1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-13 10:50:34 +00:00

Last commit from the GSoC 2013 project "Improve the acquisition sensitivity of a GNSS receiver" by Marc Molina.

Added OpenCL Acquisition blocks and tests. 

git-svn-id: https://svn.code.sf.net/p/gnss-sdr/code/trunk@420 64b25241-fba3-4117-9849-534c7e92360d
This commit is contained in:
Luis Esteve 2013-10-01 20:32:04 +00:00
parent f4f22dffcd
commit 025a24bb20
35 changed files with 5257 additions and 257 deletions

View File

@ -71,6 +71,11 @@ if(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
endif(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
########################################################################
# Find OpenCL installation
########################################################################
find_package(OpenCL)
################################################################################
# Googletest - http://code.google.com/p/googletest/
@ -520,3 +525,4 @@ add_custom_target(uninstall
########################################################################
add_subdirectory(src)

View File

@ -0,0 +1,99 @@
#
# This file taken from FindOpenCL project @ http://gitorious.com/findopencl
#
# - Try to find OpenCL
# This module tries to find an OpenCL implementation on your system. It supports
# AMD / ATI, Apple and NVIDIA implementations, but shoudl work, too.
#
# Once done this will define
# OPENCL_FOUND - system has OpenCL
# OPENCL_INCLUDE_DIRS - the OpenCL include directory
# OPENCL_LIBRARIES - link these to use OpenCL
#
# WIN32 should work, but is untested
FIND_PACKAGE( PackageHandleStandardArgs )
SET (OPENCL_VERSION_STRING "0.1.0")
SET (OPENCL_VERSION_MAJOR 0)
SET (OPENCL_VERSION_MINOR 1)
SET (OPENCL_VERSION_PATCH 0)
IF (APPLE)
FIND_LIBRARY(OPENCL_LIBRARIES OpenCL DOC "OpenCL lib for OSX")
FIND_PATH(OPENCL_INCLUDE_DIRS OpenCL/cl.h DOC "Include for OpenCL on OSX")
FIND_PATH(_OPENCL_CPP_INCLUDE_DIRS OpenCL/cl.hpp DOC "Include for OpenCL CPP bindings on OSX")
ELSE (APPLE)
IF (WIN32)
FIND_PATH(OPENCL_INCLUDE_DIRS CL/cl.h)
FIND_PATH(_OPENCL_CPP_INCLUDE_DIRS CL/cl.hpp)
# The AMD SDK currently installs both x86 and x86_64 libraries
# This is only a hack to find out architecture
IF( ${CMAKE_SYSTEM_PROCESSOR} STREQUAL "AMD64" )
SET(OPENCL_LIB_DIR "$ENV{ATISTREAMSDKROOT}/lib/x86_64")
SET(OPENCL_LIB_DIR "$ENV{ATIINTERNALSTREAMSDKROOT}/lib/x86_64")
ELSE (${CMAKE_SYSTEM_PROCESSOR} STREQUAL "AMD64")
SET(OPENCL_LIB_DIR "$ENV{ATISTREAMSDKROOT}/lib/x86")
SET(OPENCL_LIB_DIR "$ENV{ATIINTERNALSTREAMSDKROOT}/lib/x86")
ENDIF( ${CMAKE_SYSTEM_PROCESSOR} STREQUAL "AMD64" )
# find out if the user asked for a 64-bit build, and use the corresponding
# 64 or 32 bit NVIDIA library paths to the search:
STRING(REGEX MATCH "Win64" ISWIN64 ${CMAKE_GENERATOR})
IF("${ISWIN64}" STREQUAL "Win64")
FIND_LIBRARY(OPENCL_LIBRARIES OpenCL.lib ${OPENCL_LIB_DIR} $ENV{CUDA_LIB_PATH} $ENV{CUDA_PATH}/lib/x64)
ELSE("${ISWIN64}" STREQUAL "Win64")
FIND_LIBRARY(OPENCL_LIBRARIES OpenCL.lib ${OPENCL_LIB_DIR} $ENV{CUDA_LIB_PATH} $ENV{CUDA_PATH}/lib/Win32)
ENDIF("${ISWIN64}" STREQUAL "Win64")
GET_FILENAME_COMPONENT(_OPENCL_INC_CAND ${OPENCL_LIB_DIR}/../../include ABSOLUTE)
# On Win32 search relative to the library
FIND_PATH(OPENCL_INCLUDE_DIRS CL/cl.h PATHS "${_OPENCL_INC_CAND}" $ENV{CUDA_INC_PATH} $ENV{CUDA_PATH}/include)
FIND_PATH(_OPENCL_CPP_INCLUDE_DIRS CL/cl.hpp PATHS "${_OPENCL_INC_CAND}" $ENV{CUDA_INC_PATH} $ENV{CUDA_PATH}/include)
ELSE (WIN32)
# Unix style platforms
FIND_LIBRARY(OPENCL_LIBRARIES OpenCL
ENV LD_LIBRARY_PATH
)
GET_FILENAME_COMPONENT(OPENCL_LIB_DIR ${OPENCL_LIBRARIES} PATH)
GET_FILENAME_COMPONENT(_OPENCL_INC_CAND ${OPENCL_LIB_DIR}/../../include ABSOLUTE)
# The AMD SDK currently does not place its headers
# in /usr/include, therefore also search relative
# to the library
FIND_PATH(OPENCL_INCLUDE_DIRS CL/cl.h PATHS ${_OPENCL_INC_CAND} "/usr/local/cuda/include")
FIND_PATH(_OPENCL_CPP_INCLUDE_DIRS CL/cl.hpp PATHS ${_OPENCL_INC_CAND} "/usr/local/cuda/include")
ENDIF (WIN32)
ENDIF (APPLE)
FIND_PACKAGE_HANDLE_STANDARD_ARGS( OpenCL DEFAULT_MSG OPENCL_LIBRARIES OPENCL_INCLUDE_DIRS )
IF( _OPENCL_CPP_INCLUDE_DIRS )
SET( OPENCL_HAS_CPP_BINDINGS TRUE )
LIST( APPEND OPENCL_INCLUDE_DIRS ${_OPENCL_CPP_INCLUDE_DIRS} )
# This is often the same, so clean up
LIST( REMOVE_DUPLICATES OPENCL_INCLUDE_DIRS )
ENDIF( _OPENCL_CPP_INCLUDE_DIRS )
MARK_AS_ADVANCED(
OPENCL_INCLUDE_DIRS
)
IF( OPENCL_INCLUDE_DIRS AND OPENCL_LIBRARIES )
SET( OPENCL_FOUND TRUE )
add_definitions( -DOPENCL=1 )
ELSE( OPENCL_INCLUDE_DIRS AND OPENCL_LIBRARIES )
SET( OPENCL_FOUND FALSE )
add_definitions( -DOPENCL=0 )
ENDIF( OPENCL_INCLUDE_DIRS AND OPENCL_LIBRARIES )

29
install/math_kernel.cl Normal file
View File

@ -0,0 +1,29 @@
#define MUL_RE(a,b) (a.x*b.x - a.y*b.y)
#define MUL_IM(a,b) (a.x*b.y + a.y*b.x)
#define SUM_RE(a,b) (a.x + b.x)
#define SUM_IM(a,b) (a.y + b.y)
__kernel void add_vectors(__global const float2* src1, __global const float2* src2, __global float2* dest)
{
int gid = get_global_id(0);
dest[gid] = (float2)(SUM_RE(src1[gid],src2[gid]),SUM_IM(src1[gid],src2[gid]));
}
__kernel void mult_vectors(__global const float2* src1, __global const float2* src2, __global float2* dest)
{
int gid = get_global_id(0);
dest[gid] = (float2)(MUL_RE(src1[gid],src2[gid]),MUL_IM(src1[gid],src2[gid]));
}
__kernel void conj_vector(__global const float2* src, __global float2* dest)
{
int gid = get_global_id(0);
dest[gid] = ((float2)(1,-1)) * src[gid];
}
__kernel void magnitude_squared(__global const float2* src, __global float* dest)
{
int gid = get_global_id(0);
dest[gid] = src[gid].x*src[gid].x + src[gid].y*src[gid].y;
}

View File

@ -16,17 +16,32 @@
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
#
set(ACQ_ADAPTER_SOURCES
gps_l1_ca_pcps_acquisition.cc
gps_l1_ca_pcps_multithread_acquisition.cc
gps_l1_ca_pcps_assisted_acquisition.cc
gps_l1_ca_pcps_acquisition_fine_doppler.cc
gps_l1_ca_pcps_tong_acquisition.cc
galileo_e1_pcps_ambiguous_acquisition.cc
galileo_e1_pcps_cccwsr_ambiguous_acquisition.cc
galileo_e1_pcps_tong_ambiguous_acquisition.cc
galileo_e1_pcps_8ms_ambiguous_acquisition.cc
)
if(OPENCL_FOUND)
set(ACQ_ADAPTER_SOURCES
gps_l1_ca_pcps_acquisition.cc
gps_l1_ca_pcps_multithread_acquisition.cc
gps_l1_ca_pcps_assisted_acquisition.cc
gps_l1_ca_pcps_acquisition_fine_doppler.cc
gps_l1_ca_pcps_tong_acquisition.cc
gps_l1_ca_pcps_opencl_acquisition.cc
galileo_e1_pcps_ambiguous_acquisition.cc
galileo_e1_pcps_cccwsr_ambiguous_acquisition.cc
galileo_e1_pcps_tong_ambiguous_acquisition.cc
galileo_e1_pcps_8ms_ambiguous_acquisition.cc
)
else(OPENCL_FOUND)
set(ACQ_ADAPTER_SOURCES
gps_l1_ca_pcps_acquisition.cc
gps_l1_ca_pcps_multithread_acquisition.cc
gps_l1_ca_pcps_assisted_acquisition.cc
gps_l1_ca_pcps_acquisition_fine_doppler.cc
gps_l1_ca_pcps_tong_acquisition.cc
galileo_e1_pcps_ambiguous_acquisition.cc
galileo_e1_pcps_cccwsr_ambiguous_acquisition.cc
galileo_e1_pcps_tong_ambiguous_acquisition.cc
galileo_e1_pcps_8ms_ambiguous_acquisition.cc
)
endif(OPENCL_FOUND)
include_directories(
$(CMAKE_CURRENT_SOURCE_DIR)

View File

@ -29,8 +29,8 @@
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GPS_L1_CA_PCPS_MULTITHREAD_CQUISITION_H_
#define GNSS_SDR_GPS_L1_CA_PCPS_MULTITHREAD_CQUISITION_H_
#ifndef GNSS_SDR_GPS_L1_CA_PCPS_MULTITHREAD_ACQUISITION_H_
#define GNSS_SDR_GPS_L1_CA_PCPS_MULTITHREAD_ACQUISITION_H_
#include "gnss_synchro.h"
#include "acquisition_interface.h"
@ -159,4 +159,4 @@ private:
float calculate_threshold(float pfa);
};
#endif /* GNSS_SDR_GPS_L1_CA_PCPS_MULTITHREAD_CQUISITION_H_ */
#endif /* GNSS_SDR_GPS_L1_CA_PCPS_MULTITHREAD_ACQUISITION_H_ */

View File

@ -0,0 +1,296 @@
/*!
* \file gps_l1_ca_pcps_opencl_acquisition.cc
* \brief Adapts an OpenCL PCPS acquisition block to an
* AcquisitionInterface for GPS L1 C/A signals
* \author Marc Molina, 2013. marc.molina.pena(at)gmail.com
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "gps_l1_ca_pcps_opencl_acquisition.h"
#include "gps_sdr_signal_processing.h"
#include "GPS_L1_CA.h"
#include "configuration_interface.h"
#include <iostream>
#include <glog/log_severity.h>
#include <glog/logging.h>
#include <stdexcept>
#include <boost/math/distributions/exponential.hpp>
#include <gnuradio/msg_queue.h>
using google::LogMessage;
GpsL1CaPcpsOpenClAcquisition::GpsL1CaPcpsOpenClAcquisition(
ConfigurationInterface* configuration, std::string role,
unsigned int in_streams, unsigned int out_streams,
gr::msg_queue::sptr queue) :
role_(role), in_streams_(in_streams), out_streams_(out_streams), queue_(queue)
{
configuration_ = configuration;
std::string default_item_type = "gr_complex";
std::string default_dump_filename = "./data/acquisition.dat";
DLOG(INFO) << "role " << role;
item_type_ = configuration_->property(role + ".item_type",
default_item_type);
fs_in_ = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000);
if_ = configuration_->property(role + ".ifreq", 0);
dump_ = configuration_->property(role + ".dump", false);
shift_resolution_ = configuration_->property(role + ".doppler_max", 15);
sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 1);
bit_transition_flag_ = configuration_->property("Acquisition.bit_transition_flag", false);
if (!bit_transition_flag_)
{
max_dwells_ = configuration_->property(role + ".max_dwells", 1);
}
else
{
max_dwells_ = 2;
}
dump_filename_ = configuration_->property(role + ".dump_filename",
default_dump_filename);
//--- Find number of samples per spreading code -------------------------
code_length_ = round(fs_in_
/ (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS));
vector_length_ = code_length_ * sampled_ms_;
code_= new gr_complex[vector_length_];
if (item_type_.compare("gr_complex") == 0)
{
item_size_ = sizeof(gr_complex);
acquisition_cc_ = pcps_make_opencl_acquisition_cc(sampled_ms_, max_dwells_,
shift_resolution_, if_, fs_in_, code_length_, code_length_,
bit_transition_flag_, queue_, dump_, dump_filename_);
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id()
<< ")";
DLOG(INFO) << "acquisition(" << acquisition_cc_->unique_id()
<< ")";
}
else
{
LOG_AT_LEVEL(WARNING) << item_type_
<< " unknown acquisition item type";
}
}
GpsL1CaPcpsOpenClAcquisition::~GpsL1CaPcpsOpenClAcquisition()
{
delete[] code_;
}
void GpsL1CaPcpsOpenClAcquisition::set_channel(unsigned int channel)
{
channel_ = channel;
if (item_type_.compare("gr_complex") == 0)
{
acquisition_cc_->set_channel(channel_);
}
}
void GpsL1CaPcpsOpenClAcquisition::set_threshold(float threshold)
{
float pfa = configuration_->property(role_ + boost::lexical_cast<std::string>(channel_) + ".pfa", 0.0);
if(pfa==0.0)
{
pfa = configuration_->property(role_+".pfa", 0.0);
}
if(pfa==0.0)
{
threshold_ = threshold;
}
else
{
threshold_ = calculate_threshold(pfa);
}
DLOG(INFO) <<"Channel "<<channel_<<" Threshold = " << threshold_;
if (item_type_.compare("gr_complex") == 0)
{
acquisition_cc_->set_threshold(threshold_);
}
}
void GpsL1CaPcpsOpenClAcquisition::set_doppler_max(unsigned int doppler_max)
{
doppler_max_ = doppler_max;
if (item_type_.compare("gr_complex") == 0)
{
acquisition_cc_->set_doppler_max(doppler_max_);
}
}
void GpsL1CaPcpsOpenClAcquisition::set_doppler_step(unsigned int doppler_step)
{
doppler_step_ = doppler_step;
if (item_type_.compare("gr_complex") == 0)
{
acquisition_cc_->set_doppler_step(doppler_step_);
}
}
void GpsL1CaPcpsOpenClAcquisition::set_channel_queue(
concurrent_queue<int> *channel_internal_queue)
{
channel_internal_queue_ = channel_internal_queue;
if (item_type_.compare("gr_complex") == 0)
{
acquisition_cc_->set_channel_queue(channel_internal_queue_);
}
}
void GpsL1CaPcpsOpenClAcquisition::set_gnss_synchro(Gnss_Synchro* gnss_synchro)
{
gnss_synchro_ = gnss_synchro;
if (item_type_.compare("gr_complex") == 0)
{
acquisition_cc_->set_gnss_synchro(gnss_synchro_);
}
}
signed int GpsL1CaPcpsOpenClAcquisition::mag()
{
if (item_type_.compare("gr_complex") == 0)
{
return acquisition_cc_->mag();
}
else
{
return 0;
}
}
void GpsL1CaPcpsOpenClAcquisition::init()
{
acquisition_cc_->init();
set_local_code();
}
void GpsL1CaPcpsOpenClAcquisition::set_local_code()
{
if (item_type_.compare("gr_complex") == 0)
{
std::complex<float>* code = new std::complex<float>[code_length_];
gps_l1_ca_code_gen_complex_sampled(code, gnss_synchro_->PRN, fs_in_, 0);
for (unsigned int i = 0; i < sampled_ms_; i++)
{
memcpy(&(code_[i*code_length_]), code,
sizeof(gr_complex)*code_length_);
}
acquisition_cc_->set_local_code(code_);
delete[] code;
}
}
void GpsL1CaPcpsOpenClAcquisition::reset()
{
if (item_type_.compare("gr_complex") == 0)
{
acquisition_cc_->set_active(true);
}
}
float GpsL1CaPcpsOpenClAcquisition::calculate_threshold(float pfa)
{
//Calculate the threshold
unsigned int frequency_bins = 0;
for (int doppler = (int)(-doppler_max_); doppler <= (int)doppler_max_; doppler += doppler_step_)
{
frequency_bins++;
}
DLOG(INFO) <<"Channel "<<channel_<<" Pfa = "<< pfa;
unsigned int ncells = vector_length_*frequency_bins;
double exponent = 1/(double)ncells;
double val = pow(1.0-pfa,exponent);
double lambda = double(vector_length_);
boost::math::exponential_distribution<double> mydist (lambda);
float threshold = (float)quantile(mydist,val);
return threshold;
}
void GpsL1CaPcpsOpenClAcquisition::connect(gr::top_block_sptr top_block)
{
if (item_type_.compare("gr_complex") == 0)
{
top_block->connect(stream_to_vector_, 0, acquisition_cc_, 0);
}
}
void GpsL1CaPcpsOpenClAcquisition::disconnect(gr::top_block_sptr top_block)
{
if (item_type_.compare("gr_complex") == 0)
{
top_block->disconnect(stream_to_vector_, 0, acquisition_cc_, 0);
}
}
gr::basic_block_sptr GpsL1CaPcpsOpenClAcquisition::get_left_block()
{
return stream_to_vector_;
}
gr::basic_block_sptr GpsL1CaPcpsOpenClAcquisition::get_right_block()
{
return acquisition_cc_;
}

