}
@ -4232,7 +4232,7 @@ int32_t Rtcm::set_DF092(const Gps_Ephemeris& gps_eph)
int32_t Rtcm::set_DF093(const Gps_Ephemeris& gps_eph)
{
uint32_t toe = static_cast<uint32_t>(std::round(gps_eph.d_Toe / T_OE_LSB));
auto toe = static_cast<uint32_t>(std::round(gps_eph.d_Toe / T_OE_LSB));
DF093 = std::bitset<16>(toe);
return 0;
}
@ -4240,7 +4240,7 @@ int32_t Rtcm::set_DF093(const Gps_Ephemeris& gps_eph)
int32_t Rtcm::set_DF094(const Gps_Ephemeris& gps_eph)
{
int32_t cic = static_cast<int32_t>(std::round(gps_eph.d_Cic / C_IC_LSB));
auto cic = static_cast<int32_t>(std::round(gps_eph.d_Cic / C_IC_LSB));
DF094 = std::bitset<16>(cic);
return 0;
}
@ -4248,7 +4248,7 @@ int32_t Rtcm::set_DF094(const Gps_Ephemeris& gps_eph)
int32_t Rtcm::set_DF095(const Gps_Ephemeris& gps_eph)
{
int64_t Omega0 = static_cast<int64_t>(std::round(gps_eph.d_OMEGA0 / OMEGA_0_LSB));
auto Omega0 = static_cast<int64_t>(std::round(gps_eph.d_OMEGA0 / OMEGA_0_LSB));
DF095 = std::bitset<32>(Omega0);
return 0;
}
@ -4256,7 +4256,7 @@ int32_t Rtcm::set_DF095(const Gps_Ephemeris& gps_eph)
int32_t Rtcm::set_DF096(const Gps_Ephemeris& gps_eph)
{
int32_t cis = static_cast<int32_t>(std::round(gps_eph.d_Cis / C_IS_LSB));
auto cis = static_cast<int32_t>(std::round(gps_eph.d_Cis / C_IS_LSB));
DF096 = std::bitset<16>(cis);
return 0;
}
@ -4264,7 +4264,7 @@ int32_t Rtcm::set_DF096(const Gps_Ephemeris& gps_eph)
int32_t Rtcm::set_DF097(const Gps_Ephemeris& gps_eph)
{
int64_t i0 = static_cast<int64_t>(std::round(gps_eph.d_i_0 / I_0_LSB));
auto i0 = static_cast<int64_t>(std::round(gps_eph.d_i_0 / I_0_LSB));
DF097 = std::bitset<32>(i0);
return 0;
}
@ -4272,7 +4272,7 @@ int32_t Rtcm::set_DF097(const Gps_Ephemeris& gps_eph)
int32_t Rtcm::set_DF098(const Gps_Ephemeris& gps_eph)
{
int32_t crc = static_cast<int32_t>(std::round(gps_eph.d_Crc / C_RC_LSB));
auto crc = static_cast<int32_t>(std::round(gps_eph.d_Crc / C_RC_LSB));
DF098 = std::bitset<16>(crc);
return 0;
}
@ -4280,7 +4280,7 @@ int32_t Rtcm::set_DF098(const Gps_Ephemeris& gps_eph)
int32_t Rtcm::set_DF099(const Gps_Ephemeris& gps_eph)
{
int64_t omega = static_cast<int64_t>(std::round(gps_eph.d_OMEGA / OMEGA_LSB));
auto omega = static_cast<int64_t>(std::round(gps_eph.d_OMEGA / OMEGA_LSB));
DF099 = std::bitset<32>(omega);
return 0;
}
@ -4288,7 +4288,7 @@ int32_t Rtcm::set_DF099(const Gps_Ephemeris& gps_eph)
int32_t Rtcm::set_DF100(const Gps_Ephemeris& gps_eph)
{
int64_t omegadot = static_cast<int64_t>(std::round(gps_eph.d_OMEGA_DOT / OMEGA_DOT_LSB));
auto omegadot = static_cast<int64_t>(std::round(gps_eph.d_OMEGA_DOT / OMEGA_DOT_LSB));
DF100 = std::bitset<24>(omegadot);
return 0;
}
@ -4296,7 +4296,7 @@ int32_t Rtcm::set_DF100(const Gps_Ephemeris& gps_eph)
int32_t Rtcm::set_DF101(const Gps_Ephemeris& gps_eph)
{
int16_t tgd = static_cast<int16_t>(std::round(gps_eph.d_TGD / T_GD_LSB));
auto tgd = static_cast<int16_t>(std::round(gps_eph.d_TGD / T_GD_LSB));
DF101 = std::bitset<8>(tgd);
return 0;
}
@ -4304,7 +4304,7 @@ int32_t Rtcm::set_DF101(const Gps_Ephemeris& gps_eph)
int32_t Rtcm::set_DF102(const Gps_Ephemeris& gps_eph)
{
uint16_t sv_heath = static_cast<uint16_t>(gps_eph.i_SV_health);
auto sv_heath = static_cast<uint16_t>(gps_eph.i_SV_health);
DF102 = std::bitset<6>(sv_heath);
return 0;
}
@ -4334,7 +4334,7 @@ int32_t Rtcm::set_DF105(uint32_t glonass_gnav_alm_health_ind)
int32_t Rtcm::set_DF106(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
{
// Convert the value from (15, 30, 45, 60) to (00, 01, 10, 11)
uint32_t P_1 = static_cast<uint32_t>(std::round(glonass_gnav_eph.d_P_1 / 15.0 - 1.0));
auto P_1 = static_cast<uint32_t>(std::round(glonass_gnav_eph.d_P_1 / 15.0 - 1.0));
DF106 = std::bitset<2>(P_1);
return 0;
}
@ -4378,7 +4378,7 @@ int32_t Rtcm::set_DF109(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
int32_t Rtcm::set_DF110(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
{
uint32_t t_b = static_cast<uint32_t>(std::round(glonass_gnav_eph.d_t_b / (15 * 60)));
auto t_b = static_cast<uint32_t>(std::round(glonass_gnav_eph.d_t_b / (15 * 60)));
DF110 = std::bitset<7>(t_b);
return 0;
}
@ -4386,7 +4386,7 @@ int32_t Rtcm::set_DF110(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
int32_t Rtcm::set_DF111(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
{
int32_t VXn_mag = static_cast<int32_t>(std::round(fabs(glonass_gnav_eph.d_VXn / TWO_N20)));
auto VXn_mag = static_cast<int32_t>(std::round(fabs(glonass_gnav_eph.d_VXn / TWO_N20)));
uint32_t VXn_sgn = glo_sgn(glonass_gnav_eph.d_VXn);
DF111 = std::bitset<24>(VXn_mag);
@ -4397,7 +4397,7 @@ int32_t Rtcm::set_DF111(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
int32_t Rtcm::set_DF112(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
{
int32_t Xn_mag = static_cast<int32_t>(std::round(fabs(glonass_gnav_eph.d_Xn / TWO_N11)));
auto Xn_mag = static_cast<int32_t>(std::round(fabs(glonass_gnav_eph.d_Xn / TWO_N11)));
uint32_t Xn_sgn = glo_sgn(glonass_gnav_eph.d_Xn);
DF112 = std::bitset<27>(Xn_mag);
@ -4408,7 +4408,7 @@ int32_t Rtcm::set_DF112(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
int32_t Rtcm::set_DF113(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
{
int32_t AXn_mag = static_cast<int32_t>(std::round(fabs(glonass_gnav_eph.d_AXn / TWO_N30)));
auto AXn_mag = static_cast<int32_t>(std::round(fabs(glonass_gnav_eph.d_AXn / TWO_N30)));
uint32_t AXn_sgn = glo_sgn(glonass_gnav_eph.d_AXn);
DF113 = std::bitset<5>(AXn_mag);
@ -4419,7 +4419,7 @@ int32_t Rtcm::set_DF113(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
int32_t Rtcm::set_DF114(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
{
int32_t VYn_mag = static_cast<int32_t>(std::round(fabs(glonass_gnav_eph.d_VYn / TWO_N20)));
auto VYn_mag = static_cast<int32_t>(std::round(fabs(glonass_gnav_eph.d_VYn / TWO_N20)));
uint32_t VYn_sgn = glo_sgn(glonass_gnav_eph.d_VYn);
DF114 = std::bitset<24>(VYn_mag);
@ -4430,7 +4430,7 @@ int32_t Rtcm::set_DF114(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
int32_t Rtcm::set_DF115(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
{
int32_t Yn_mag = static_cast<int32_t>(std::round(fabs(glonass_gnav_eph.d_Yn / TWO_N11)));
auto Yn_mag = static_cast<int32_t>(std::round(fabs(glonass_gnav_eph.d_Yn / TWO_N11)));
uint32_t Yn_sgn = glo_sgn(glonass_gnav_eph.d_Yn);
DF115 = std::bitset<27>(Yn_mag);
@ -4441,7 +4441,7 @@ int32_t Rtcm::set_DF115(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
int32_t Rtcm::set_DF116(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
{
int32_t AYn_mag = static_cast<int32_t>(std::round(fabs(glonass_gnav_eph.d_AYn / TWO_N30)));
auto AYn_mag = static_cast<int32_t>(std::round(fabs(glonass_gnav_eph.d_AYn / TWO_N30)));
uint32_t AYn_sgn = glo_sgn(glonass_gnav_eph.d_AYn);
DF116 = std::bitset<5>(AYn_mag);
@ -4452,7 +4452,7 @@ int32_t Rtcm::set_DF116(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
int32_t Rtcm::set_DF117(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
{
int32_t VZn_mag = static_cast<int32_t>(std::round(fabs(glonass_gnav_eph.d_VZn / TWO_N20)));
auto VZn_mag = static_cast<int32_t>(std::round(fabs(glonass_gnav_eph.d_VZn / TWO_N20)));
uint32_t VZn_sgn = glo_sgn(glonass_gnav_eph.d_VZn);
DF117 = std::bitset<24>(VZn_mag);
@ -4463,7 +4463,7 @@ int32_t Rtcm::set_DF117(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
int32_t Rtcm::set_DF118(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
{
int32_t Zn_mag = static_cast<int32_t>(std::round(fabs(glonass_gnav_eph.d_Zn / TWO_N11)));