View File

@ -0,0 +1,162 @@
/*!
* \file gps_l1_ca_pcps_opencl_acquisition.h
* \brief Adapts an OpenCL PCPS acquisition block to an
* AcquisitionInterface for GPS L1 C/A signals
* \author Marc Molina, 2013. marc.molina.pena(at)gmail.com
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GPS_L1_CA_PCPS_OPENCL_ACQUISITION_H_
#define GNSS_SDR_GPS_L1_CA_PCPS_OPENCL_ACQUISITION_H_
#include "gnss_synchro.h"
#include "acquisition_interface.h"
#include "pcps_opencl_acquisition_cc.h"
#include <gnuradio/msg_queue.h>
#include <gnuradio/blocks/stream_to_vector.h>
class ConfigurationInterface;
/*!
* \brief This class adapts an OpenCL PCPS acquisition block to an
* AcquisitionInterface for GPS L1 C/A signals
*/
class GpsL1CaPcpsOpenClAcquisition: public AcquisitionInterface
{
public:
GpsL1CaPcpsOpenClAcquisition(ConfigurationInterface* configuration,
std::string role, unsigned int in_streams,
unsigned int out_streams, boost::shared_ptr<gr::msg_queue> queue);
virtual ~GpsL1CaPcpsOpenClAcquisition();
std::string role()
{
return role_;
}
/*!
* \brief Returns "GPS_L1_CA_PCPS_OpenCl_Acquisition"
*/
std::string implementation()
{
return "GPS_L1_CA_PCPS_OpenCl_Acquisition";
}
size_t item_size()
{
return item_size_;
}
void connect(gr::top_block_sptr top_block);
void disconnect(gr::top_block_sptr top_block);
gr::basic_block_sptr get_left_block();
gr::basic_block_sptr get_right_block();
/*!
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
* to efficiently exchange synchronization data between acquisition and
* tracking blocks
*/
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
/*!
* \brief Set acquisition channel unique ID
*/
void set_channel(unsigned int channel);
/*!
* \brief Set statistics threshold of PCPS algorithm
*/
void set_threshold(float threshold);
/*!
* \brief Set maximum Doppler off grid search
*/
void set_doppler_max(unsigned int doppler_max);
/*!
* \brief Set Doppler steps for the grid search
*/
void set_doppler_step(unsigned int doppler_step);
/*!
* \brief Set tracking channel internal queue
*/
void set_channel_queue(concurrent_queue<int> *channel_internal_queue);
/*!
* \brief Initializes acquisition algorithm.
*/
void init();
/*!
* \brief Sets local code for GPS L1/CA PCPS acquisition algorithm.
*/
void set_local_code();
/*!
* \brief Returns the maximum peak of grid search
*/
signed int mag();
/*!
* \brief Restart acquisition algorithm
*/
void reset();
private:
ConfigurationInterface* configuration_;
pcps_opencl_acquisition_cc_sptr acquisition_cc_;
gr::blocks::stream_to_vector::sptr stream_to_vector_;
size_t item_size_;
std::string item_type_;
unsigned int vector_length_;
unsigned int code_length_;
bool bit_transition_flag_;
unsigned int channel_;
float threshold_;
unsigned int doppler_max_;
unsigned int doppler_step_;
unsigned int shift_resolution_;
unsigned int sampled_ms_;
unsigned int max_dwells_;
long fs_in_;
long if_;
bool dump_;
std::string dump_filename_;
std::complex<float> * code_;
Gnss_Synchro * gnss_synchro_;
std::string role_;
unsigned int in_streams_;
unsigned int out_streams_;
boost::shared_ptr<gr::msg_queue> queue_;
concurrent_queue<int> *channel_internal_queue_;
float calculate_threshold(float pfa);
};
#endif /* GNSS_SDR_GPS_L1_CA_PCPS_OPENCL_ACQUISITION_H_ */

View File

@ -16,15 +16,28 @@
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
#
set(ACQ_GR_BLOCKS_SOURCES
pcps_acquisition_cc.cc
pcps_multithread_acquisition_cc.cc
pcps_assisted_acquisition_cc.cc
pcps_acquisition_fine_doppler_cc.cc
pcps_tong_acquisition_cc.cc
pcps_cccwsr_acquisition_cc.cc
galileo_pcps_8ms_acquisition_cc.cc
)
if(OPENCL_FOUND)
set(ACQ_GR_BLOCKS_SOURCES
pcps_acquisition_cc.cc
pcps_multithread_acquisition_cc.cc
pcps_assisted_acquisition_cc.cc
pcps_acquisition_fine_doppler_cc.cc
pcps_tong_acquisition_cc.cc
pcps_cccwsr_acquisition_cc.cc
galileo_pcps_8ms_acquisition_cc.cc
pcps_opencl_acquisition_cc.cc # Needs OpenCL
)
else(OPENCL_FOUND)
set(ACQ_GR_BLOCKS_SOURCES
pcps_acquisition_cc.cc
pcps_multithread_acquisition_cc.cc
pcps_assisted_acquisition_cc.cc
pcps_acquisition_fine_doppler_cc.cc
pcps_tong_acquisition_cc.cc
pcps_cccwsr_acquisition_cc.cc
galileo_pcps_8ms_acquisition_cc.cc
)
endif(OPENCL_FOUND)
include_directories(
$(CMAKE_CURRENT_SOURCE_DIR)
@ -37,6 +50,11 @@ include_directories(
${GNURADIO_RUNTIME_INCLUDE_DIRS}
)
add_library(acq_gr_blocks ${ACQ_GR_BLOCKS_SOURCES})
target_link_libraries(acq_gr_blocks gnss_system_parameters ${GNURADIO_RUNTIME_LIBRARIES} ${GNURADIO_FFT_LIBRARIES} ${VOLK_LIBRARIES})
if(OPENCL_FOUND)
include_directories( ${OPENCL_INCLUDE_DIRS} )
set(OPT_LIBRARIES ${OPT_LIBRARIES} ${OPENCL_LIBRARIES})
endif(OPENCL_FOUND)
add_library(acq_gr_blocks ${ACQ_GR_BLOCKS_SOURCES})
target_link_libraries(acq_gr_blocks gnss_sp_libs gnss_system_parameters ${GNURADIO_RUNTIME_LIBRARIES} ${GNURADIO_FFT_LIBRARIES} ${VOLK_LIBRARIES} ${OPT_LIBRARIES})

View File

@ -53,7 +53,6 @@ galileo_pcps_8ms_acquisition_cc_sptr galileo_pcps_8ms_make_acquisition_cc(
samples_per_code, queue, dump, dump_filename));
}
galileo_pcps_8ms_acquisition_cc::galileo_pcps_8ms_acquisition_cc(
unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in,
@ -84,7 +83,7 @@ galileo_pcps_8ms_acquisition_cc::galileo_pcps_8ms_acquisition_cc(
//todo: do something if posix_memalign fails
if (posix_memalign((void**)&d_fft_code_A, 16, d_fft_size * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_fft_code_B, 16, d_fft_size * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_magnitude, 16, d_fft_size * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_magnitude, 16, d_fft_size * sizeof(float)) == 0){};
// Direct FFT
d_fft_if = new gr::fft::fft_complex(d_fft_size, true);
@ -97,18 +96,14 @@ galileo_pcps_8ms_acquisition_cc::galileo_pcps_8ms_acquisition_cc(
d_dump_filename = dump_filename;
}
galileo_pcps_8ms_acquisition_cc::~galileo_pcps_8ms_acquisition_cc()
{
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
free(d_grid_doppler_wipeoffs[doppler_index]);
}
if (d_num_doppler_bins > 0)
{
for (unsigned int i = 0; i < d_num_doppler_bins; i++)
{
free(d_grid_doppler_wipeoffs[i]);
}
delete[] d_grid_doppler_wipeoffs;
}
@ -125,10 +120,10 @@ galileo_pcps_8ms_acquisition_cc::~galileo_pcps_8ms_acquisition_cc()
}
}
void galileo_pcps_8ms_acquisition_cc::set_local_code(std::complex<float> * code)
{
memcpy(d_fft_if->get_inbuf(), code, sizeof(gr_complex)*d_fft_size);
// code A: two replicas of a primary code
memcpy(d_fft_if->get_inbuf(), code, sizeof(gr_complex)*d_fft_size);
d_fft_if->execute(); // We need the FFT of local code
@ -142,7 +137,7 @@ void galileo_pcps_8ms_acquisition_cc::set_local_code(std::complex<float> * code)
volk_32fc_conjugate_32fc_a(d_fft_code_A,d_fft_if->get_outbuf(),d_fft_size);
}
// code B: two replicas of a primary code; the second replica is inverted.
volk_32fc_s32fc_multiply_32fc_a(&(d_fft_if->get_inbuf())[d_samples_per_code],
&code[d_samples_per_code], gr_complex(-1,0),
d_samples_per_code);
@ -160,7 +155,6 @@ void galileo_pcps_8ms_acquisition_cc::set_local_code(std::complex<float> * code)
}
}
void galileo_pcps_8ms_acquisition_cc::init()
{
d_gnss_synchro->Acq_delay_samples = 0.0;
@ -169,12 +163,16 @@ void galileo_pcps_8ms_acquisition_cc::init()
d_mag = 0.0;
d_input_power = 0.0;
// Create the carrier Doppler wipeoff signals
d_num_doppler_bins = 0;//floor(2*std::abs((int)d_doppler_max)/d_doppler_step);
for (int doppler = (int)(-d_doppler_max); doppler <= (int)d_doppler_max; doppler += d_doppler_step)
// Count the number of bins
d_num_doppler_bins = 0;
for (int doppler = (int)(-d_doppler_max);
doppler <= (int)d_doppler_max;
doppler += d_doppler_step)
{
d_num_doppler_bins++;
}
// Create the carrier Doppler wipeoff signals
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
{
@ -187,7 +185,6 @@ void galileo_pcps_8ms_acquisition_cc::init()
}
}
int galileo_pcps_8ms_acquisition_cc::general_work(int noutput_items,
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
@ -264,7 +261,8 @@ int galileo_pcps_8ms_acquisition_cc::general_work(int noutput_items,
d_fft_if->execute();
// Multiply carrier wiped--off, Fourier transformed incoming signal
// with the local FFT'd code reference using SIMD operations with VOLK library
// with the local FFT'd code A reference using SIMD operations with
// VOLK library
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(),
d_fft_if->get_outbuf(), d_fft_code_A, d_fft_size);
@ -279,7 +277,8 @@ int galileo_pcps_8ms_acquisition_cc::general_work(int noutput_items,
magt_A = d_magnitude[indext_A] / (fft_normalization_factor * fft_normalization_factor);
// Multiply carrier wiped--off, Fourier transformed incoming signal
// with the local FFT'd code reference using SIMD operations with VOLK library
// with the local FFT'd code B reference using SIMD operations with
// VOLK library
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(),
d_fft_if->get_outbuf(), d_fft_code_B, d_fft_size);
@ -293,6 +292,7 @@ int galileo_pcps_8ms_acquisition_cc::general_work(int noutput_items,
// Normalize the maximum value to correct the scale factor introduced by FFTW
magt_B = d_magnitude[indext_B] / (fft_normalization_factor * fft_normalization_factor);
// Take the greater magnitude
if (magt_A >= magt_B)
{
magt = magt_A;
@ -336,12 +336,9 @@ int galileo_pcps_8ms_acquisition_cc::general_work(int noutput_items,
{
d_state = 2; // Positive acquisition
}
else
else if (d_well_count == d_max_dwells)
{
if (d_well_count == d_max_dwells)
{
d_state = 3; // Negative acquisition
}
d_state = 3; // Negative acquisition
}
consume_each(1);

View File

@ -40,6 +40,7 @@
#include <glog/log_severity.h>
#include <glog/logging.h>
#include <volk/volk.h>
#include <sys/time.h>
using google::LogMessage;
@ -57,7 +58,6 @@ pcps_acquisition_cc_sptr pcps_make_acquisition_cc(
samples_per_code, bit_transition_flag, queue, dump, dump_filename));
}
pcps_acquisition_cc::pcps_acquisition_cc(
unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in,
@ -102,18 +102,14 @@ pcps_acquisition_cc::pcps_acquisition_cc(
d_dump_filename = dump_filename;
}
pcps_acquisition_cc::~pcps_acquisition_cc()
{
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
free(d_grid_doppler_wipeoffs[doppler_index]);
}
if (d_num_doppler_bins > 0)
{
for (unsigned int i = 0; i < d_num_doppler_bins; i++)
{
free(d_grid_doppler_wipeoffs[i]);
}
delete[] d_grid_doppler_wipeoffs;
}
@ -129,7 +125,6 @@ pcps_acquisition_cc::~pcps_acquisition_cc()
}
}
void pcps_acquisition_cc::set_local_code(std::complex<float> * code)
{
memcpy(d_fft_if->get_inbuf(), code, sizeof(gr_complex)*d_fft_size);
@ -147,7 +142,6 @@ void pcps_acquisition_cc::set_local_code(std::complex<float> * code)
}
}
void pcps_acquisition_cc::init()
{
d_gnss_synchro->Acq_delay_samples = 0.0;
@ -156,12 +150,16 @@ void pcps_acquisition_cc::init()
d_mag = 0.0;
d_input_power = 0.0;
// Create the carrier Doppler wipeoff signals
d_num_doppler_bins = 0;//floor(2*std::abs((int)d_doppler_max)/d_doppler_step);
for (int doppler = (int)(-d_doppler_max); doppler <= (int)d_doppler_max; doppler += d_doppler_step)
// Count the number of bins
d_num_doppler_bins = 0;
for (int doppler = (int)(-d_doppler_max);
doppler <= (int)d_doppler_max;
doppler += d_doppler_step)
{
d_num_doppler_bins++;
}
// Create the carrier Doppler wipeoff signals
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
{
@ -174,13 +172,12 @@ void pcps_acquisition_cc::init()
}
}
int pcps_acquisition_cc::general_work(int noutput_items,
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
/*
* By J.Arribas and L.Esteve
* By J.Arribas, L.Esteve and M.Molina
* Acquisition strategy (Kay Borre book + CFAR threshold):
* 1. Compute the input signal power estimation
* 2. Doppler serial search loop
@ -239,21 +236,9 @@ int pcps_acquisition_cc::general_work(int noutput_items,
// 1- Compute the input signal power estimation
volk_32fc_magnitude_squared_32f_a(d_magnitude, in, d_fft_size);
// for(int i =0; i < 10 ;i++){
// DLOG(INFO) << "d_magnitude["<< i <<"] " << d_magnitude[i];
// }
volk_32f_accumulator_s32f_a(&d_input_power, d_magnitude, d_fft_size);
// DLOG(INFO) << "d_input_power before " << d_input_power;
d_input_power /= (float)d_fft_size;
// DLOG(INFO) << "d_fft_size " << d_fft_size;
// DLOG(INFO) << "d_input_power " << d_input_power;
// 2- Doppler frequency search loop
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
{
@ -288,7 +273,14 @@ int pcps_acquisition_cc::general_work(int noutput_items,
{
d_mag = magt;
if (d_test_statistics < (magt / d_input_power) || !d_bit_transition_flag)
// In case that d_bit_transition_flag = true, we compare the potentially
// new maximum test statistics (d_mag/d_input_power) with the value in
// d_test_statistics. When the second dwell is being processed, the value
// of d_mag/d_input_power could be lower than d_test_statistics (i.e,
// the maximum test statistics in the previous dwell is greater than
// current d_mag/d_input_power). Note that d_test_statistics is not
// restarted between consecutive dwells in multidwell operation.
if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag)
{
d_gnss_synchro->Acq_delay_samples = (double)(indext % d_samples_per_code);
d_gnss_synchro->Acq_doppler_hz = (double)doppler;
@ -321,17 +313,14 @@ int pcps_acquisition_cc::general_work(int noutput_items,
{
d_state = 2; // Positive acquisition
}
else
else if (d_well_count == d_max_dwells)
{
if (d_well_count == d_max_dwells)
{
d_state = 3; // Negative acquisition
}
d_state = 3; // Negative acquisition
}
}
else
{
if (d_well_count == d_max_dwells)
if (d_well_count == d_max_dwells) // d_max_dwells = 2
{
if (d_test_statistics > d_threshold)
{

View File

@ -60,7 +60,6 @@ pcps_cccwsr_acquisition_cc_sptr pcps_cccwsr_make_acquisition_cc(
samples_per_ms, samples_per_code, queue, dump, dump_filename));
}
pcps_cccwsr_acquisition_cc::pcps_cccwsr_acquisition_cc(
unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in,
@ -108,18 +107,14 @@ pcps_cccwsr_acquisition_cc::pcps_cccwsr_acquisition_cc(
d_dump_filename = dump_filename;
}
pcps_cccwsr_acquisition_cc::~pcps_cccwsr_acquisition_cc()
{
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
free(d_grid_doppler_wipeoffs[doppler_index]);
}
if (d_num_doppler_bins > 0)
{
for (unsigned int i = 0; i < d_num_doppler_bins; i++)
{
free(d_grid_doppler_wipeoffs[i]);
}
delete[] d_grid_doppler_wipeoffs;
}
@ -140,10 +135,10 @@ pcps_cccwsr_acquisition_cc::~pcps_cccwsr_acquisition_cc()
}
}
void pcps_cccwsr_acquisition_cc::set_local_code(std::complex<float> * code_data,
std::complex<float> * code_pilot)
{
// Data code (E1B)
memcpy(d_fft_if->get_inbuf(), code_data, sizeof(gr_complex)*d_fft_size);
d_fft_if->execute(); // We need the FFT of local code
@ -158,6 +153,7 @@ void pcps_cccwsr_acquisition_cc::set_local_code(std::complex<float> * code_data,
volk_32fc_conjugate_32fc_a(d_fft_code_data,d_fft_if->get_outbuf(),d_fft_size);
}
// Pilot code (E1C)
memcpy(d_fft_if->get_inbuf(), code_pilot, sizeof(gr_complex)*d_fft_size);
d_fft_if->execute(); // We need the FFT of local code
@ -173,7 +169,6 @@ void pcps_cccwsr_acquisition_cc::set_local_code(std::complex<float> * code_data,
}
}
void pcps_cccwsr_acquisition_cc::init()
{
d_gnss_synchro->Acq_delay_samples = 0.0;
@ -182,12 +177,16 @@ void pcps_cccwsr_acquisition_cc::init()
d_mag = 0.0;
d_input_power = 0.0;
// Create the carrier Doppler wipeoff signals
d_num_doppler_bins = 0;//floor(2*std::abs((int)d_doppler_max)/d_doppler_step);
for (int doppler = (int)(-d_doppler_max); doppler <= (int)d_doppler_max; doppler += d_doppler_step)
// Count the number of bins
d_num_doppler_bins = 0;
for (int doppler = (int)(-d_doppler_max);
doppler <= (int)d_doppler_max;
doppler += d_doppler_step)
{
d_num_doppler_bins++;
}
// Create the carrier Doppler wipeoff signals
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
{
@ -200,7 +199,6 @@ void pcps_cccwsr_acquisition_cc::init()
}
}
int pcps_cccwsr_acquisition_cc::general_work(int noutput_items,
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
@ -274,21 +272,29 @@ int pcps_cccwsr_acquisition_cc::general_work(int noutput_items,
d_fft_if->execute();
// Multiply carrier wiped--off, Fourier transformed incoming signal
// with the local FFT'd code reference {data+j*pilot} using SIMD operations with VOLK library
// with the local FFT'd data code reference (E1B) using SIMD operations
// with VOLK library
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(),
d_fft_if->get_outbuf(), d_fft_code_data, d_fft_size);
// compute the inverse FFT
d_ifft->execute();
// Copy the result of the correlation between wiped--off signal and data code in
// d_data_correlation.
memcpy(d_data_correlation, d_ifft->get_outbuf(), sizeof(gr_complex)*d_fft_size);
// Multiply carrier wiped--off, Fourier transformed incoming signal
// with the local FFT'd pilot code reference (E1C) using SIMD operations
// with VOLK library
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(),
d_fft_if->get_outbuf(), d_fft_code_pilot, d_fft_size);
// Compute the inverse FFT
d_ifft->execute();
// Copy the result of the correlation between wiped--off signal and pilot code in
// d_data_correlation.
memcpy(d_pilot_correlation, d_ifft->get_outbuf(), sizeof(gr_complex)*d_fft_size);
for (unsigned int i = 0; i < d_fft_size; i++)
@ -354,14 +360,13 @@ int pcps_cccwsr_acquisition_cc::general_work(int noutput_items,
{
d_state = 2; // Positive acquisition
}
else
else if (d_well_count == d_max_dwells)
{
if (d_well_count == d_max_dwells)
{
d_state = 3; // Negative acquisition
}
d_state = 3; // Negative acquisition
}
consume_each(1);
break;
}

View File

@ -57,7 +57,6 @@ pcps_multithread_acquisition_cc_sptr pcps_make_multithread_acquisition_cc(
samples_per_code, bit_transition_flag, queue, dump, dump_filename));
}
pcps_multithread_acquisition_cc::pcps_multithread_acquisition_cc(
unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in,
@ -72,6 +71,7 @@ pcps_multithread_acquisition_cc::pcps_multithread_acquisition_cc(
d_sample_counter = 0; // SAMPLE COUNTER
d_active = false;
d_state = 0;
d_core_working = false;
d_queue = queue;
d_freq = freq;
d_fs_in = fs_in;
@ -86,10 +86,19 @@ pcps_multithread_acquisition_cc::pcps_multithread_acquisition_cc(
d_input_power = 0.0;
d_num_doppler_bins = 0;
d_bit_transition_flag = bit_transition_flag;
d_in_dwell_count = 0;
d_in_buffer = new gr_complex*[d_max_dwells];
//todo: do something if posix_memalign fails
for (unsigned int i = 0; i < d_max_dwells; i++)
{
if (posix_memalign((void**)&d_in_buffer[i], 16,
d_fft_size * sizeof(gr_complex)) == 0){};
}
if (posix_memalign((void**)&d_fft_codes, 16, d_fft_size * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_magnitude, 16, d_fft_size * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_magnitude, 16, d_fft_size * sizeof(float)) == 0){};
// Direct FFT
d_fft_if = new gr::fft::fft_complex(d_fft_size, true);
@ -102,21 +111,23 @@ pcps_multithread_acquisition_cc::pcps_multithread_acquisition_cc(
d_dump_filename = dump_filename;
}
pcps_multithread_acquisition_cc::~pcps_multithread_acquisition_cc()
{
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
free(d_grid_doppler_wipeoffs[doppler_index]);
}
if (d_num_doppler_bins > 0)
{
for (unsigned int i = 0; i < d_num_doppler_bins; i++)
{
free(d_grid_doppler_wipeoffs[i]);
}
delete[] d_grid_doppler_wipeoffs;
}
for (unsigned int i = 0; i < d_max_dwells; i++)
{
free(d_in_buffer[i]);
}
delete[] d_in_buffer;
free(d_fft_codes);
free(d_magnitude);
@ -129,6 +140,35 @@ pcps_multithread_acquisition_cc::~pcps_multithread_acquisition_cc()
}
}
void pcps_multithread_acquisition_cc::init()
{
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_mag = 0.0;
d_input_power = 0.0;
// Count the number of bins
d_num_doppler_bins = 0;
for (int doppler = (int)(-d_doppler_max);
doppler <= (int)d_doppler_max;
doppler += d_doppler_step)
{
d_num_doppler_bins++;
}
// Create the carrier Doppler wipeoff signals
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
{
if (posix_memalign((void**)&(d_grid_doppler_wipeoffs[doppler_index]), 16,
d_fft_size * sizeof(gr_complex)) == 0){};
int doppler=-(int)d_doppler_max+d_doppler_step*doppler_index;
complex_exp_gen_conj(d_grid_doppler_wipeoffs[doppler_index],
d_freq + doppler, d_fs_in, d_fft_size);
}
}
void pcps_multithread_acquisition_cc::set_local_code(std::complex<float> * code)
{
@ -147,13 +187,16 @@ void pcps_multithread_acquisition_cc::set_local_code(std::complex<float> * code)
}
}
void pcps_multithread_acquisition_cc::perform_acquisition(const gr_complex* in, unsigned int samplestamp)
void pcps_multithread_acquisition_cc::acquisition_core()
{
// initialize acquisition algorithm
int doppler;
unsigned int indext = 0;
float magt = 0.0;
float fft_normalization_factor = (float)d_fft_size * (float)d_fft_size;
gr_complex* in = d_in_buffer[d_well_count];
unsigned long int samplestamp = d_sample_counter_buffer[d_well_count];
d_input_power = 0.0;
d_mag = 0.0;
@ -204,7 +247,14 @@ void pcps_multithread_acquisition_cc::perform_acquisition(const gr_complex* in,
{
d_mag = magt;
if (d_test_statistics < (magt / d_input_power) || !d_bit_transition_flag)
// In case that d_bit_transition_flag = true, we compare the potentially
// new maximum test statistics (d_mag/d_input_power) with the value in
// d_test_statistics. When the second dwell is being processed, the value
// of d_mag/d_input_power could be lower than d_test_statistics (i.e,
// the maximum test statistics in the previous dwell is greater than
// current d_mag/d_input_power). Note that d_test_statistics is not
// restarted between consecutive dwells in multidwell operation.
if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag)
{
d_gnss_synchro->Acq_delay_samples = (double)(indext % d_samples_per_code);
d_gnss_synchro->Acq_doppler_hz = (double)doppler;
@ -235,68 +285,31 @@ void pcps_multithread_acquisition_cc::perform_acquisition(const gr_complex* in,
{
if (d_test_statistics > d_threshold)
{
d_state = 3; // Positive acquisition
d_state = 2; // Positive acquisition
}
else
else if (d_well_count == d_max_dwells)
{
if (d_well_count == d_max_dwells)
{
d_state = 4; // Negative acquisition
}
else
{
d_state = 1; // Process next block
}
d_state = 3; // Negative acquisition
}
}
else
{
if (d_well_count == d_max_dwells)
if (d_well_count == d_max_dwells) // d_max_dwells = 2
{
if (d_test_statistics > d_threshold)
{
d_state = 3; // Positive acquisition
d_state = 2; // Positive acquisition
}
else
{
d_state = 4; // Negative acquisition
d_state = 3; // Negative acquisition
}
}
else
{
d_state = 1; // Process next block
}
}
d_core_working = false;
}
void pcps_multithread_acquisition_cc::init()
{
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_mag = 0.0;
d_input_power = 0.0;
// Create the carrier Doppler wipeoff signals
d_num_doppler_bins = 0;//floor(2*std::abs((int)d_doppler_max)/d_doppler_step);
for (int doppler = (int)(-d_doppler_max); doppler <= (int)d_doppler_max; doppler += d_doppler_step)
{
d_num_doppler_bins++;
}
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
{
if (posix_memalign((void**)&(d_grid_doppler_wipeoffs[doppler_index]), 16,
d_fft_size * sizeof(gr_complex)) == 0){};
int doppler=-(int)d_doppler_max+d_doppler_step*doppler_index;
complex_exp_gen_conj(d_grid_doppler_wipeoffs[doppler_index],
d_freq + doppler, d_fs_in, d_fft_size);
}
}
int pcps_multithread_acquisition_cc::general_work(int noutput_items,
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
@ -318,36 +331,65 @@ int pcps_multithread_acquisition_cc::general_work(int noutput_items,
d_mag = 0.0;
d_input_power = 0.0;
d_test_statistics = 0.0;
d_in_dwell_count = 0;
d_sample_counter_buffer.clear();
d_state = 1;
}
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
consume_each(ninput_items[0]);
break;
}
case 1:
{
const gr_complex *in = (const gr_complex *)input_items[0]; //Get the input samples pointer
d_sample_counter += d_fft_size; // sample counter
boost::thread(&pcps_multithread_acquisition_cc::perform_acquisition, this, in, d_sample_counter);
d_state = 2;
consume_each(1);
if (d_in_dwell_count < d_max_dwells)
{
// Fill internal buffer with d_max_dwells signal blocks. This step ensures that
// consecutive signal blocks will be processed in multi-dwell operation. This is
// essential when d_bit_transition_flag = true.
unsigned int num_dwells = std::min((int)(d_max_dwells-d_in_dwell_count),ninput_items[0]);
for (unsigned int i = 0; i < num_dwells; i++)
{
memcpy(d_in_buffer[d_in_dwell_count++], (gr_complex*)input_items[i],
sizeof(gr_complex)*d_fft_size);
d_sample_counter += d_fft_size;
d_sample_counter_buffer.push_back(d_sample_counter);
}
if (ninput_items[0] > (int)num_dwells)
{
d_sample_counter += d_fft_size * (ninput_items[0]-num_dwells);
}
}
else
{
// We already have d_max_dwells consecutive blocks in the internal buffer,
// just skip input blocks.
d_sample_counter += d_fft_size * ninput_items[0];
}
// We create a new thread to process next block if the following
// conditions are fulfilled:
// 1. There are new blocks in d_in_buffer that have not been processed yet
// (d_well_count < d_in_dwell_count).
// 2. No other acquisition_core thead is working (!d_core_working).
// 3. d_state==1. We need to check again d_state because it can be modified at any
// moment by the external thread (may have changed since checked in the switch()).
// If the external thread has already declared positive (d_state=2) or negative
// (d_state=3) acquisition, we don't have to process next block!!
if ((d_well_count < d_in_dwell_count) && !d_core_working && d_state==1)
{
d_core_working = true;
boost::thread(&pcps_multithread_acquisition_cc::acquisition_core, this);
}
break;
}
case 2:
{
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
consume_each(ninput_items[0]);
break;
}
case 3:
{
// Declare positive acquisition using a message queue
DLOG(INFO) << "positive acquisition";
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
@ -363,7 +405,6 @@ int pcps_multithread_acquisition_cc::general_work(int noutput_items,
d_state = 0;
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
consume_each(ninput_items[0]);
acquisition_message = 1;
d_channel_internal_queue->push(acquisition_message);
@ -371,7 +412,7 @@ int pcps_multithread_acquisition_cc::general_work(int noutput_items,
break;
}
case 4:
case 3:
{
// Declare negative acquisition using a message queue
DLOG(INFO) << "negative acquisition";
@ -388,7 +429,6 @@ int pcps_multithread_acquisition_cc::general_work(int noutput_items,
d_state = 0;
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
consume_each(ninput_items[0]);
acquisition_message = 2;
d_channel_internal_queue->push(acquisition_message);
@ -397,5 +437,7 @@ int pcps_multithread_acquisition_cc::general_work(int noutput_items,
}
}
consume_each(ninput_items[0]);
return 0;
}

View File

@ -134,9 +134,13 @@ private:
std::ofstream d_dump_file;
bool d_active;
int d_state;
bool d_core_working;
bool d_dump;
unsigned int d_channel;
std::string d_dump_filename;
gr_complex** d_in_buffer;
std::vector<unsigned long int> d_sample_counter_buffer;
unsigned int d_in_dwell_count;
public:
/*!
@ -237,7 +241,7 @@ public:
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items);
void perform_acquisition(const gr_complex* in, const unsigned int samplestamp);
void acquisition_core();
};
#endif /* GNSS_SDR_PCPS_MULTITHREAD_ACQUISITION_CC_H_*/