auto Zn_mag = static_cast<int32_t>(std::round(fabs(glonass_gnav_eph.d_Zn / TWO_N11)));
uint32_t Zn_sgn = glo_sgn(glonass_gnav_eph.d_Zn);
DF118 = std::bitset<27>(Zn_mag);
@ -4474,7 +4474,7 @@ int32_t Rtcm::set_DF118(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
int32_t Rtcm::set_DF119(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
{
int32_t AZn_mag = static_cast<int32_t>(std::round(fabs(glonass_gnav_eph.d_AZn / TWO_N30)));
auto AZn_mag = static_cast<int32_t>(std::round(fabs(glonass_gnav_eph.d_AZn / TWO_N30)));
uint32_t AZn_sgn = glo_sgn(glonass_gnav_eph.d_AZn);
DF119 = std::bitset<5>(AZn_mag);
@ -4493,7 +4493,7 @@ int32_t Rtcm::set_DF120(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
int32_t Rtcm::set_DF121(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
{
int32_t gamma_mag = static_cast<int32_t>(std::round(fabs(glonass_gnav_eph.d_gamma_n / TWO_N40)));
auto gamma_mag = static_cast<int32_t>(std::round(fabs(glonass_gnav_eph.d_gamma_n / TWO_N40)));
uint32_t gamma_sgn = glo_sgn(glonass_gnav_eph.d_gamma_n);
DF121 = std::bitset<11>(gamma_mag);
@ -4504,7 +4504,7 @@ int32_t Rtcm::set_DF121(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
int32_t Rtcm::set_DF122(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
{
uint32_t P = static_cast<uint32_t>(std::round(glonass_gnav_eph.d_P));
auto P = static_cast<uint32_t>(std::round(glonass_gnav_eph.d_P));
DF122 = std::bitset<2>(P);
return 0;
}
@ -4512,7 +4512,7 @@ int32_t Rtcm::set_DF122(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
int32_t Rtcm::set_DF123(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
{
uint32_t ln = static_cast<uint32_t>((glonass_gnav_eph.d_l3rd_n));
auto ln = static_cast<uint32_t>((glonass_gnav_eph.d_l3rd_n));
DF123 = std::bitset<1>(ln);
return 0;
}
@ -4520,7 +4520,7 @@ int32_t Rtcm::set_DF123(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
int32_t Rtcm::set_DF124(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
{
int32_t tau_mag = static_cast<int32_t>(std::round(fabs(glonass_gnav_eph.d_tau_n / TWO_N30)));
auto tau_mag = static_cast<int32_t>(std::round(fabs(glonass_gnav_eph.d_tau_n / TWO_N30)));
uint32_t tau_sgn = glo_sgn(glonass_gnav_eph.d_tau_n);
DF124 = std::bitset<22>(tau_mag);
@ -4531,7 +4531,7 @@ int32_t Rtcm::set_DF124(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
int32_t Rtcm::set_DF125(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
{
int32_t delta_tau_mag = static_cast<int32_t>(std::round(fabs(glonass_gnav_eph.d_Delta_tau_n / TWO_N30)));
auto delta_tau_mag = static_cast<int32_t>(std::round(fabs(glonass_gnav_eph.d_Delta_tau_n / TWO_N30)));
uint32_t delta_tau_sgn = glo_sgn(glonass_gnav_eph.d_Delta_tau_n);
DF125 = std::bitset<5>(delta_tau_mag);
@ -4542,7 +4542,7 @@ int32_t Rtcm::set_DF125(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
int32_t Rtcm::set_DF126(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
{
uint32_t ecc = static_cast<uint32_t>(std::round(glonass_gnav_eph.d_E_n));
auto ecc = static_cast<uint32_t>(std::round(glonass_gnav_eph.d_E_n));
DF126 = std::bitset<5>(ecc);
return 0;
}
@ -4558,7 +4558,7 @@ int32_t Rtcm::set_DF127(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
int32_t Rtcm::set_DF128(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
{
uint32_t F_t = static_cast<uint32_t>(std::round(glonass_gnav_eph.d_F_T));
auto F_t = static_cast<uint32_t>(std::round(glonass_gnav_eph.d_F_T));
DF128 = std::bitset<4>(F_t);
return 0;
}
@ -4566,7 +4566,7 @@ int32_t Rtcm::set_DF128(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
int32_t Rtcm::set_DF129(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
{