View File

@ -0,0 +1,809 @@
/*!
* \file pcps_opencl_acquisition_cc.cc
* \brief This class implements a Parallel Code Phase Search Acquisition
* using OpenCL to offload some functions to the GPU.
*
* Acquisition strategy (Kay Borre book + CFAR threshold).
* <ol>
* <li> Compute the input signal power estimation
* <li> Doppler serial search loop
* <li> Perform the FFT-based circular convolution (parallel time search)
* <li> Record the maximum peak and the associated synchronization parameters
* <li> Compute the test statistics and compare to the threshold
* <li> Declare positive or negative acquisition using a message queue
* </ol>
*
* Kay Borre book: K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* "A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach", Birkha user, 2007. pp 81-84
*
* \authors <ul>
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
* <li> Marc Molina, 2013. marc.molina.pena@gmail.com
* </ul>
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "pcps_opencl_acquisition_cc.h"
#include "gnss_signal_processing.h"
#include "control_message_factory.h"
#include "fft_base_kernels.h"
#include "fft_internal.h"
#include <gnuradio/io_signature.h>
#include <sstream>
#include <fstream>
#include <iostream>
#include <glog/log_severity.h>
#include <glog/logging.h>
#include <volk/volk.h>
#include <sys/time.h>
using google::LogMessage;
pcps_opencl_acquisition_cc_sptr pcps_make_opencl_acquisition_cc(
unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code,
bool bit_transition_flag,
gr::msg_queue::sptr queue, bool dump,
std::string dump_filename)
{
return pcps_opencl_acquisition_cc_sptr(
new pcps_opencl_acquisition_cc(sampled_ms, max_dwells, doppler_max, freq, fs_in, samples_per_ms,
samples_per_code, bit_transition_flag, queue, dump, dump_filename));
}
pcps_opencl_acquisition_cc::pcps_opencl_acquisition_cc(
unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code,
bool bit_transition_flag,
gr::msg_queue::sptr queue, bool dump,
std::string dump_filename) :
gr::block("pcps_opencl_acquisition_cc",
gr::io_signature::make(1, 1, sizeof(gr_complex) * sampled_ms * samples_per_ms),
gr::io_signature::make(0, 0, sizeof(gr_complex) * sampled_ms * samples_per_ms))
{
d_sample_counter = 0; // SAMPLE COUNTER
d_active = false;
d_state = 0;
d_core_working = false;
d_queue = queue;
d_freq = freq;
d_fs_in = fs_in;
d_samples_per_ms = samples_per_ms;
d_samples_per_code = samples_per_code;
d_sampled_ms = sampled_ms;
d_max_dwells = max_dwells;
d_well_count = 0;
d_doppler_max = doppler_max;
d_fft_size = d_sampled_ms * d_samples_per_ms;
d_fft_size_pow2 = pow(2,ceil(log2(2*d_fft_size)));
d_mag = 0;
d_input_power = 0.0;
d_num_doppler_bins = 0;
d_bit_transition_flag = bit_transition_flag;
d_in_dwell_count = 0;
d_cl_fft_batch_size = 1;
d_in_buffer = new gr_complex*[d_max_dwells];
//todo: do something if posix_memalign fails
for (unsigned int i = 0; i < d_max_dwells; i++)
{
if (posix_memalign((void**)&d_in_buffer[i], 16,
d_fft_size * sizeof(gr_complex)) == 0){};
}
if (posix_memalign((void**)&d_magnitude, 16, d_fft_size * sizeof(float)) == 0){};
if (posix_memalign((void**)&d_fft_codes, 16, d_fft_size_pow2 * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_zero_vector, 16, (d_fft_size_pow2-d_fft_size) * sizeof(gr_complex)) == 0){};
for (unsigned int i = 0; i < (d_fft_size_pow2-d_fft_size); i++)
{
d_zero_vector[i] = gr_complex(0.0,0.0);
}
d_opencl = init_opencl_environment("math_kernel.cl");
if (d_opencl != 0)
{
// Direct FFT
d_fft_if = new gr::fft::fft_complex(d_fft_size, true);
// Inverse FFT
d_ifft = new gr::fft::fft_complex(d_fft_size, false);
}
// For dumping samples into a file
d_dump = dump;
d_dump_filename = dump_filename;
}
pcps_opencl_acquisition_cc::~pcps_opencl_acquisition_cc()
{
if (d_num_doppler_bins > 0)
{
for (unsigned int i = 0; i < d_num_doppler_bins; i++)
{
free(d_grid_doppler_wipeoffs[i]);
}
delete[] d_grid_doppler_wipeoffs;
}
for (unsigned int i = 0; i < d_max_dwells; i++)
{
free(d_in_buffer[i]);
}
delete[] d_in_buffer;
free(d_fft_codes);
free(d_magnitude);
free(d_zero_vector);
if (d_opencl == 0)
{
delete d_cl_queue;
delete d_cl_buffer_in;
delete d_cl_buffer_1;
delete d_cl_buffer_2;
delete d_cl_buffer_magnitude;
delete d_cl_buffer_fft_codes;
if(d_num_doppler_bins > 0)
{
delete[] d_cl_buffer_grid_doppler_wipeoffs;
}
clFFT_DestroyPlan(d_cl_fft_plan);
}
else
{
delete d_ifft;
delete d_fft_if;
}
if (d_dump)
{
d_dump_file.close();
}
}
int pcps_opencl_acquisition_cc::init_opencl_environment(std::string kernel_filename)
{
//get all platforms (drivers)
std::vector<cl::Platform> all_platforms;
cl::Platform::get(&all_platforms);
if(all_platforms.size()==0)
{
std::cout << "No OpenCL platforms found. Check OpenCL installation!" << std::endl;
return 1;
}
d_cl_platform = all_platforms[0]; //get default platform
std::cout << "Using platform: " << d_cl_platform.getInfo<CL_PLATFORM_NAME>()
<< std::endl;
//get default GPU device of the default platform
std::vector<cl::Device> gpu_devices;
d_cl_platform.getDevices(CL_DEVICE_TYPE_GPU, &gpu_devices);
if(gpu_devices.size()==0)
{
std::cout << "No GPU devices found. Check OpenCL installation!" << std::endl;
return 2;
}
d_cl_device = gpu_devices[0];
std::vector<cl::Device> device;
device.push_back(d_cl_device);
std::cout << "Using device: " << d_cl_device.getInfo<CL_DEVICE_NAME>() << std::endl;
cl::Context context(device);
d_cl_context = context;
// build the program from the source in the file
std::ifstream kernel_file(kernel_filename, std::ifstream::in);
std::string kernel_code(std::istreambuf_iterator<char>(kernel_file),
(std::istreambuf_iterator<char>()));
kernel_file.close();
// std::cout << "Kernel code: \n" << kernel_code << std::endl;
cl::Program::Sources sources;
sources.push_back({kernel_code.c_str(),kernel_code.length()});
cl::Program program(context,sources);
if(program.build(device)!=CL_SUCCESS)
{
std::cout << " Error building: "
<< program.getBuildInfo<CL_PROGRAM_BUILD_LOG>(device[0])
<< std::endl;
return 3;
}
d_cl_program = program;
// create buffers on the device
d_cl_buffer_in = new cl::Buffer(d_cl_context,CL_MEM_READ_WRITE,sizeof(gr_complex)*d_fft_size);
d_cl_buffer_fft_codes = new cl::Buffer(d_cl_context,CL_MEM_READ_WRITE,sizeof(gr_complex)*d_fft_size_pow2);
d_cl_buffer_1 = new cl::Buffer(d_cl_context,CL_MEM_READ_WRITE,sizeof(gr_complex)*d_fft_size_pow2);
d_cl_buffer_2 = new cl::Buffer(d_cl_context,CL_MEM_READ_WRITE,sizeof(gr_complex)*d_fft_size_pow2);
d_cl_buffer_magnitude = new cl::Buffer(d_cl_context,CL_MEM_READ_WRITE,sizeof(float)*d_fft_size);
//create queue to which we will push commands for the device.
d_cl_queue = new cl::CommandQueue(d_cl_context,d_cl_device);
//create FFT plan
cl_int err;
clFFT_Dim3 dim = {d_fft_size_pow2, 1, 1};
d_cl_fft_plan = clFFT_CreatePlan(d_cl_context(), dim, clFFT_1D,
clFFT_InterleavedComplexFormat, &err);
if (err != 0)
{
delete d_cl_queue;
delete d_cl_buffer_in;
delete d_cl_buffer_1;
delete d_cl_buffer_2;
delete d_cl_buffer_magnitude;
delete d_cl_buffer_fft_codes;
std::cout << "Error creating OpenCL FFT plan." << std::endl;
return 4;
}
return 0;
}
void pcps_opencl_acquisition_cc::init()
{
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_mag = 0.0;
d_input_power = 0.0;
// Count the number of bins
d_num_doppler_bins = 0;
for (int doppler = (int)(-d_doppler_max);
doppler <= (int)d_doppler_max;
doppler += d_doppler_step)
{
d_num_doppler_bins++;
}
// Create the carrier Doppler wipeoff signals
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
if (d_opencl == 0)
{
d_cl_buffer_grid_doppler_wipeoffs = new cl::Buffer*[d_num_doppler_bins];
}
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
{
if (posix_memalign((void**)&(d_grid_doppler_wipeoffs[doppler_index]), 16,
d_fft_size * sizeof(gr_complex)) == 0){};
int doppler=-(int)d_doppler_max+d_doppler_step*doppler_index;
complex_exp_gen_conj(d_grid_doppler_wipeoffs[doppler_index],
d_freq + doppler, d_fs_in, d_fft_size);
if (d_opencl == 0)
{
d_cl_buffer_grid_doppler_wipeoffs[doppler_index] =
new cl::Buffer(d_cl_context,CL_MEM_READ_WRITE,sizeof(gr_complex)*d_fft_size);
d_cl_queue->enqueueWriteBuffer(*(d_cl_buffer_grid_doppler_wipeoffs[doppler_index]),
CL_TRUE,0,sizeof(gr_complex)*d_fft_size,
d_grid_doppler_wipeoffs[doppler_index]);
}
}
// zero padding in buffer_1 (FFT input)
if (d_opencl == 0)
{
d_cl_queue->enqueueWriteBuffer(*d_cl_buffer_1,CL_TRUE,sizeof(gr_complex)*d_fft_size,
sizeof(gr_complex)*(d_fft_size_pow2-d_fft_size),d_zero_vector);
}
}
void pcps_opencl_acquisition_cc::set_local_code(std::complex<float> * code)
{
if(d_opencl == 0)
{
d_cl_queue->enqueueWriteBuffer(*d_cl_buffer_2,CL_TRUE,0,
sizeof(gr_complex)*d_fft_size, code);
d_cl_queue->enqueueWriteBuffer(*d_cl_buffer_2,CL_TRUE,sizeof(gr_complex)*d_fft_size,
sizeof(gr_complex)*(d_fft_size_pow2 - 2*d_fft_size),
d_zero_vector);
d_cl_queue->enqueueWriteBuffer(*d_cl_buffer_2,CL_TRUE,sizeof(gr_complex)
*(d_fft_size_pow2 - d_fft_size),
sizeof(gr_complex)*d_fft_size, code);
clFFT_ExecuteInterleaved((*d_cl_queue)(), d_cl_fft_plan, d_cl_fft_batch_size,
clFFT_Forward, (*d_cl_buffer_2)(), (*d_cl_buffer_2)(),
0, NULL, NULL);
//Conjucate the local code
cl::Kernel kernel=cl::Kernel(d_cl_program,"conj_vector");
kernel.setArg(0,*d_cl_buffer_2); //input
kernel.setArg(1,*d_cl_buffer_fft_codes); //output
d_cl_queue->enqueueNDRangeKernel(kernel,cl::NullRange,cl::NDRange(d_fft_size_pow2),cl::NullRange);
}
else
{
memcpy(d_fft_if->get_inbuf(), code, sizeof(gr_complex)*d_fft_size);
d_fft_if->execute(); // We need the FFT of local code
//Conjugate the local code
if (is_unaligned())
{
volk_32fc_conjugate_32fc_u(d_fft_codes,d_fft_if->get_outbuf(),d_fft_size);
}
else
{
volk_32fc_conjugate_32fc_a(d_fft_codes,d_fft_if->get_outbuf(),d_fft_size);
}
}
}
void pcps_opencl_acquisition_cc::acquisition_core_volk()
{
// initialize acquisition algorithm
int doppler;
unsigned int indext = 0;
float magt = 0.0;
float fft_normalization_factor = (float)d_fft_size * (float)d_fft_size;
gr_complex* in = d_in_buffer[d_well_count];
unsigned long int samplestamp = d_sample_counter_buffer[d_well_count];
d_input_power = 0.0;
d_mag = 0.0;
d_well_count++;
DLOG(INFO) << "Channel: " << d_channel
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN
<< " ,sample stamp: " << d_sample_counter << ", threshold: "
<< d_threshold << ", doppler_max: " << d_doppler_max
<< ", doppler_step: " << d_doppler_step;
// 1- Compute the input signal power estimation
volk_32fc_magnitude_squared_32f_a(d_magnitude, in, d_fft_size);
volk_32f_accumulator_s32f_a(&d_input_power, d_magnitude, d_fft_size);
d_input_power /= (float)d_fft_size;
// 2- Doppler frequency search loop
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
{
// doppler search steps
doppler=-(int)d_doppler_max+d_doppler_step*doppler_index;
volk_32fc_x2_multiply_32fc_a(d_fft_if->get_inbuf(), in,
d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
// 3- Perform the FFT-based convolution (parallel time search)
// Compute the FFT of the carrier wiped--off incoming signal
d_fft_if->execute();
// Multiply carrier wiped--off, Fourier transformed incoming signal
// with the local FFT'd code reference using SIMD operations with VOLK library
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(),
d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
// compute the inverse FFT
d_ifft->execute();
// Search maximum
volk_32fc_magnitude_squared_32f_a(d_magnitude, d_ifft->get_outbuf(), d_fft_size);
volk_32f_index_max_16u_a(&indext, d_magnitude, d_fft_size);
// Normalize the maximum value to correct the scale factor introduced by FFTW
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
// 4- record the maximum peak and the associated synchronization parameters
if (d_mag < magt)
{
d_mag = magt;
// In case that d_bit_transition_flag = true, we compare the potentially
// new maximum test statistics (d_mag/d_input_power) with the value in
// d_test_statistics. When the second dwell is being processed, the value
// of d_mag/d_input_power could be lower than d_test_statistics (i.e,
// the maximum test statistics in the previous dwell is greater than
// current d_mag/d_input_power). Note that d_test_statistics is not
// restarted between consecutive dwells in multidwell operation.
if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag)
{
d_gnss_synchro->Acq_delay_samples = (double)(indext % d_samples_per_code);
d_gnss_synchro->Acq_doppler_hz = (double)doppler;
d_gnss_synchro->Acq_samplestamp_samples = samplestamp;
// 5- Compute the test statistics and compare to the threshold
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
d_test_statistics = d_mag / d_input_power;
}
}
// Record results to file if required
if (d_dump)
{
std::stringstream filename;
std::streamsize n = 2 * sizeof(float) * (d_fft_size); // complex file write
filename.str("");
filename << "../data/test_statistics_" << d_gnss_synchro->System
<<"_" << d_gnss_synchro->Signal << "_sat_"
<< d_gnss_synchro->PRN << "_doppler_" << doppler << ".dat";
d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary);
d_dump_file.write((char*)d_ifft->get_outbuf(), n); //write directly |abs(x)|^2 in this Doppler bin?
d_dump_file.close();
}
}
if (!d_bit_transition_flag)
{
if (d_test_statistics > d_threshold)
{
d_state = 2; // Positive acquisition
}
else if (d_well_count == d_max_dwells)
{
d_state = 3; // Negative acquisition
}
}
else
{
if (d_well_count == d_max_dwells) // d_max_dwells = 2
{
if (d_test_statistics > d_threshold)
{
d_state = 2; // Positive acquisition
}
else
{
d_state = 3; // Negative acquisition
}
}
}
d_core_working = false;
}
void pcps_opencl_acquisition_cc::acquisition_core_opencl()
{
// initialize acquisition algorithm
int doppler;
unsigned int indext = 0;
float magt = 0.0;
float fft_normalization_factor = ((float)d_fft_size_pow2 * (float)d_fft_size); //This works, but I am not sure why.
gr_complex* in = d_in_buffer[d_well_count];
unsigned long int samplestamp = d_sample_counter_buffer[d_well_count];
d_input_power = 0.0;
d_mag = 0.0;
// write input vector in buffer of OpenCL device
d_cl_queue->enqueueWriteBuffer(*d_cl_buffer_in,CL_TRUE,0,sizeof(gr_complex)*d_fft_size,in);
d_well_count++;
// struct timeval tv;
// long long int begin = 0;
// long long int end = 0;
// gettimeofday(&tv, NULL);
// begin = tv.tv_sec *1e6 + tv.tv_usec;
DLOG(INFO) << "Channel: " << d_channel
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN
<< " ,sample stamp: " << d_sample_counter << ", threshold: "
<< d_threshold << ", doppler_max: " << d_doppler_max
<< ", doppler_step: " << d_doppler_step;
// 1- Compute the input signal power estimation
volk_32fc_magnitude_squared_32f_a(d_magnitude, in, d_fft_size);
volk_32f_accumulator_s32f_a(&d_input_power, d_magnitude, d_fft_size);
d_input_power /= (float)d_fft_size;
cl::Kernel kernel;
// 2- Doppler frequency search loop
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
{
// doppler search steps
doppler=-(int)d_doppler_max+d_doppler_step*doppler_index;
//Multiply input signal with doppler wipe-off
kernel = cl::Kernel(d_cl_program,"mult_vectors");
kernel.setArg(0,*d_cl_buffer_in); //input 1
kernel.setArg(1,*d_cl_buffer_grid_doppler_wipeoffs[doppler_index]); //input 2
kernel.setArg(2,*d_cl_buffer_1); //output
d_cl_queue->enqueueNDRangeKernel(kernel,cl::NullRange, cl::NDRange(d_fft_size),
cl::NullRange);
// In the previous operation, we store the result in the first d_fft_size positions
// of d_cl_buffer_1. The rest d_fft_size_pow2-d_fft_size already have zeros
// (zero-padding is made in init() for optimization purposes).
clFFT_ExecuteInterleaved((*d_cl_queue)(), d_cl_fft_plan, d_cl_fft_batch_size,
clFFT_Forward,(*d_cl_buffer_1)(), (*d_cl_buffer_2)(),
0, NULL, NULL);
// Multiply carrier wiped--off, Fourier transformed incoming signal
// with the local FFT'd code reference
kernel = cl::Kernel(d_cl_program,"mult_vectors");
kernel.setArg(0,*d_cl_buffer_2); //input 1
kernel.setArg(1,*d_cl_buffer_fft_codes); //input 2
kernel.setArg(2,*d_cl_buffer_2); //output
d_cl_queue->enqueueNDRangeKernel(kernel, cl::NullRange, cl::NDRange(d_fft_size_pow2),
cl::NullRange);
// compute the inverse FFT
clFFT_ExecuteInterleaved((*d_cl_queue)(), d_cl_fft_plan, d_cl_fft_batch_size,
clFFT_Inverse, (*d_cl_buffer_2)(), (*d_cl_buffer_2)(),
0, NULL, NULL);
// Compute magnitude
kernel = cl::Kernel(d_cl_program,"magnitude_squared");
kernel.setArg(0,*d_cl_buffer_2); //input 1
kernel.setArg(1,*d_cl_buffer_magnitude); //output
d_cl_queue->enqueueNDRangeKernel(kernel, cl::NullRange, cl::NDRange(d_fft_size),
cl::NullRange);
// This is the only function that blocks this thread until all previously enqueued
// OpenCL commands are completed.
d_cl_queue->enqueueReadBuffer(*d_cl_buffer_magnitude, CL_TRUE, 0,
sizeof(float)*d_fft_size,d_magnitude);
// Search maximum
// @TODO: find an efficient way to search the maximum with OpenCL in the GPU.
volk_32f_index_max_16u_a(&indext, d_magnitude, d_fft_size);
// Normalize the maximum value to correct the scale factor introduced by FFTW
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
// 4- record the maximum peak and the associated synchronization parameters
if (d_mag < magt)
{
d_mag = magt;
// In case that d_bit_transition_flag = true, we compare the potentially
// new maximum test statistics (d_mag/d_input_power) with the value in
// d_test_statistics. When the second dwell is being processed, the value
// of d_mag/d_input_power could be lower than d_test_statistics (i.e,
// the maximum test statistics in the previous dwell is greater than
// current d_mag/d_input_power). Note that d_test_statistics is not
// restarted between consecutive dwells in multidwell operation.
if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag)
{
d_gnss_synchro->Acq_delay_samples = (double)(indext % d_samples_per_code);
d_gnss_synchro->Acq_doppler_hz = (double)doppler;
d_gnss_synchro->Acq_samplestamp_samples = samplestamp;
// 5- Compute the test statistics and compare to the threshold
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
d_test_statistics = d_mag / d_input_power;
}
}
// Record results to file if required
if (d_dump)
{
std::stringstream filename;
std::streamsize n = 2 * sizeof(float) * (d_fft_size); // complex file write
filename.str("");
filename << "../data/test_statistics_" << d_gnss_synchro->System
<<"_" << d_gnss_synchro->Signal << "_sat_"
<< d_gnss_synchro->PRN << "_doppler_" << doppler << ".dat";
d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary);
d_dump_file.write((char*)d_ifft->get_outbuf(), n); //write directly |abs(x)|^2 in this Doppler bin?
d_dump_file.close();
}
}
// gettimeofday(&tv, NULL);
// end = tv.tv_sec *1e6 + tv.tv_usec;
// std::cout << "Acq time = " << (end-begin) << " us" << std::endl;
if (!d_bit_transition_flag)
{
if (d_test_statistics > d_threshold)
{
d_state = 2; // Positive acquisition
}
else if (d_well_count == d_max_dwells)
{
d_state = 3; // Negative acquisition
}
}
else
{
if (d_well_count == d_max_dwells) // d_max_dwells = 2
{
if (d_test_statistics > d_threshold)
{
d_state = 2; // Positive acquisition
}
else
{
d_state = 3; // Negative acquisition
}
}
}
d_core_working = false;
}
int pcps_opencl_acquisition_cc::general_work(int noutput_items,
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
int acquisition_message = -1; //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
switch (d_state)
{
case 0:
{
if (d_active)
{
//restart acquisition variables
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_well_count = 0;
d_mag = 0.0;
d_input_power = 0.0;
d_test_statistics = 0.0;
d_in_dwell_count = 0;
d_sample_counter_buffer.clear();
d_state = 1;
}
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
break;
}
case 1:
{
if (d_in_dwell_count < d_max_dwells)
{
// Fill internal buffer with d_max_dwells signal blocks. This step ensures that
// consecutive signal blocks will be processed in multi-dwell operation. This is
// essential when d_bit_transition_flag = true.
unsigned int num_dwells = std::min((int)(d_max_dwells-d_in_dwell_count),ninput_items[0]);
for (unsigned int i = 0; i < num_dwells; i++)
{
memcpy(d_in_buffer[d_in_dwell_count++], (gr_complex*)input_items[i],
sizeof(gr_complex)*d_fft_size);
d_sample_counter += d_fft_size;
d_sample_counter_buffer.push_back(d_sample_counter);
}
if (ninput_items[0] > (int)num_dwells)
{
d_sample_counter += d_fft_size * (ninput_items[0]-num_dwells);
}
}
else
{
// We already have d_max_dwells consecutive blocks in the internal buffer,
// just skip input blocks.
d_sample_counter += d_fft_size * ninput_items[0];
}
// We create a new thread to process next block if the following
// conditions are fulfilled:
// 1. There are new blocks in d_in_buffer that have not been processed yet
// (d_well_count < d_in_dwell_count).
// 2. No other acquisition_core thead is working (!d_core_working).
// 3. d_state==1. We need to check again d_state because it can be modified at any
// moment by the external thread (may have changed since checked in the switch()).
// If the external thread has already declared positive (d_state=2) or negative
// (d_state=3) acquisition, we don't have to process next block!!
if ((d_well_count < d_in_dwell_count) && !d_core_working && d_state==1)
{
d_core_working = true;
if (d_opencl == 0)
{ // Use OpenCL implementation
boost::thread(&pcps_opencl_acquisition_cc::acquisition_core_opencl, this);
}
else
{ // Use Volk implementation
boost::thread(&pcps_opencl_acquisition_cc::acquisition_core_volk, this);
}
}
break;
}
case 2:
{
// Declare positive acquisition using a message queue
DLOG(INFO) << "positive acquisition";
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
DLOG(INFO) << "sample_stamp " << d_sample_counter;
DLOG(INFO) << "test statistics value " << d_test_statistics;
DLOG(INFO) << "test statistics threshold " << d_threshold;
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
DLOG(INFO) << "magnitude " << d_mag;
DLOG(INFO) << "input signal power " << d_input_power;
d_active = false;
d_state = 0;
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
acquisition_message = 1;
d_channel_internal_queue->push(acquisition_message);
break;
}
case 3:
{
// Declare negative acquisition using a message queue
DLOG(INFO) << "negative acquisition";
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
DLOG(INFO) << "sample_stamp " << d_sample_counter;
DLOG(INFO) << "test statistics value " << d_test_statistics;
DLOG(INFO) << "test statistics threshold " << d_threshold;
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
DLOG(INFO) << "magnitude " << d_mag;
DLOG(INFO) << "input signal power " << d_input_power;
d_active = false;
d_state = 0;
d_sample_counter += d_fft_size * ninput_items[0]; // sample counter
acquisition_message = 2;
d_channel_internal_queue->push(acquisition_message);
break;
}
}
consume_each(ninput_items[0]);
return 0;
}

View File

@ -0,0 +1,277 @@
/*!
* \file pcps_opencl_acquisition_cc.h
* \brief This class implements a Parallel Code Phase Search Acquisition
* using OpenCL to offload some functions to the GPU.
*
* Acquisition strategy (Kay Borre book + CFAR threshold).
* <ol>
* <li> Compute the input signal power estimation
* <li> Doppler serial search loop
* <li> Perform the FFT-based circular convolution (parallel time search)
* <li> Record the maximum peak and the associated synchronization parameters
* <li> Compute the test statistics and compare to the threshold
* <li> Declare positive or negative acquisition using a message queue
* </ol>
*
* Kay Borre book: K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* "A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach", Birkha user, 2007. pp 81-84
*
* \authors <ul>
* <li> Javier Arribas, 2011. jarribas(at)cttc.es
* <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com
* <li> Marc Molina, 2013. marc.molina.pena@gmail.com
* </ul>
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_PCPS_OPENCL_ACQUISITION_CC_H_
#define GNSS_SDR_PCPS_OPENCL_ACQUISITION_CC_H_
#include <fstream>
#include <gnuradio/block.h>
#include <gnuradio/msg_queue.h>
#include <gnuradio/gr_complex.h>
#include <gnuradio/fft/fft.h>
#include <queue>
#include <boost/thread/mutex.hpp>
#include <boost/thread/thread.hpp>
#include "concurrent_queue.h"
#include "fft_internal.h"
#include "gnss_synchro.h"
#ifdef APPLE
#include <OpenCL/cl.hpp>
#else
#include <CL/cl.hpp>
#endif
class pcps_opencl_acquisition_cc;
typedef boost::shared_ptr<pcps_opencl_acquisition_cc> pcps_opencl_acquisition_cc_sptr;
pcps_opencl_acquisition_cc_sptr
pcps_make_opencl_acquisition_cc(unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code,
bool bit_transition_flag,
gr::msg_queue::sptr queue, bool dump,
std::string dump_filename);
/*!
* \brief This class implements a Parallel Code Phase Search Acquisition.
*
* Check \ref Navitec2012 "An Open Source Galileo E1 Software Receiver",
* Algorithm 1, for a pseudocode description of this implementation.
*/
class pcps_opencl_acquisition_cc: public gr::block
{
private:
friend pcps_opencl_acquisition_cc_sptr
pcps_make_opencl_acquisition_cc(unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code,
bool bit_transition_flag,
gr::msg_queue::sptr queue, bool dump,
std::string dump_filename);
pcps_opencl_acquisition_cc(unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code,
bool bit_transition_flag,
gr::msg_queue::sptr queue, bool dump,
std::string dump_filename);
void calculate_magnitudes(gr_complex* fft_begin, int doppler_shift,
int doppler_offset);
int init_opencl_environment(std::string kernel_filename);
long d_fs_in;
long d_freq;
int d_samples_per_ms;
int d_samples_per_code;
unsigned int d_doppler_resolution;
float d_threshold;
std::string d_satellite_str;
unsigned int d_doppler_max;
unsigned int d_doppler_step;
unsigned int d_sampled_ms;
unsigned int d_max_dwells;
unsigned int d_well_count;
unsigned int d_fft_size;
unsigned int d_fft_size_pow2;
int* d_max_doppler_indexs;
unsigned long int d_sample_counter;
gr_complex** d_grid_doppler_wipeoffs;
unsigned int d_num_doppler_bins;
gr_complex* d_fft_codes;
gr::fft::fft_complex* d_fft_if;
gr::fft::fft_complex* d_ifft;
Gnss_Synchro *d_gnss_synchro;
unsigned int d_code_phase;
float d_doppler_freq;
float d_mag;
float* d_magnitude;
float d_input_power;
float d_test_statistics;
bool d_bit_transition_flag;
gr::msg_queue::sptr d_queue;
concurrent_queue<int> *d_channel_internal_queue;
std::ofstream d_dump_file;
bool d_active;
int d_state;
bool d_core_working;
bool d_dump;
unsigned int d_channel;
std::string d_dump_filename;
gr_complex* d_zero_vector;
gr_complex** d_in_buffer;
std::vector<unsigned long int> d_sample_counter_buffer;
unsigned int d_in_dwell_count;
cl::Platform d_cl_platform;
cl::Device d_cl_device;
cl::Context d_cl_context;
cl::Program d_cl_program;
cl::Buffer* d_cl_buffer_in;
cl::Buffer* d_cl_buffer_fft_codes;
cl::Buffer* d_cl_buffer_1;
cl::Buffer* d_cl_buffer_2;
cl::Buffer* d_cl_buffer_magnitude;
cl::Buffer** d_cl_buffer_grid_doppler_wipeoffs;
cl::CommandQueue* d_cl_queue;
clFFT_Plan d_cl_fft_plan;
cl_int d_cl_fft_batch_size;
int d_opencl;
public:
/*!
* \brief Default destructor.
*/
~pcps_opencl_acquisition_cc();
/*!
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
* to exchange synchronization data between acquisition and tracking blocks.
* \param p_gnss_synchro Satellite information shared by the processing blocks.
*/
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
{
d_gnss_synchro = p_gnss_synchro;
}
/*!
* \brief Returns the maximum peak of grid search.
*/
unsigned int mag()
{
return d_mag;
}
/*!
* \brief Initializes acquisition algorithm.
*/
void init();
/*!
* \brief Sets local code for PCPS acquisition algorithm.
* \param code - Pointer to the PRN code.
*/
void set_local_code(std::complex<float> * code);
/*!
* \brief Starts acquisition algorithm, turning from standby mode to
* active mode
* \param active - bool that activates/deactivates the block.
*/
void set_active(bool active)
{
d_active = active;
}
/*!
* \brief Set acquisition channel unique ID
* \param channel - receiver channel.
*/
void set_channel(unsigned int channel)
{
d_channel = channel;
}
/*!
* \brief Set statistics threshold of PCPS algorithm.
* \param threshold - Threshold for signal detection (check \ref Navitec2012,
* Algorithm 1, for a definition of this threshold).
*/
void set_threshold(float threshold)
{
d_threshold = threshold;
}
/*!
* \brief Set maximum Doppler grid search
* \param doppler_max - Maximum Doppler shift considered in the grid search [Hz].
*/
void set_doppler_max(unsigned int doppler_max)
{
d_doppler_max = doppler_max;
}
/*!
* \brief Set Doppler steps for the grid search
* \param doppler_step - Frequency bin of the search grid [Hz].
*/
void set_doppler_step(unsigned int doppler_step)
{
d_doppler_step = doppler_step;
}
/*!
* \brief Set tracking channel internal queue.
* \param channel_internal_queue - Channel's internal blocks information queue.
*/
void set_channel_queue(concurrent_queue<int> *channel_internal_queue)
{
d_channel_internal_queue = channel_internal_queue;
}
/*!
* \brief Parallel Code Phase Search Acquisition signal processing.
*/
int general_work(int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items);
void acquisition_core_volk();
void acquisition_core_opencl();
};
#endif /* GNSS_SDR_pcps_opencl_acquisition_cc_H_*/

View File

@ -71,7 +71,6 @@ pcps_tong_acquisition_cc_sptr pcps_tong_make_acquisition_cc(
tong_init_val, tong_max_val, queue, dump, dump_filename));
}
pcps_tong_acquisition_cc::pcps_tong_acquisition_cc(
unsigned int sampled_ms, unsigned int doppler_max,
long freq, long fs_in, int samples_per_ms,
@ -103,7 +102,7 @@ pcps_tong_acquisition_cc::pcps_tong_acquisition_cc(
//todo: do something if posix_memalign fails
if (posix_memalign((void**)&d_fft_codes, 16, d_fft_size * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_magnitude, 16, d_fft_size * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_magnitude, 16, d_fft_size * sizeof(float)) == 0){};
// Direct FFT
d_fft_if = new gr::fft::fft_complex(d_fft_size, true);
@ -116,19 +115,15 @@ pcps_tong_acquisition_cc::pcps_tong_acquisition_cc(
d_dump_filename = dump_filename;
}
pcps_tong_acquisition_cc::~pcps_tong_acquisition_cc()
{
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
free(d_grid_doppler_wipeoffs[doppler_index]);
free(d_grid_data[doppler_index]);
}
if (d_num_doppler_bins > 0)
{
for (unsigned int i = 0; i < d_num_doppler_bins; i++)
{
free(d_grid_doppler_wipeoffs[i]);
free(d_grid_data[i]);
}
delete[] d_grid_doppler_wipeoffs;
delete[] d_grid_data;
}
@ -145,7 +140,6 @@ pcps_tong_acquisition_cc::~pcps_tong_acquisition_cc()
}
}
void pcps_tong_acquisition_cc::set_local_code(std::complex<float> * code)
{
memcpy(d_fft_if->get_inbuf(), code, sizeof(gr_complex)*d_fft_size);
@ -163,7 +157,6 @@ void pcps_tong_acquisition_cc::set_local_code(std::complex<float> * code)
}
}
void pcps_tong_acquisition_cc::init()
{
d_gnss_synchro->Acq_delay_samples = 0.0;
@ -172,12 +165,16 @@ void pcps_tong_acquisition_cc::init()
d_mag = 0.0;
d_input_power = 0.0;
// Create the carrier Doppler wipeoff signals
d_num_doppler_bins = 0;//floor(2*std::abs((int)d_doppler_max)/d_doppler_step);
for (int doppler = (int)(-d_doppler_max); doppler <= (int)d_doppler_max; doppler += d_doppler_step)
// Count the number of bins
d_num_doppler_bins = 0;
for (int doppler = (int)(-d_doppler_max);
doppler <= (int)d_doppler_max;
doppler += d_doppler_step)
{
d_num_doppler_bins++;
}
// Create the carrier Doppler wipeoff signals and allocate data grid.
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
d_grid_data = new float*[d_num_doppler_bins];
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
@ -200,7 +197,6 @@ void pcps_tong_acquisition_cc::init()
}
}
int pcps_tong_acquisition_cc::general_work(int noutput_items,
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
@ -289,18 +285,20 @@ int pcps_tong_acquisition_cc::general_work(int noutput_items,
// compute the inverse FFT
d_ifft->execute();
// Search maximum
// Compute magnitude
volk_32fc_magnitude_squared_32f_a(d_magnitude, d_ifft->get_outbuf(), d_fft_size);
// Compute vector of test statistics corresponding to current doppler index.
volk_32f_s32f_multiply_32f_a(d_magnitude, d_magnitude,
1/(fft_normalization_factor*fft_normalization_factor*d_input_power),
d_fft_size);
// Accumulate test statistics in d_grid_data.
volk_32f_x2_add_32f_a(d_grid_data[doppler_index], d_magnitude, d_grid_data[doppler_index], d_fft_size);
// Search maximum
volk_32f_index_max_16u_a(&indext, d_grid_data[doppler_index], d_fft_size);
// Normalize the maximum value to correct the scale factor introduced by FFTW
magt = d_grid_data[doppler_index][indext];
// 4- record the maximum peak and the associated synchronization parameters
@ -328,7 +326,6 @@ int pcps_tong_acquisition_cc::general_work(int noutput_items,
}
// 5- Compute the test statistics and compare to the threshold
//d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;
d_test_statistics = d_mag;
if (d_test_statistics > d_threshold*d_well_count)