uint32_t N_t = static_cast<uint32_t>(std::round(glonass_gnav_eph.d_N_T));
auto N_t = static_cast<uint32_t>(std::round(glonass_gnav_eph.d_N_T));
DF129 = std::bitset<11>(N_t);
return 0;
}
@ -4574,7 +4574,7 @@ int32_t Rtcm::set_DF129(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
int32_t Rtcm::set_DF130(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
{
uint32_t M = static_cast<uint32_t>(std::round(glonass_gnav_eph.d_M));
auto M = static_cast<uint32_t>(std::round(glonass_gnav_eph.d_M));
DF130 = std::bitset<2>(M);
return 0;
}
@ -4582,7 +4582,7 @@ int32_t Rtcm::set_DF130(const Glonass_Gnav_Ephemeris& glonass_gnav_eph)
int32_t Rtcm::set_DF131(uint32_t fifth_str_additional_data_ind)
{
uint32_t fith_str_data = static_cast<uint32_t>(fifth_str_additional_data_ind);
auto fith_str_data = static_cast<uint32_t>(fifth_str_additional_data_ind);
DF131 = std::bitset<1>(fith_str_data);
return 0;
}
@ -4590,7 +4590,7 @@ int32_t Rtcm::set_DF131(uint32_t fifth_str_additional_data_ind)
int32_t Rtcm::set_DF132(const Glonass_Gnav_Utc_Model& glonass_gnav_utc_model)
{
uint32_t N_A = static_cast<uint32_t>(std::round(glonass_gnav_utc_model.d_N_A));
auto N_A = static_cast<uint32_t>(std::round(glonass_gnav_utc_model.d_N_A));
DF132 = std::bitset<11>(N_A);
return 0;
}
@ -4598,7 +4598,7 @@ int32_t Rtcm::set_DF132(const Glonass_Gnav_Utc_Model& glonass_gnav_utc_model)
int32_t Rtcm::set_DF133(const Glonass_Gnav_Utc_Model& glonass_gnav_utc_model)
{
int32_t tau_c = static_cast<int32_t>(std::round(glonass_gnav_utc_model.d_tau_c / TWO_N31));
auto tau_c = static_cast<int32_t>(std::round(glonass_gnav_utc_model.d_tau_c / TWO_N31));
DF133 = std::bitset<32>(tau_c);
return 0;
}
@ -4606,7 +4606,7 @@ int32_t Rtcm::set_DF133(const Glonass_Gnav_Utc_Model& glonass_gnav_utc_model)
int32_t Rtcm::set_DF134(const Glonass_Gnav_Utc_Model& glonass_gnav_utc_model)
{
uint32_t N_4 = static_cast<uint32_t>(std::round(glonass_gnav_utc_model.d_N_4));
auto N_4 = static_cast<uint32_t>(std::round(glonass_gnav_utc_model.d_N_4));
DF134 = std::bitset<5>(N_4);
return 0;
}
@ -4614,7 +4614,7 @@ int32_t Rtcm::set_DF134(const Glonass_Gnav_Utc_Model& glonass_gnav_utc_model)
int32_t Rtcm::set_DF135(const Glonass_Gnav_Utc_Model& glonass_gnav_utc_model)
{
int32_t tau_gps = static_cast<int32_t>(std::round(glonass_gnav_utc_model.d_tau_gps) / TWO_N30);
auto tau_gps = static_cast<int32_t>(std::round(glonass_gnav_utc_model.d_tau_gps) / TWO_N30);
DF135 = std::bitset<22>(tau_gps);
return 0;
}
@ -4638,7 +4638,7 @@ int32_t Rtcm::set_DF137(const Gps_Ephemeris& gps_eph)
int32_t Rtcm::set_DF248(double obs_time)
{
// TOW in milliseconds from the beginning of the Galileo week, measured in Galileo time
uint64_t tow = static_cast<uint64_t>(std::round(obs_time * 1000));
auto tow = static_cast<uint64_t>(std::round(obs_time * 1000));
if (tow > 604799999)
{
LOG(WARNING) << "To large TOW! Set to the last millisecond of the week";
@ -4663,7 +4663,7 @@ int32_t Rtcm::set_DF252(const Galileo_Ephemeris& gal_eph)
int32_t Rtcm::set_DF289(const Galileo_Ephemeris& gal_eph)
{
uint32_t galileo_week_number = static_cast<uint32_t>(gal_eph.WN_5);
auto galileo_week_number = static_cast<uint32_t>(gal_eph.WN_5);
if (galileo_week_number > 4095)
{
LOG(WARNING) << "Error decoding Galileo week number (it has a 4096 roll-off, but " << galileo_week_number << " was detected)";
@ -4675,7 +4675,7 @@ int32_t Rtcm::set_DF289(const Galileo_Ephemeris& gal_eph)
int32_t Rtcm::set_DF290(const Galileo_Ephemeris& gal_eph)
{
uint32_t iod_nav = static_cast<uint32_t>(gal_eph.IOD_nav_1);
auto iod_nav = static_cast<uint32_t>(gal_eph.IOD_nav_1);
if (iod_nav > 1023)
{
LOG(WARNING) << "Error decoding Galileo IODnav (it has a max of 1023, but " << iod_nav << " was detected)";