View File

@ -25,16 +25,31 @@
# pass_through.cc
#)
#else(CMAKE_CXX_COMPILER_ID MATCHES "Clang")
set(GNSS_SPLIBS_SOURCES
galileo_e1_signal_processing.cc
gnss_sdr_valve.cc
gnss_signal_processing.cc
gps_sdr_signal_processing.cc
nco_lib.cc
pass_through.cc
)
#endif(CMAKE_CXX_COMPILER_ID MATCHES "Clang")
if(OPENCL_FOUND)
set(GNSS_SPLIBS_SOURCES
galileo_e1_signal_processing.cc
gnss_sdr_valve.cc
gnss_signal_processing.cc
gps_sdr_signal_processing.cc
nco_lib.cc
pass_through.cc
fft_execute.cc # Needs OpenCL
fft_setup.cc # Needs OpenCL
fft_kernelstring.cc # Needs OpenCL
)
else(OPENCL_FOUND)
set(GNSS_SPLIBS_SOURCES
galileo_e1_signal_processing.cc
gnss_sdr_valve.cc
gnss_signal_processing.cc
gps_sdr_signal_processing.cc
nco_lib.cc
pass_through.cc
)
endif(OPENCL_FOUND)
include_directories(
$(CMAKE_CURRENT_SOURCE_DIR)
${CMAKE_SOURCE_DIR}/src/core/system_parameters
@ -45,5 +60,10 @@ include_directories(
${GFlags_INCLUDE_DIRS}
)
if(OPENCL_FOUND)
include_directories( ${OPENCL_INCLUDE_DIRS} )
set(OPT_LIBRARIES ${OPT_LIBRARIES} ${OPENCL_LIBRARIES})
endif(OPENCL_FOUND)
add_library(gnss_sp_libs ${GNSS_SPLIBS_SOURCES})
target_link_libraries(gnss_sp_libs ${GNURADIO_RUNTIME_LIBRARIES} ${GNURADIO_BLOCKS_LIBRARIES} ${GNURADIO_FFT_LIBRARIES} ${GNURADIO_FILTER_LIBRARIES} gnss_rx)
target_link_libraries(gnss_sp_libs ${GNURADIO_RUNTIME_LIBRARIES} ${GNURADIO_BLOCKS_LIBRARIES} ${GNURADIO_FFT_LIBRARIES} ${GNURADIO_FILTER_LIBRARIES} ${OPT_LIBRARIES} gnss_rx)

134
src/algorithms/libs/clFFT.h Normal file
View File

@ -0,0 +1,134 @@
//
// File: clFFT.h
//
// Version: <1.0>
//
// Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Inc. ("Apple")
// in consideration of your agreement to the following terms, and your use,
// installation, modification or redistribution of this Apple software
// constitutes acceptance of these terms. If you do not agree with these
// terms, please do not use, install, modify or redistribute this Apple
// software.
//
// In consideration of your agreement to abide by the following terms, and
// subject to these terms, Apple grants you a personal, non - exclusive
// license, under Apple's copyrights in this original Apple software ( the
// "Apple Software" ), to use, reproduce, modify and redistribute the Apple
// Software, with or without modifications, in source and / or binary forms;
// provided that if you redistribute the Apple Software in its entirety and
// without modifications, you must retain this notice and the following text
// and disclaimers in all such redistributions of the Apple Software. Neither
// the name, trademarks, service marks or logos of Apple Inc. may be used to
// endorse or promote products derived from the Apple Software without specific
// prior written permission from Apple. Except as expressly stated in this
// notice, no other rights or licenses, express or implied, are granted by
// Apple herein, including but not limited to any patent rights that may be
// infringed by your derivative works or by other works in which the Apple
// Software may be incorporated.
//
// The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO
// WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED
// WARRANTIES OF NON - INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION
// ALONE OR IN COMBINATION WITH YOUR PRODUCTS.
//
// IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR
// CONSEQUENTIAL DAMAGES ( INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION ) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION
// AND / OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER
// UNDER THEORY OF CONTRACT, TORT ( INCLUDING NEGLIGENCE ), STRICT LIABILITY OR
// OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright ( C ) 2008 Apple Inc. All Rights Reserved.
//
////////////////////////////////////////////////////////////////////////////////////////////////////
#ifndef __CLFFT_H
#define __CLFFT_H
#ifdef __cplusplus
extern "C" {
#endif
#include <stdio.h>
#ifdef APPLE
#include <OpenCL/cl.h>
#else
#include <CL/cl.h>
#endif
// XForm type
typedef enum
{
clFFT_Forward = -1,
clFFT_Inverse = 1
}clFFT_Direction;
// XForm dimension
typedef enum
{
clFFT_1D = 0,
clFFT_2D = 1,
clFFT_3D = 3
}clFFT_Dimension;
// XForm Data type
typedef enum
{
clFFT_SplitComplexFormat = 0,
clFFT_InterleavedComplexFormat = 1
}clFFT_DataFormat;
typedef struct
{
unsigned int x;
unsigned int y;
unsigned int z;
}clFFT_Dim3;
typedef struct
{
float *real;
float *imag;
} clFFT_SplitComplex;
typedef struct
{
float real;
float imag;
}clFFT_Complex;
typedef void* clFFT_Plan;
clFFT_Plan clFFT_CreatePlan( cl_context context, clFFT_Dim3 n, clFFT_Dimension dim, clFFT_DataFormat dataFormat, cl_int *error_code );
void clFFT_DestroyPlan( clFFT_Plan plan );
cl_int clFFT_ExecuteInterleaved( cl_command_queue queue, clFFT_Plan plan, cl_int batchSize, clFFT_Direction dir,
cl_mem data_in, cl_mem data_out,
cl_int num_events, cl_event *event_list, cl_event *event );
cl_int clFFT_ExecutePlannar( cl_command_queue queue, clFFT_Plan plan, cl_int batchSize, clFFT_Direction dir,
cl_mem data_in_real, cl_mem data_in_imag, cl_mem data_out_real, cl_mem data_out_imag,
cl_int num_events, cl_event *event_list, cl_event *event );
cl_int clFFT_1DTwistInterleaved(clFFT_Plan Plan, cl_command_queue queue, cl_mem array,
size_t numRows, size_t numCols, size_t startRow, size_t rowsToProcess, clFFT_Direction dir);
cl_int clFFT_1DTwistPlannar(clFFT_Plan Plan, cl_command_queue queue, cl_mem array_real, cl_mem array_imag,
size_t numRows, size_t numCols, size_t startRow, size_t rowsToProcess, clFFT_Direction dir);
void clFFT_DumpPlan( clFFT_Plan plan, FILE *file);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,277 @@
//
// File: fft_base_kernels.h
//
// Version: <1.0>
//
// Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Inc. ("Apple")
// in consideration of your agreement to the following terms, and your use,
// installation, modification or redistribution of this Apple software
// constitutes acceptance of these terms. If you do not agree with these
// terms, please do not use, install, modify or redistribute this Apple
// software.
//
// In consideration of your agreement to abide by the following terms, and
// subject to these terms, Apple grants you a personal, non - exclusive
// license, under Apple's copyrights in this original Apple software ( the
// "Apple Software" ), to use, reproduce, modify and redistribute the Apple
// Software, with or without modifications, in source and / or binary forms;
// provided that if you redistribute the Apple Software in its entirety and
// without modifications, you must retain this notice and the following text
// and disclaimers in all such redistributions of the Apple Software. Neither
// the name, trademarks, service marks or logos of Apple Inc. may be used to
// endorse or promote products derived from the Apple Software without specific
// prior written permission from Apple. Except as expressly stated in this
// notice, no other rights or licenses, express or implied, are granted by
// Apple herein, including but not limited to any patent rights that may be
// infringed by your derivative works or by other works in which the Apple
// Software may be incorporated.
//
// The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO
// WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED
// WARRANTIES OF NON - INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION
// ALONE OR IN COMBINATION WITH YOUR PRODUCTS.
//
// IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR
// CONSEQUENTIAL DAMAGES ( INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION ) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION
// AND / OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER
// UNDER THEORY OF CONTRACT, TORT ( INCLUDING NEGLIGENCE ), STRICT LIABILITY OR
// OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright ( C ) 2008 Apple Inc. All Rights Reserved.
//
////////////////////////////////////////////////////////////////////////////////////////////////////
#ifndef __CL_FFT_BASE_KERNELS_
#define __CL_FFT_BASE_KERNELS_
#include <string>
using namespace std;
static string baseKernels = string(
"#ifndef M_PI\n"
"#define M_PI 0x1.921fb54442d18p+1\n"
"#endif\n"
"#define complexMul(a,b) ((float2)(mad(-(a).y, (b).y, (a).x * (b).x), mad((a).y, (b).x, (a).x * (b).y)))\n"
"#define conj(a) ((float2)((a).x, -(a).y))\n"
"#define conjTransp(a) ((float2)(-(a).y, (a).x))\n"
"\n"
"#define fftKernel2(a,dir) \\\n"
"{ \\\n"
" float2 c = (a)[0]; \\\n"
" (a)[0] = c + (a)[1]; \\\n"
" (a)[1] = c - (a)[1]; \\\n"
"}\n"
"\n"
"#define fftKernel2S(d1,d2,dir) \\\n"
"{ \\\n"
" float2 c = (d1); \\\n"
" (d1) = c + (d2); \\\n"
" (d2) = c - (d2); \\\n"
"}\n"
"\n"
"#define fftKernel4(a,dir) \\\n"
"{ \\\n"
" fftKernel2S((a)[0], (a)[2], dir); \\\n"
" fftKernel2S((a)[1], (a)[3], dir); \\\n"
" fftKernel2S((a)[0], (a)[1], dir); \\\n"
" (a)[3] = (float2)(dir)*(conjTransp((a)[3])); \\\n"
" fftKernel2S((a)[2], (a)[3], dir); \\\n"
" float2 c = (a)[1]; \\\n"
" (a)[1] = (a)[2]; \\\n"
" (a)[2] = c; \\\n"
"}\n"
"\n"
"#define fftKernel4s(a0,a1,a2,a3,dir) \\\n"
"{ \\\n"
" fftKernel2S((a0), (a2), dir); \\\n"
" fftKernel2S((a1), (a3), dir); \\\n"
" fftKernel2S((a0), (a1), dir); \\\n"
" (a3) = (float2)(dir)*(conjTransp((a3))); \\\n"
" fftKernel2S((a2), (a3), dir); \\\n"
" float2 c = (a1); \\\n"
" (a1) = (a2); \\\n"
" (a2) = c; \\\n"
"}\n"
"\n"
"#define bitreverse8(a) \\\n"
"{ \\\n"
" float2 c; \\\n"
" c = (a)[1]; \\\n"
" (a)[1] = (a)[4]; \\\n"
" (a)[4] = c; \\\n"
" c = (a)[3]; \\\n"
" (a)[3] = (a)[6]; \\\n"
" (a)[6] = c; \\\n"
"}\n"
"\n"
"#define fftKernel8(a,dir) \\\n"
"{ \\\n"
" const float2 w1 = (float2)(0x1.6a09e6p-1f, dir*0x1.6a09e6p-1f); \\\n"
" const float2 w3 = (float2)(-0x1.6a09e6p-1f, dir*0x1.6a09e6p-1f); \\\n"
" float2 c; \\\n"
" fftKernel2S((a)[0], (a)[4], dir); \\\n"
" fftKernel2S((a)[1], (a)[5], dir); \\\n"
" fftKernel2S((a)[2], (a)[6], dir); \\\n"
" fftKernel2S((a)[3], (a)[7], dir); \\\n"
" (a)[5] = complexMul(w1, (a)[5]); \\\n"
" (a)[6] = (float2)(dir)*(conjTransp((a)[6])); \\\n"
" (a)[7] = complexMul(w3, (a)[7]); \\\n"
" fftKernel2S((a)[0], (a)[2], dir); \\\n"
" fftKernel2S((a)[1], (a)[3], dir); \\\n"
" fftKernel2S((a)[4], (a)[6], dir); \\\n"
" fftKernel2S((a)[5], (a)[7], dir); \\\n"
" (a)[3] = (float2)(dir)*(conjTransp((a)[3])); \\\n"
" (a)[7] = (float2)(dir)*(conjTransp((a)[7])); \\\n"
" fftKernel2S((a)[0], (a)[1], dir); \\\n"
" fftKernel2S((a)[2], (a)[3], dir); \\\n"
" fftKernel2S((a)[4], (a)[5], dir); \\\n"
" fftKernel2S((a)[6], (a)[7], dir); \\\n"
" bitreverse8((a)); \\\n"
"}\n"
"\n"
"#define bitreverse4x4(a) \\\n"
"{ \\\n"
" float2 c; \\\n"
" c = (a)[1]; (a)[1] = (a)[4]; (a)[4] = c; \\\n"
" c = (a)[2]; (a)[2] = (a)[8]; (a)[8] = c; \\\n"
" c = (a)[3]; (a)[3] = (a)[12]; (a)[12] = c; \\\n"
" c = (a)[6]; (a)[6] = (a)[9]; (a)[9] = c; \\\n"
" c = (a)[7]; (a)[7] = (a)[13]; (a)[13] = c; \\\n"
" c = (a)[11]; (a)[11] = (a)[14]; (a)[14] = c; \\\n"
"}\n"
"\n"
"#define fftKernel16(a,dir) \\\n"
"{ \\\n"
" const float w0 = 0x1.d906bcp-1f; \\\n"
" const float w1 = 0x1.87de2ap-2f; \\\n"
" const float w2 = 0x1.6a09e6p-1f; \\\n"
" fftKernel4s((a)[0], (a)[4], (a)[8], (a)[12], dir); \\\n"
" fftKernel4s((a)[1], (a)[5], (a)[9], (a)[13], dir); \\\n"
" fftKernel4s((a)[2], (a)[6], (a)[10], (a)[14], dir); \\\n"
" fftKernel4s((a)[3], (a)[7], (a)[11], (a)[15], dir); \\\n"
" (a)[5] = complexMul((a)[5], (float2)(w0, dir*w1)); \\\n"
" (a)[6] = complexMul((a)[6], (float2)(w2, dir*w2)); \\\n"
" (a)[7] = complexMul((a)[7], (float2)(w1, dir*w0)); \\\n"
" (a)[9] = complexMul((a)[9], (float2)(w2, dir*w2)); \\\n"
" (a)[10] = (float2)(dir)*(conjTransp((a)[10])); \\\n"
" (a)[11] = complexMul((a)[11], (float2)(-w2, dir*w2)); \\\n"
" (a)[13] = complexMul((a)[13], (float2)(w1, dir*w0)); \\\n"
" (a)[14] = complexMul((a)[14], (float2)(-w2, dir*w2)); \\\n"
" (a)[15] = complexMul((a)[15], (float2)(-w0, dir*-w1)); \\\n"
" fftKernel4((a), dir); \\\n"
" fftKernel4((a) + 4, dir); \\\n"
" fftKernel4((a) + 8, dir); \\\n"
" fftKernel4((a) + 12, dir); \\\n"
" bitreverse4x4((a)); \\\n"
"}\n"
"\n"
"#define bitreverse32(a) \\\n"
"{ \\\n"
" float2 c1, c2; \\\n"
" c1 = (a)[2]; (a)[2] = (a)[1]; c2 = (a)[4]; (a)[4] = c1; c1 = (a)[8]; (a)[8] = c2; c2 = (a)[16]; (a)[16] = c1; (a)[1] = c2; \\\n"
" c1 = (a)[6]; (a)[6] = (a)[3]; c2 = (a)[12]; (a)[12] = c1; c1 = (a)[24]; (a)[24] = c2; c2 = (a)[17]; (a)[17] = c1; (a)[3] = c2; \\\n"
" c1 = (a)[10]; (a)[10] = (a)[5]; c2 = (a)[20]; (a)[20] = c1; c1 = (a)[9]; (a)[9] = c2; c2 = (a)[18]; (a)[18] = c1; (a)[5] = c2; \\\n"
" c1 = (a)[14]; (a)[14] = (a)[7]; c2 = (a)[28]; (a)[28] = c1; c1 = (a)[25]; (a)[25] = c2; c2 = (a)[19]; (a)[19] = c1; (a)[7] = c2; \\\n"
" c1 = (a)[22]; (a)[22] = (a)[11]; c2 = (a)[13]; (a)[13] = c1; c1 = (a)[26]; (a)[26] = c2; c2 = (a)[21]; (a)[21] = c1; (a)[11] = c2; \\\n"
" c1 = (a)[30]; (a)[30] = (a)[15]; c2 = (a)[29]; (a)[29] = c1; c1 = (a)[27]; (a)[27] = c2; c2 = (a)[23]; (a)[23] = c1; (a)[15] = c2; \\\n"
"}\n"
"\n"
"#define fftKernel32(a,dir) \\\n"
"{ \\\n"
" fftKernel2S((a)[0], (a)[16], dir); \\\n"
" fftKernel2S((a)[1], (a)[17], dir); \\\n"
" fftKernel2S((a)[2], (a)[18], dir); \\\n"
" fftKernel2S((a)[3], (a)[19], dir); \\\n"
" fftKernel2S((a)[4], (a)[20], dir); \\\n"
" fftKernel2S((a)[5], (a)[21], dir); \\\n"
" fftKernel2S((a)[6], (a)[22], dir); \\\n"
" fftKernel2S((a)[7], (a)[23], dir); \\\n"
" fftKernel2S((a)[8], (a)[24], dir); \\\n"
" fftKernel2S((a)[9], (a)[25], dir); \\\n"
" fftKernel2S((a)[10], (a)[26], dir); \\\n"
" fftKernel2S((a)[11], (a)[27], dir); \\\n"
" fftKernel2S((a)[12], (a)[28], dir); \\\n"
" fftKernel2S((a)[13], (a)[29], dir); \\\n"
" fftKernel2S((a)[14], (a)[30], dir); \\\n"
" fftKernel2S((a)[15], (a)[31], dir); \\\n"
" (a)[17] = complexMul((a)[17], (float2)(0x1.f6297cp-1f, dir*0x1.8f8b84p-3f)); \\\n"
" (a)[18] = complexMul((a)[18], (float2)(0x1.d906bcp-1f, dir*0x1.87de2ap-2f)); \\\n"
" (a)[19] = complexMul((a)[19], (float2)(0x1.a9b662p-1f, dir*0x1.1c73b4p-1f)); \\\n"
" (a)[20] = complexMul((a)[20], (float2)(0x1.6a09e6p-1f, dir*0x1.6a09e6p-1f)); \\\n"
" (a)[21] = complexMul((a)[21], (float2)(0x1.1c73b4p-1f, dir*0x1.a9b662p-1f)); \\\n"
" (a)[22] = complexMul((a)[22], (float2)(0x1.87de2ap-2f, dir*0x1.d906bcp-1f)); \\\n"
" (a)[23] = complexMul((a)[23], (float2)(0x1.8f8b84p-3f, dir*0x1.f6297cp-1f)); \\\n"
" (a)[24] = complexMul((a)[24], (float2)(0x0p+0f, dir*0x1p+0f)); \\\n"
" (a)[25] = complexMul((a)[25], (float2)(-0x1.8f8b84p-3f, dir*0x1.f6297cp-1f)); \\\n"
" (a)[26] = complexMul((a)[26], (float2)(-0x1.87de2ap-2f, dir*0x1.d906bcp-1f)); \\\n"
" (a)[27] = complexMul((a)[27], (float2)(-0x1.1c73b4p-1f, dir*0x1.a9b662p-1f)); \\\n"
" (a)[28] = complexMul((a)[28], (float2)(-0x1.6a09e6p-1f, dir*0x1.6a09e6p-1f)); \\\n"
" (a)[29] = complexMul((a)[29], (float2)(-0x1.a9b662p-1f, dir*0x1.1c73b4p-1f)); \\\n"
" (a)[30] = complexMul((a)[30], (float2)(-0x1.d906bcp-1f, dir*0x1.87de2ap-2f)); \\\n"
" (a)[31] = complexMul((a)[31], (float2)(-0x1.f6297cp-1f, dir*0x1.8f8b84p-3f)); \\\n"
" fftKernel16((a), dir); \\\n"
" fftKernel16((a) + 16, dir); \\\n"
" bitreverse32((a)); \\\n"
"}\n\n"
);
static string twistKernelInterleaved = string(
"__kernel void \\\n"
"clFFT_1DTwistInterleaved(__global float2 *in, unsigned int startRow, unsigned int numCols, unsigned int N, unsigned int numRowsToProcess, int dir) \\\n"
"{ \\\n"
" float2 a, w; \\\n"
" float ang; \\\n"
" unsigned int j; \\\n"
" unsigned int i = get_global_id(0); \\\n"
" unsigned int startIndex = i; \\\n"
" \\\n"
" if(i < numCols) \\\n"
" { \\\n"
" for(j = 0; j < numRowsToProcess; j++) \\\n"
" { \\\n"
" a = in[startIndex]; \\\n"
" ang = 2.0f * M_PI * dir * i * (startRow + j) / N; \\\n"
" w = (float2)(native_cos(ang), native_sin(ang)); \\\n"
" a = complexMul(a, w); \\\n"
" in[startIndex] = a; \\\n"
" startIndex += numCols; \\\n"
" } \\\n"
" } \\\n"
"} \\\n"
);
static string twistKernelPlannar = string(
"__kernel void \\\n"
"clFFT_1DTwistSplit(__global float *in_real, __global float *in_imag , unsigned int startRow, unsigned int numCols, unsigned int N, unsigned int numRowsToProcess, int dir) \\\n"
"{ \\\n"
" float2 a, w; \\\n"
" float ang; \\\n"
" unsigned int j; \\\n"
" unsigned int i = get_global_id(0); \\\n"
" unsigned int startIndex = i; \\\n"
" \\\n"
" if(i < numCols) \\\n"
" { \\\n"
" for(j = 0; j < numRowsToProcess; j++) \\\n"
" { \\\n"
" a = (float2)(in_real[startIndex], in_imag[startIndex]); \\\n"
" ang = 2.0f * M_PI * dir * i * (startRow + j) / N; \\\n"
" w = (float2)(native_cos(ang), native_sin(ang)); \\\n"
" a = complexMul(a, w); \\\n"
" in_real[startIndex] = a.x; \\\n"
" in_imag[startIndex] = a.y; \\\n"
" startIndex += numCols; \\\n"
" } \\\n"
" } \\\n"
"} \\\n"
);
#endif