@ -4687,7 +4687,7 @@ int32_t Rtcm::set_DF290(const Galileo_Ephemeris& gal_eph)
int32_t Rtcm::set_DF291(const Galileo_Ephemeris& gal_eph)
{
uint16_t SISA = static_cast<uint16_t>(gal_eph.SISA_3);
auto SISA = static_cast<uint16_t>(gal_eph.SISA_3);
//SISA = 0; // SIS Accuracy, data content definition not given in Galileo OS SIS ICD, Issue 1.1, Sept 2010
DF291 = std::bitset<8>(SISA);
return 0;
@ -4696,7 +4696,7 @@ int32_t Rtcm::set_DF291(const Galileo_Ephemeris& gal_eph)
int32_t Rtcm::set_DF292(const Galileo_Ephemeris& gal_eph)
{
int32_t idot = static_cast<int32_t>(std::round(gal_eph.iDot_2 / FNAV_idot_2_LSB));
auto idot = static_cast<int32_t>(std::round(gal_eph.iDot_2 / FNAV_idot_2_LSB));
DF292 = std::bitset<14>(idot);
return 0;
}
@ -4704,7 +4704,7 @@ int32_t Rtcm::set_DF292(const Galileo_Ephemeris& gal_eph)
int32_t Rtcm::set_DF293(const Galileo_Ephemeris& gal_eph)
{
uint32_t toc = static_cast<uint32_t>(gal_eph.t0c_4);
auto toc = static_cast<uint32_t>(gal_eph.t0c_4);
if (toc > 604740)
{
LOG(WARNING) << "Error decoding Galileo ephemeris time (max of 604740, but " << toc << " was detected)";
@ -4716,7 +4716,7 @@ int32_t Rtcm::set_DF293(const Galileo_Ephemeris& gal_eph)
int32_t Rtcm::set_DF294(const Galileo_Ephemeris& gal_eph)
{
int16_t af2 = static_cast<int16_t>(std::round(gal_eph.af2_4 / FNAV_af2_1_LSB));
auto af2 = static_cast<int16_t>(std::round(gal_eph.af2_4 / FNAV_af2_1_LSB));
DF294 = std::bitset<6>(af2);
return 0;
}
@ -4724,7 +4724,7 @@ int32_t Rtcm::set_DF294(const Galileo_Ephemeris& gal_eph)
int32_t Rtcm::set_DF295(const Galileo_Ephemeris& gal_eph)
{
int64_t af1 = static_cast<int64_t>(std::round(gal_eph.af1_4 / FNAV_af1_1_LSB));
auto af1 = static_cast<int64_t>(std::round(gal_eph.af1_4 / FNAV_af1_1_LSB));
DF295 = std::bitset<21>(af1);
return 0;
}
@ -4740,7 +4740,7 @@ int32_t Rtcm::set_DF296(const Galileo_Ephemeris& gal_eph)
int32_t Rtcm::set_DF297(const Galileo_Ephemeris& gal_eph)
{
int32_t crs = static_cast<int32_t>(std::round(gal_eph.C_rs_3 / FNAV_Crs_3_LSB));
auto crs = static_cast<int32_t>(std::round(gal_eph.C_rs_3 / FNAV_Crs_3_LSB));
DF297 = std::bitset<16>(crs);
return 0;
}
@ -4748,7 +4748,7 @@ int32_t Rtcm::set_DF297(const Galileo_Ephemeris& gal_eph)
int32_t Rtcm::set_DF298(const Galileo_Ephemeris& gal_eph)
{
int32_t delta_n = static_cast<int32_t>(std::round(gal_eph.delta_n_3 / FNAV_deltan_3_LSB));
auto delta_n = static_cast<int32_t>(std::round(gal_eph.delta_n_3 / FNAV_deltan_3_LSB));
DF298 = std::bitset<16>(delta_n);
return 0;
}
@ -4756,7 +4756,7 @@ int32_t Rtcm::set_DF298(const Galileo_Ephemeris& gal_eph)
int32_t Rtcm::set_DF299(const Galileo_Ephemeris& gal_eph)
{
int64_t m0 = static_cast<int64_t>(std::round(gal_eph.M0_1 / FNAV_M0_2_LSB));
auto m0 = static_cast<int64_t>(std::round(gal_eph.M0_1 / FNAV_M0_2_LSB));
DF299 = std::bitset<32>(m0);
return 0;
}
@ -4772,7 +4772,7 @@ int32_t Rtcm::set_DF300(const Galileo_Ephemeris& gal_eph)
int32_t Rtcm::set_DF301(const Galileo_Ephemeris& gal_eph)
{
uint64_t ecc = static_cast<uint64_t>(std::round(gal_eph.e_1 / FNAV_e_2_LSB));
auto ecc = static_cast<uint64_t>(std::round(gal_eph.e_1 / FNAV_e_2_LSB));
DF301 = std::bitset<32>(ecc);
return 0;
}
@ -4780,7 +4780,7 @@ int32_t Rtcm::set_DF301(const Galileo_Ephemeris& gal_eph)
int32_t Rtcm::set_DF302(const Galileo_Ephemeris& gal_eph)
{
int32_t cus = static_cast<int32_t>(std::round(gal_eph.C_us_3 / FNAV_Cus_3_LSB));
auto cus = static_cast<int32_t>(std::round(gal_eph.C_us_3 / FNAV_Cus_3_LSB));
DF302 = std::bitset<16>(cus);
return 0;
}
@ -4788,7 +4788,7 @@ int32_t Rtcm::set_DF302(const Galileo_Ephemeris& gal_eph)
int32_t Rtcm::set_DF303(const Galileo_Ephemeris& gal_eph)
{
uint64_t sqr_a = static_cast<uint64_t>(std::round(gal_eph.A_1 / FNAV_a12_2_LSB));
auto sqr_a = static_cast<uint64_t>(std::round(gal_eph.A_1 / FNAV_a12_2_LSB));
DF303 = std::bitset<32>(sqr_a);
return 0;
}
@ -4796,7 +4796,7 @@ int32_t Rtcm::set_DF303(const Galileo_Ephemeris& gal_eph)
int32_t Rtcm::set_DF304(const Galileo_Ephemeris& gal_eph)
{
uint32_t toe = static_cast<uint32_t>(std::round(gal_eph.t0e_1 / FNAV_t0e_3_LSB));
auto toe = static_cast<uint32_t>(std::round(gal_eph.t0e_1 / FNAV_t0e_3_LSB));
DF304 = std::bitset<14>(toe);
return 0;
}
@ -4804,7 +4804,7 @@ int32_t Rtcm::set_DF304(const Galileo_Ephemeris& gal_eph)
int32_t Rtcm::set_DF305(const Galileo_Ephemeris& gal_eph)
{
int32_t cic = static_cast<int32_t>(std::round(gal_eph.C_ic_4 / FNAV_Cic_4_LSB));
auto cic = static_cast<int32_t>(std::round(gal_eph.C_ic_4 / FNAV_Cic_4_LSB));
DF305 = std::bitset<16>(cic);
return 0;
}
@ -4812,7 +4812,7 @@ int32_t Rtcm::set_DF305(const Galileo_Ephemeris& gal_eph)
int32_t Rtcm::set_DF306(const Galileo_Ephemeris& gal_eph)
{
int64_t Omega0 = static_cast<int64_t>(std::round(gal_eph.OMEGA_0_2 / FNAV_omega0_2_LSB));
auto Omega0 = static_cast<int64_t>(std::round(gal_eph.OMEGA_0_2 / FNAV_omega0_2_LSB));
DF306 = std::bitset<32>(Omega0);
return 0;
}
@ -4820,7 +4820,7 @@ int32_t Rtcm::set_DF306(const Galileo_Ephemeris& gal_eph)
int32_t Rtcm::set_DF307(const Galileo_Ephemeris& gal_eph)
{
int32_t cis = static_cast<int32_t>(std::round(gal_eph.C_is_4 / FNAV_Cis_4_LSB));
auto cis = static_cast<int32_t>(std::round(gal_eph.C_is_4 / FNAV_Cis_4_LSB));
DF307 = std::bitset<16>(cis);
return 0;
}
@ -4828,7 +4828,7 @@ int32_t Rtcm::set_DF307(const Galileo_Ephemeris& gal_eph)
int32_t Rtcm::set_DF308(const Galileo_Ephemeris& gal_eph)
{
int64_t i0 = static_cast<int64_t>(std::round(gal_eph.i_0_2 / FNAV_i0_3_LSB));
auto i0 = static_cast<int64_t>(std::round(gal_eph.i_0_2 / FNAV_i0_3_LSB));
DF308 = std::bitset<32>(i0);
return 0;
}
@ -4844,7 +4844,7 @@ int32_t Rtcm::set_DF309(const Galileo_Ephemeris& gal_eph)
int32_t Rtcm::set_DF310(const Galileo_Ephemeris& gal_eph)
{
int32_t omega = static_cast<int32_t>(std::round(gal_eph.omega_2 / FNAV_omega0_2_LSB));
auto omega = static_cast<int32_t>(std::round(gal_eph.omega_2 / FNAV_omega0_2_LSB));
DF310 = std::bitset<32>(omega);
return 0;
}
@ -4852,7 +4852,7 @@ int32_t Rtcm::set_DF310(const Galileo_Ephemeris& gal_eph)
int32_t Rtcm::set_DF311(const Galileo_Ephemeris& gal_eph)
{
int64_t Omegadot = static_cast<int64_t>(std::round(gal_eph.OMEGA_dot_3 / FNAV_omegadot_2_LSB));
auto Omegadot = static_cast<int64_t>(std::round(gal_eph.OMEGA_dot_3 / FNAV_omegadot_2_LSB));
DF311 = std::bitset<24>(Omegadot);
return 0;
}
@ -4860,7 +4860,7 @@ int32_t Rtcm::set_DF311(const Galileo_Ephemeris& gal_eph)
int32_t Rtcm::set_DF312(const Galileo_Ephemeris& gal_eph)
{
int32_t bdg_E1_E5a = static_cast<int32_t>(std::round(gal_eph.BGD_E1E5a_5 / FNAV_BGD_1_LSB));
auto bdg_E1_E5a = static_cast<int32_t>(std::round(gal_eph.BGD_E1E5a_5 / FNAV_BGD_1_LSB));
DF312 = std::bitset<10>(bdg_E1_E5a);
return 0;
}
@ -4868,7 +4868,7 @@ int32_t Rtcm::set_DF312(const Galileo_Ephemeris& gal_eph)
int32_t Rtcm::set_DF313(const Galileo_Ephemeris& gal_eph)
{
uint32_t bdg_E5b_E1 = static_cast<uint32_t>(std::round(gal_eph.BGD_E1E5b_5));
auto bdg_E5b_E1 = static_cast<uint32_t>(std::round(gal_eph.BGD_E1E5b_5));
//bdg_E5b_E1 = 0; //reserved
DF313 = std::bitset<10>(bdg_E5b_E1);
return 0;

View File

@ -65,7 +65,7 @@ TEST(MatioTest, WriteAndReadDoubles)
ASSERT_FALSE(reinterpret_cast<long *>(matvar_read) == nullptr) << "Error reading variable in .mat file";
matvar_read = Mat_VarRead(matfp_read, "x");
double *x_read = reinterpret_cast<double *>(matvar_read->data);
auto *x_read = reinterpret_cast<double *>(matvar_read->data);
Mat_Close(matfp_read);