View File

@ -0,0 +1,405 @@
//
// File: fft_execute.cpp
//
// Version: <1.0>
//
// Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Inc. ("Apple")
// in consideration of your agreement to the following terms, and your use,
// installation, modification or redistribution of this Apple software
// constitutes acceptance of these terms. If you do not agree with these
// terms, please do not use, install, modify or redistribute this Apple
// software.¬
//
// In consideration of your agreement to abide by the following terms, and
// subject to these terms, Apple grants you a personal, non - exclusive
// license, under Apple's copyrights in this original Apple software ( the
// "Apple Software" ), to use, reproduce, modify and redistribute the Apple
// Software, with or without modifications, in source and / or binary forms;
// provided that if you redistribute the Apple Software in its entirety and
// without modifications, you must retain this notice and the following text
// and disclaimers in all such redistributions of the Apple Software. Neither
// the name, trademarks, service marks or logos of Apple Inc. may be used to
// endorse or promote products derived from the Apple Software without specific
// prior written permission from Apple. Except as expressly stated in this
// notice, no other rights or licenses, express or implied, are granted by
// Apple herein, including but not limited to any patent rights that may be
// infringed by your derivative works or by other works in which the Apple
// Software may be incorporated.
//
// The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO
// WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED
// WARRANTIES OF NON - INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION
// ALONE OR IN COMBINATION WITH YOUR PRODUCTS.
//
// IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR
// CONSEQUENTIAL DAMAGES ( INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION ) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION
// AND / OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER
// UNDER THEORY OF CONTRACT, TORT ( INCLUDING NEGLIGENCE ), STRICT LIABILITY OR
// OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright ( C ) 2008 Apple Inc. All Rights Reserved.
//
////////////////////////////////////////////////////////////////////////////////////////////////////
#include "fft_internal.h"
#include "clFFT.h"
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#define max(a,b) (((a)>(b)) ? (a) : (b))
#define min(a,b) (((a)<(b)) ? (a) : (b))
static cl_int
allocateTemporaryBufferInterleaved(cl_fft_plan *plan, cl_uint batchSize)
{
cl_int err = CL_SUCCESS;
if(plan->temp_buffer_needed && plan->last_batch_size != batchSize)
{
plan->last_batch_size = batchSize;
size_t tmpLength = plan->n.x * plan->n.y * plan->n.z * batchSize * 2 * sizeof(cl_float);
if(plan->tempmemobj)
clReleaseMemObject(plan->tempmemobj);
plan->tempmemobj = clCreateBuffer(plan->context, CL_MEM_READ_WRITE, tmpLength, NULL, &err);
}
return err;
}
static cl_int
allocateTemporaryBufferPlannar(cl_fft_plan *plan, cl_uint batchSize)
{
cl_int err = CL_SUCCESS;
cl_int terr;
if(plan->temp_buffer_needed && plan->last_batch_size != batchSize)
{
plan->last_batch_size = batchSize;
size_t tmpLength = plan->n.x * plan->n.y * plan->n.z * batchSize * sizeof(cl_float);
if(plan->tempmemobj_real)
clReleaseMemObject(plan->tempmemobj_real);
if(plan->tempmemobj_imag)
clReleaseMemObject(plan->tempmemobj_imag);
plan->tempmemobj_real = clCreateBuffer(plan->context, CL_MEM_READ_WRITE, tmpLength, NULL, &err);
plan->tempmemobj_imag = clCreateBuffer(plan->context, CL_MEM_READ_WRITE, tmpLength, NULL, &terr);
err |= terr;
}
return err;
}
void
getKernelWorkDimensions(cl_fft_plan *plan, cl_fft_kernel_info *kernelInfo, cl_int *batchSize, size_t *gWorkItems, size_t *lWorkItems)
{
*lWorkItems = kernelInfo->num_workitems_per_workgroup;
int numWorkGroups = kernelInfo->num_workgroups;
int numXFormsPerWG = kernelInfo->num_xforms_per_workgroup;
switch(kernelInfo->dir)
{
case cl_fft_kernel_x:
*batchSize *= (plan->n.y * plan->n.z);
numWorkGroups = (*batchSize % numXFormsPerWG) ? (*batchSize/numXFormsPerWG + 1) : (*batchSize/numXFormsPerWG);
numWorkGroups *= kernelInfo->num_workgroups;
break;
case cl_fft_kernel_y:
*batchSize *= plan->n.z;
numWorkGroups *= *batchSize;
break;
case cl_fft_kernel_z:
numWorkGroups *= *batchSize;
break;
}
*gWorkItems = numWorkGroups * *lWorkItems;
}
cl_int
clFFT_ExecuteInterleaved( cl_command_queue queue, clFFT_Plan Plan, cl_int batchSize, clFFT_Direction dir,
cl_mem data_in, cl_mem data_out,
cl_int num_events, cl_event *event_list, cl_event *event )
{
int s;
cl_fft_plan *plan = (cl_fft_plan *) Plan;
if(plan->format != clFFT_InterleavedComplexFormat)
return CL_INVALID_VALUE;
cl_int err;
size_t gWorkItems, lWorkItems;
int inPlaceDone;
cl_int isInPlace = data_in == data_out ? 1 : 0;
if((err = allocateTemporaryBufferInterleaved(plan, batchSize)) != CL_SUCCESS)
return err;
cl_mem memObj[3];
memObj[0] = data_in;
memObj[1] = data_out;
memObj[2] = plan->tempmemobj;
cl_fft_kernel_info *kernelInfo = plan->kernel_info;
int numKernels = plan->num_kernels;
int numKernelsOdd = numKernels & 1;
int currRead = 0;
int currWrite = 1;
// at least one external dram shuffle (transpose) required
if(plan->temp_buffer_needed)
{
// in-place transform
if(isInPlace)
{
inPlaceDone = 0;
currRead = 1;
currWrite = 2;
}
else
{
currWrite = (numKernels & 1) ? 1 : 2;
}
while(kernelInfo)
{
if( isInPlace && numKernelsOdd && !inPlaceDone && kernelInfo->in_place_possible)
{
currWrite = currRead;
inPlaceDone = 1;
}
s = batchSize;
getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj[currRead]);
err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj[currWrite]);
err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_int), &dir);
err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_int), &s);
err |= clEnqueueNDRangeKernel(queue, kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, 0, NULL, NULL);
if(err)
return err;
currRead = (currWrite == 1) ? 1 : 2;
currWrite = (currWrite == 1) ? 2 : 1;
kernelInfo = kernelInfo->next;
}
}
// no dram shuffle (transpose required) transform
// all kernels can execute in-place.
else {
while(kernelInfo)
{
s = batchSize;
getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj[currRead]);
err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj[currWrite]);
err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_int), &dir);
err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_int), &s);
err |= clEnqueueNDRangeKernel(queue, kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, 0, NULL, NULL);
if(err)
return err;
currRead = 1;
currWrite = 1;
kernelInfo = kernelInfo->next;
}
}
return err;
}
cl_int
clFFT_ExecutePlannar( cl_command_queue queue, clFFT_Plan Plan, cl_int batchSize, clFFT_Direction dir,
cl_mem data_in_real, cl_mem data_in_imag, cl_mem data_out_real, cl_mem data_out_imag,
cl_int num_events, cl_event *event_list, cl_event *event)
{
int s;
cl_fft_plan *plan = (cl_fft_plan *) Plan;
if(plan->format != clFFT_SplitComplexFormat)
return CL_INVALID_VALUE;
cl_int err;
size_t gWorkItems, lWorkItems;
int inPlaceDone;
cl_int isInPlace = ((data_in_real == data_out_real) && (data_in_imag == data_out_imag)) ? 1 : 0;
if((err = allocateTemporaryBufferPlannar(plan, batchSize)) != CL_SUCCESS)
return err;
cl_mem memObj_real[3];
cl_mem memObj_imag[3];
memObj_real[0] = data_in_real;
memObj_real[1] = data_out_real;
memObj_real[2] = plan->tempmemobj_real;
memObj_imag[0] = data_in_imag;
memObj_imag[1] = data_out_imag;
memObj_imag[2] = plan->tempmemobj_imag;
cl_fft_kernel_info *kernelInfo = plan->kernel_info;
int numKernels = plan->num_kernels;
int numKernelsOdd = numKernels & 1;
int currRead = 0;
int currWrite = 1;
// at least one external dram shuffle (transpose) required
if(plan->temp_buffer_needed)
{
// in-place transform
if(isInPlace)
{
inPlaceDone = 0;
currRead = 1;
currWrite = 2;
}
else
{
currWrite = (numKernels & 1) ? 1 : 2;
}
while(kernelInfo)
{
if( isInPlace && numKernelsOdd && !inPlaceDone && kernelInfo->in_place_possible)
{
currWrite = currRead;
inPlaceDone = 1;
}
s = batchSize;
getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj_real[currRead]);
err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj_imag[currRead]);
err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_mem), &memObj_real[currWrite]);
err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_mem), &memObj_imag[currWrite]);
err |= clSetKernelArg(kernelInfo->kernel, 4, sizeof(cl_int), &dir);
err |= clSetKernelArg(kernelInfo->kernel, 5, sizeof(cl_int), &s);
err |= clEnqueueNDRangeKernel(queue, kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, 0, NULL, NULL);
if(err)
return err;
currRead = (currWrite == 1) ? 1 : 2;
currWrite = (currWrite == 1) ? 2 : 1;
kernelInfo = kernelInfo->next;
}
}
// no dram shuffle (transpose required) transform
else {
while(kernelInfo)
{
s = batchSize;
getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj_real[currRead]);
err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj_imag[currRead]);
err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_mem), &memObj_real[currWrite]);
err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_mem), &memObj_imag[currWrite]);
err |= clSetKernelArg(kernelInfo->kernel, 4, sizeof(cl_int), &dir);
err |= clSetKernelArg(kernelInfo->kernel, 5, sizeof(cl_int), &s);
err |= clEnqueueNDRangeKernel(queue, kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, 0, NULL, NULL);
if(err)
return err;
currRead = 1;
currWrite = 1;
kernelInfo = kernelInfo->next;
}
}
return err;
}
cl_int
clFFT_1DTwistInterleaved(clFFT_Plan Plan, cl_command_queue queue, cl_mem array,
unsigned numRows, unsigned numCols, unsigned startRow, unsigned rowsToProcess, clFFT_Direction dir)
{
cl_fft_plan *plan = (cl_fft_plan *) Plan;
unsigned int N = numRows*numCols;
unsigned int nCols = numCols;
unsigned int sRow = startRow;
unsigned int rToProcess = rowsToProcess;
int d = dir;
int err = 0;
cl_device_id device_id;
err = clGetCommandQueueInfo(queue, CL_QUEUE_DEVICE, sizeof(cl_device_id), &device_id, NULL);
if(err)
return err;
size_t gSize;
err = clGetKernelWorkGroupInfo(plan->twist_kernel, device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &gSize, NULL);
if(err)
return err;
gSize = min(128, gSize);
size_t numGlobalThreads[1] = { max(numCols / gSize, 1)*gSize };
size_t numLocalThreads[1] = { gSize };
err |= clSetKernelArg(plan->twist_kernel, 0, sizeof(cl_mem), &array);
err |= clSetKernelArg(plan->twist_kernel, 1, sizeof(unsigned int), &sRow);
err |= clSetKernelArg(plan->twist_kernel, 2, sizeof(unsigned int), &nCols);
err |= clSetKernelArg(plan->twist_kernel, 3, sizeof(unsigned int), &N);
err |= clSetKernelArg(plan->twist_kernel, 4, sizeof(unsigned int), &rToProcess);
err |= clSetKernelArg(plan->twist_kernel, 5, sizeof(int), &d);
err |= clEnqueueNDRangeKernel(queue, plan->twist_kernel, 1, NULL, numGlobalThreads, numLocalThreads, 0, NULL, NULL);
return err;
}
cl_int
clFFT_1DTwistPlannar(clFFT_Plan Plan, cl_command_queue queue, cl_mem array_real, cl_mem array_imag,
unsigned numRows, unsigned numCols, unsigned startRow, unsigned rowsToProcess, clFFT_Direction dir)
{
cl_fft_plan *plan = (cl_fft_plan *) Plan;
unsigned int N = numRows*numCols;
unsigned int nCols = numCols;
unsigned int sRow = startRow;
unsigned int rToProcess = rowsToProcess;
int d = dir;
int err = 0;
cl_device_id device_id;
err = clGetCommandQueueInfo(queue, CL_QUEUE_DEVICE, sizeof(cl_device_id), &device_id, NULL);
if(err)
return err;
size_t gSize;
err = clGetKernelWorkGroupInfo(plan->twist_kernel, device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &gSize, NULL);
if(err)
return err;
gSize = min(128, gSize);
size_t numGlobalThreads[1] = { max(numCols / gSize, 1)*gSize };
size_t numLocalThreads[1] = { gSize };
err |= clSetKernelArg(plan->twist_kernel, 0, sizeof(cl_mem), &array_real);
err |= clSetKernelArg(plan->twist_kernel, 1, sizeof(cl_mem), &array_imag);
err |= clSetKernelArg(plan->twist_kernel, 2, sizeof(unsigned int), &sRow);
err |= clSetKernelArg(plan->twist_kernel, 3, sizeof(unsigned int), &nCols);
err |= clSetKernelArg(plan->twist_kernel, 4, sizeof(unsigned int), &N);
err |= clSetKernelArg(plan->twist_kernel, 5, sizeof(unsigned int), &rToProcess);
err |= clSetKernelArg(plan->twist_kernel, 6, sizeof(int), &d);
err |= clEnqueueNDRangeKernel(queue, plan->twist_kernel, 1, NULL, numGlobalThreads, numLocalThreads, 0, NULL, NULL);
return err;
}