for (int i = 0; i < 10; i++)
@ -91,7 +91,7 @@ TEST(MatioTest, WriteAndReadGrComplex)
float x_real[size];
float x_imag[size];
unsigned int i = 0;
for (std::vector<gr_complex>::const_iterator it = x_v.cbegin(); it != x_v.cend(); it++)
for (auto it = x_v.cbegin(); it != x_v.cend(); it++)
{
x_real[i] = it->real();
x_imag[i] = it->imag();
@ -108,7 +108,7 @@ TEST(MatioTest, WriteAndReadGrComplex)
float y_real[size_y];
float y_imag[size_y];
i = 0;
for (std::vector<gr_complex>::const_iterator it = x2.cbegin(); it != x2.cend(); it++)
for (auto it = x2.cbegin(); it != x2.cend(); it++)
{
y_real[i] = it->real();
y_imag[i] = it->imag();
@ -139,9 +139,9 @@ TEST(MatioTest, WriteAndReadGrComplex)
ASSERT_FALSE(reinterpret_cast<long *>(matvar_read) == nullptr) << "Error reading variable in .mat file";
matvar_read = Mat_VarRead(matfp_read, "x");
mat_complex_split_t *x_read_st = reinterpret_cast<mat_complex_split_t *>(matvar_read->data);
float *x_read_real = reinterpret_cast<float *>(x_read_st->Re);
float *x_read_imag = reinterpret_cast<float *>(x_read_st->Im);
auto *x_read_st = reinterpret_cast<mat_complex_split_t *>(matvar_read->data);
auto *x_read_real = reinterpret_cast<float *>(x_read_st->Re);
auto *x_read_imag = reinterpret_cast<float *>(x_read_st->Im);
std::vector<gr_complex> x_v_read;
for (unsigned int i = 0; i < size; i++)
{

View File

@ -173,9 +173,9 @@ void GpsL1CaPcpsAcquisitionTest::plot_grid()
{
//load the measured values
std::string basename = "./tmp-acq-gps1/acquisition_G_1C";
unsigned int sat = static_cast<unsigned int>(gnss_synchro.PRN);
auto sat = static_cast<unsigned int>(gnss_synchro.PRN);
unsigned int samples_per_code = static_cast<unsigned int>(round(4000000 / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS))); // !!
auto samples_per_code = static_cast<unsigned int>(round(4000000 / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS))); // !!
acquisition_dump_reader acq_dump(basename, sat, doppler_max, doppler_step, samples_per_code, 1);
if (!acq_dump.read_binary_acq()) std::cout << "Error reading files" << std::endl;
@ -345,7 +345,7 @@ TEST_F(GpsL1CaPcpsAcquisitionTest, ValidationOfResults)
ASSERT_EQ(1, msg_rx->rx_message) << "Acquisition failure. Expected message: 1=ACQ SUCCESS.";
double delay_error_samples = std::abs(expected_delay_samples - gnss_synchro.Acq_delay_samples);
float delay_error_chips = static_cast<float>(delay_error_samples * 1023 / 4000);
auto delay_error_chips = static_cast<float>(delay_error_samples * 1023 / 4000);
double doppler_error_hz = std::abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
EXPECT_LE(doppler_error_hz, 666) << "Doppler error exceeds the expected value: 666 Hz = 2/(3*integration period)";

View File

@ -92,7 +92,7 @@ int DataTypeAdapter::run_ishort_to_cshort_block()
EXPECT_EQ(expected_implementation, ishort_to_cshort->implementation());
std::ofstream ofs(file_name_input.c_str(), std::ofstream::binary);
for (std::vector<short>::const_iterator i = input_data_shorts.cbegin(); i != input_data_shorts.cend(); ++i)
for (auto i = input_data_shorts.cbegin(); i != input_data_shorts.cend(); ++i)
{
short aux = *i;
ofs.write(reinterpret_cast<const char*>(&aux), sizeof(short));
@ -121,7 +121,7 @@ int DataTypeAdapter::run_ishort_to_complex_block()
EXPECT_EQ(expected_implementation, ishort_to_complex->implementation());
std::ofstream ofs(file_name_input.c_str(), std::ofstream::binary);
for (std::vector<short>::const_iterator i = input_data_shorts.cbegin(); i != input_data_shorts.cend(); ++i)
for (auto i = input_data_shorts.cbegin(); i != input_data_shorts.cend(); ++i)
{
short aux = *i;
ofs.write(reinterpret_cast<const char*>(&aux), sizeof(short));
@ -150,7 +150,7 @@ int DataTypeAdapter::run_ibyte_to_cshort_block()
EXPECT_EQ(expected_implementation, ibyte_to_cshort->implementation());
std::ofstream ofs(file_name_input.c_str());
for (std::vector<int8_t>::const_iterator i = input_data_bytes.cbegin(); i != input_data_bytes.cend(); ++i)
for (auto i = input_data_bytes.cbegin(); i != input_data_bytes.cend(); ++i)
{
ofs << *i;
}
@ -178,7 +178,7 @@ int DataTypeAdapter::run_ibyte_to_complex_block()
EXPECT_EQ(expected_implementation, ibyte_to_complex->implementation());
std::ofstream ofs(file_name_input.c_str());
for (std::vector<int8_t>::const_iterator i = input_data_bytes.cbegin(); i != input_data_bytes.cend(); ++i)
for (auto i = input_data_bytes.cbegin(); i != input_data_bytes.cend(); ++i)
{
ofs << *i;
}
@ -206,7 +206,7 @@ int DataTypeAdapter::run_ibyte_to_cbyte_block()
EXPECT_EQ(expected_implementation, ibyte_to_cbyte->implementation());
std::ofstream ofs(file_name_input.c_str());
for (std::vector<int8_t>::const_iterator i = input_data_bytes.cbegin(); i != input_data_bytes.cend(); ++i)
for (auto i = input_data_bytes.cbegin(); i != input_data_bytes.cend(); ++i)
{
ofs << *i;
}
@ -234,7 +234,7 @@ int DataTypeAdapter::run_byte_to_short_block()
EXPECT_EQ(expected_implementation, byte_to_short->implementation());
std::ofstream ofs(file_name_input.c_str());
for (std::vector<int8_t>::const_iterator i = input_data_bytes.cbegin(); i != input_data_bytes.cend(); ++i)
for (auto i = input_data_bytes.cbegin(); i != input_data_bytes.cend(); ++i)
{
ofs << *i;
}

View File

@ -119,7 +119,7 @@ bool acquisition_dump_reader::read_binary_acq()
std::vector<std::vector<float> >::iterator it1;
std::vector<float>::iterator it2;
float* aux = static_cast<float*>(var_->data);
auto* aux = static_cast<float*>(var_->data);
int k = 0;
float normalization_factor = std::pow(d_samples_per_code, 4) * input_power;
for (it1 = mag.begin(); it1 != mag.end(); it1++)

View File

@ -54,7 +54,7 @@ std::vector<uint8_t> packData(std::vector<int8_t> const &raw_data,
for (unsigned int i = 0; i < raw_data.size(); ++i)
{
unsigned val = static_cast<unsigned>((raw_data[i] - 1) / 2 & 0x03);
auto val = static_cast<unsigned>((raw_data[i] - 1) / 2 & 0x03);
packed_data[j] |= val << shift;

View File

@ -433,7 +433,7 @@ int main(int argc, char** argv)
{
std::cout << " " << PRN << " ";
double doppler_measurement_hz = 0;
for (std::vector<Gnss_Synchro>::iterator it = gnss_sync_vector.begin(); it != gnss_sync_vector.end(); ++it)
for (auto it = gnss_sync_vector.begin(); it != gnss_sync_vector.end(); ++it)
{
doppler_measurement_hz += (*it).Acq_doppler_hz;
}
@ -540,7 +540,7 @@ int main(int argc, char** argv)
std::cout << "SV ID Measured [Hz] Predicted [Hz]" << std::endl;
for (std::map<int, double>::iterator it = doppler_measurements_map.begin(); it != doppler_measurements_map.end(); ++it)
for (auto it = doppler_measurements_map.begin(); it != doppler_measurements_map.end(); ++it)
{
try
{
@ -576,7 +576,7 @@ int main(int argc, char** argv)
double mean_osc_err_ppm = 0;
int n_elements = f_if_estimation_Hz_map.size();
for (std::map<int, double>::iterator it = f_if_estimation_Hz_map.begin(); it != f_if_estimation_Hz_map.end(); ++it)
for (auto it = f_if_estimation_Hz_map.begin(); it != f_if_estimation_Hz_map.end(); ++it)
{
mean_f_if_Hz += (*it).second;
mean_fs_Hz += f_fs_estimation_Hz_map.find((*it).first)->second;
@ -597,7 +597,7 @@ int main(int argc, char** argv)
<< "Corrected Doppler vs. Predicted" << std::endl;
std::cout << "SV ID Corrected [Hz] Predicted [Hz]" << std::endl;
for (std::map<int, double>::iterator it = doppler_measurements_map.begin(); it != doppler_measurements_map.end(); ++it)
for (auto it = doppler_measurements_map.begin(); it != doppler_measurements_map.end(); ++it)
{
try
{