View File

@ -0,0 +1,163 @@
//
// File: fft_internal.h
//
// Version: <1.0>
//
// Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Inc. ("Apple")
// in consideration of your agreement to the following terms, and your use,
// installation, modification or redistribution of this Apple software
// constitutes acceptance of these terms. If you do not agree with these
// terms, please do not use, install, modify or redistribute this Apple
// software.
//
// In consideration of your agreement to abide by the following terms, and
// subject to these terms, Apple grants you a personal, non - exclusive
// license, under Apple's copyrights in this original Apple software ( the
// "Apple Software" ), to use, reproduce, modify and redistribute the Apple
// Software, with or without modifications, in source and / or binary forms;
// provided that if you redistribute the Apple Software in its entirety and
// without modifications, you must retain this notice and the following text
// and disclaimers in all such redistributions of the Apple Software. Neither
// the name, trademarks, service marks or logos of Apple Inc. may be used to
// endorse or promote products derived from the Apple Software without specific
// prior written permission from Apple. Except as expressly stated in this
// notice, no other rights or licenses, express or implied, are granted by
// Apple herein, including but not limited to any patent rights that may be
// infringed by your derivative works or by other works in which the Apple
// Software may be incorporated.
//
// The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO
// WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED
// WARRANTIES OF NON - INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION
// ALONE OR IN COMBINATION WITH YOUR PRODUCTS.
//
// IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR
// CONSEQUENTIAL DAMAGES ( INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION ) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION
// AND / OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER
// UNDER THEORY OF CONTRACT, TORT ( INCLUDING NEGLIGENCE ), STRICT LIABILITY OR
// OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright ( C ) 2008 Apple Inc. All Rights Reserved.
//
////////////////////////////////////////////////////////////////////////////////////////////////////
#ifndef __CLFFT_INTERNAL_H
#define __CLFFT_INTERNAL_H
#include "clFFT.h"
#include <iostream>
#include <string>
#include <sstream>
using namespace std;
typedef enum kernel_dir_t
{
cl_fft_kernel_x,
cl_fft_kernel_y,
cl_fft_kernel_z
}cl_fft_kernel_dir;
typedef struct kernel_info_t
{
cl_kernel kernel;
char *kernel_name;
unsigned lmem_size;
unsigned num_workgroups;
unsigned num_xforms_per_workgroup;
unsigned num_workitems_per_workgroup;
cl_fft_kernel_dir dir;
int in_place_possible;
kernel_info_t *next;
}cl_fft_kernel_info;
typedef struct
{
// context in which fft resources are created and kernels are executed
cl_context context;
// size of signal
clFFT_Dim3 n;
// dimension of transform ... must be either 1D, 2D or 3D
clFFT_Dimension dim;
// data format ... must be either interleaved or plannar
clFFT_DataFormat format;
// string containing kernel source. Generated at runtime based on
// n, dim, format and other parameters
string *kernel_string;
// CL program containing source and kernel this particular
// n, dim, data format
cl_program program;
// linked list of kernels which needs to be executed for this fft
cl_fft_kernel_info *kernel_info;
// number of kernels
int num_kernels;
// twist kernel for virtualizing fft of very large sizes that do not
// fit in GPU global memory
cl_kernel twist_kernel;
// flag indicating if temporary intermediate buffer is needed or not.
// this depends on fft kernels being executed and if transform is
// in-place or out-of-place. e.g. Local memory fft (say 1D 1024 ...
// one that does not require global transpose do not need temporary buffer)
// 2D 1024x1024 out-of-place fft however do require intermediate buffer.
// If temp buffer is needed, its allocation is lazy i.e. its not allocated
// until its needed
cl_int temp_buffer_needed;
// Batch size is runtime parameter and size of temporary buffer (if needed)
// depends on batch size. Allocation of temporary buffer is lazy i.e. its
// only created when needed. Once its created at first call of clFFT_Executexxx
// it is not allocated next time if next time clFFT_Executexxx is called with
// batch size different than the first call. last_batch_size caches the last
// batch size with which this plan is used so that we dont keep allocating/deallocating
// temp buffer if same batch size is used again and again.
unsigned last_batch_size;
// temporary buffer for interleaved plan
cl_mem tempmemobj;
// temporary buffer for planner plan. Only one of tempmemobj or
// (tempmemobj_real, tempmemobj_imag) pair is valid (allocated) depending
// data format of plan (plannar or interleaved)
cl_mem tempmemobj_real, tempmemobj_imag;
// Maximum size of signal for which local memory transposed based
// fft is sufficient i.e. no global mem transpose (communication)
// is needed
unsigned max_localmem_fft_size;
// Maximum work items per work group allowed. This, along with max_radix below controls
// maximum local memory being used by fft kernels of this plan. Set to 256 by default
unsigned max_work_item_per_workgroup;
// Maximum base radix for local memory fft ... this controls the maximum register
// space used by work items. Currently defaults to 16
unsigned max_radix;
// Device depended parameter that tells how many work-items need to be read consecutive
// values to make sure global memory access by work-items of a work-group result in
// coalesced memory access to utilize full bandwidth e.g. on NVidia tesla, this is 16
unsigned min_mem_coalesce_width;
// Number of local memory banks. This is used to geneate kernel with local memory
// transposes with appropriate padding to avoid bank conflicts to local memory
// e.g. on NVidia it is 16.
unsigned num_local_mem_banks;
}cl_fft_plan;
void FFT1D(cl_fft_plan *plan, cl_fft_kernel_dir dir);
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,402 @@
//
// File: fft_setup.cpp
//
// Version: <1.0>
//
// Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Inc. ("Apple")
// in consideration of your agreement to the following terms, and your use,
// installation, modification or redistribution of this Apple software
// constitutes acceptance of these terms. If you do not agree with these
// terms, please do not use, install, modify or redistribute this Apple
// software.
//
// In consideration of your agreement to abide by the following terms, and
// subject to these terms, Apple grants you a personal, non - exclusive
// license, under Apple's copyrights in this original Apple software ( the
// "Apple Software" ), to use, reproduce, modify and redistribute the Apple
// Software, with or without modifications, in source and / or binary forms;
// provided that if you redistribute the Apple Software in its entirety and
// without modifications, you must retain this notice and the following text
// and disclaimers in all such redistributions of the Apple Software. Neither
// the name, trademarks, service marks or logos of Apple Inc. may be used to
// endorse or promote products derived from the Apple Software without specific
// prior written permission from Apple. Except as expressly stated in this
// notice, no other rights or licenses, express or implied, are granted by
// Apple herein, including but not limited to any patent rights that may be
// infringed by your derivative works or by other works in which the Apple
// Software may be incorporated.
//
// The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO
// WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED
// WARRANTIES OF NON - INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION
// ALONE OR IN COMBINATION WITH YOUR PRODUCTS.
//
// IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR
// CONSEQUENTIAL DAMAGES ( INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION ) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION
// AND / OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER
// UNDER THEORY OF CONTRACT, TORT ( INCLUDING NEGLIGENCE ), STRICT LIABILITY OR
// OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright ( C ) 2008 Apple Inc. All Rights Reserved.
//
////////////////////////////////////////////////////////////////////////////////////////////////////
#include "fft_internal.h"
#include "fft_base_kernels.h"
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <iostream>
#include <string>
#include <sstream>
#include <limits>
using namespace std;
extern void getKernelWorkDimensions(cl_fft_plan *plan, cl_fft_kernel_info *kernelInfo, cl_int *batchSize, size_t *gWorkItems, size_t *lWorkItems);
static void
getBlockConfigAndKernelString(cl_fft_plan *plan)
{
plan->temp_buffer_needed = 0;
*plan->kernel_string += baseKernels;
if(plan->format == clFFT_SplitComplexFormat)
*plan->kernel_string += twistKernelPlannar;
else
*plan->kernel_string += twistKernelInterleaved;
switch(plan->dim)
{
case clFFT_1D:
FFT1D(plan, cl_fft_kernel_x);
break;
case clFFT_2D:
FFT1D(plan, cl_fft_kernel_x);
FFT1D(plan, cl_fft_kernel_y);
break;
case clFFT_3D:
FFT1D(plan, cl_fft_kernel_x);
FFT1D(plan, cl_fft_kernel_y);
FFT1D(plan, cl_fft_kernel_z);
break;
default:
return;
}
plan->temp_buffer_needed = 0;
cl_fft_kernel_info *kInfo = plan->kernel_info;
while(kInfo)
{
plan->temp_buffer_needed |= !kInfo->in_place_possible;
kInfo = kInfo->next;
}
}
static void
deleteKernelInfo(cl_fft_kernel_info *kInfo)
{
if(kInfo)
{
if(kInfo->kernel_name)
free(kInfo->kernel_name);
if(kInfo->kernel)
clReleaseKernel(kInfo->kernel);
free(kInfo);
}
}
static void
destroy_plan(cl_fft_plan *Plan)
{
cl_fft_kernel_info *kernel_info = Plan->kernel_info;
while(kernel_info)
{
cl_fft_kernel_info *tmp = kernel_info->next;
deleteKernelInfo(kernel_info);
kernel_info = tmp;
}
Plan->kernel_info = NULL;
if(Plan->kernel_string)
{
delete Plan->kernel_string;
Plan->kernel_string = NULL;
}
if(Plan->twist_kernel)
{
clReleaseKernel(Plan->twist_kernel);
Plan->twist_kernel = NULL;
}
if(Plan->program)
{
clReleaseProgram(Plan->program);
Plan->program = NULL;
}
if(Plan->tempmemobj)
{
clReleaseMemObject(Plan->tempmemobj);
Plan->tempmemobj = NULL;
}
if(Plan->tempmemobj_real)
{
clReleaseMemObject(Plan->tempmemobj_real);
Plan->tempmemobj_real = NULL;
}
if(Plan->tempmemobj_imag)
{
clReleaseMemObject(Plan->tempmemobj_imag);
Plan->tempmemobj_imag = NULL;
}
}
static int
createKernelList(cl_fft_plan *plan)
{
cl_program program = plan->program;
cl_fft_kernel_info *kernel_info = plan->kernel_info;
cl_int err;
while(kernel_info)
{
kernel_info->kernel = clCreateKernel(program, kernel_info->kernel_name, &err);
if(!kernel_info->kernel || err != CL_SUCCESS)
return err;
kernel_info = kernel_info->next;
}
if(plan->format == clFFT_SplitComplexFormat)
plan->twist_kernel = clCreateKernel(program, "clFFT_1DTwistSplit", &err);
else
plan->twist_kernel = clCreateKernel(program, "clFFT_1DTwistInterleaved", &err);
if(!plan->twist_kernel || err)
return err;
return CL_SUCCESS;
}
int getMaxKernelWorkGroupSize(cl_fft_plan *plan, unsigned int *max_wg_size, unsigned int num_devices, cl_device_id *devices)
{
int reg_needed = 0;
*max_wg_size = std::numeric_limits<int>::max();
int err;
unsigned wg_size;
unsigned int i;
for(i = 0; i < num_devices; i++)
{
cl_fft_kernel_info *kInfo = plan->kernel_info;
while(kInfo)
{
err = clGetKernelWorkGroupInfo(kInfo->kernel, devices[i], CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &wg_size, NULL);
if(err != CL_SUCCESS)
return -1;
if(wg_size < kInfo->num_workitems_per_workgroup)
reg_needed |= 1;
if(*max_wg_size > wg_size)
*max_wg_size = wg_size;
kInfo = kInfo->next;
}
}
return reg_needed;
}
#define ERR_MACRO(err) { \
if( err != CL_SUCCESS) \
{ \
if(error_code) \
*error_code = err; \
clFFT_DestroyPlan((clFFT_Plan) plan); \
return (clFFT_Plan) NULL; \
} \
}
clFFT_Plan
clFFT_CreatePlan(cl_context context, clFFT_Dim3 n, clFFT_Dimension dim, clFFT_DataFormat dataFormat, cl_int *error_code )
{
int i;
cl_int err;
int isPow2 = 1;
cl_fft_plan *plan = NULL;
ostringstream kString;
int num_devices;
int gpu_found = 0;
cl_device_id devices[16];
size_t ret_size;
cl_device_type device_type;
if(!context)
ERR_MACRO(CL_INVALID_VALUE);
isPow2 |= n.x && !( (n.x - 1) & n.x );
isPow2 |= n.y && !( (n.y - 1) & n.y );
isPow2 |= n.z && !( (n.z - 1) & n.z );
if(!isPow2)
ERR_MACRO(CL_INVALID_VALUE);
if( (dim == clFFT_1D && (n.y != 1 || n.z != 1)) || (dim == clFFT_2D && n.z != 1) )
ERR_MACRO(CL_INVALID_VALUE);
plan = (cl_fft_plan *) malloc(sizeof(cl_fft_plan));
if(!plan)
ERR_MACRO(CL_OUT_OF_RESOURCES);
plan->context = context;
clRetainContext(context);
plan->n = n;
plan->dim = dim;
plan->format = dataFormat;
plan->kernel_info = 0;
plan->num_kernels = 0;
plan->twist_kernel = 0;
plan->program = 0;
plan->temp_buffer_needed = 0;
plan->last_batch_size = 0;
plan->tempmemobj = 0;
plan->tempmemobj_real = 0;
plan->tempmemobj_imag = 0;
plan->max_localmem_fft_size = 2048;
plan->max_work_item_per_workgroup = 256;
plan->max_radix = 16;
plan->min_mem_coalesce_width = 16;
plan->num_local_mem_banks = 16;
patch_kernel_source:
plan->kernel_string = new string("");
if(!plan->kernel_string)
ERR_MACRO(CL_OUT_OF_RESOURCES);
getBlockConfigAndKernelString(plan);
const char *source_str = plan->kernel_string->c_str();
plan->program = clCreateProgramWithSource(context, 1, (const char**) &source_str, NULL, &err);
ERR_MACRO(err);
err = clGetContextInfo(context, CL_CONTEXT_DEVICES, sizeof(devices), devices, &ret_size);
ERR_MACRO(err);
num_devices = (int)(ret_size / sizeof(cl_device_id));
for(i = 0; i < num_devices; i++)
{
err = clGetDeviceInfo(devices[i], CL_DEVICE_TYPE, sizeof(device_type), &device_type, NULL);
ERR_MACRO(err);
if(device_type == CL_DEVICE_TYPE_GPU)
{
gpu_found = 1;
err = clBuildProgram(plan->program, 1, &devices[i], "-cl-mad-enable", NULL, NULL);
if (err != CL_SUCCESS)
{
char *build_log;
char devicename[200];
size_t log_size;
err = clGetProgramBuildInfo(plan->program, devices[i], CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
ERR_MACRO(err);
build_log = (char *) malloc(log_size + 1);
err = clGetProgramBuildInfo(plan->program, devices[i], CL_PROGRAM_BUILD_LOG, log_size, build_log, NULL);
ERR_MACRO(err);
err = clGetDeviceInfo(devices[i], CL_DEVICE_NAME, sizeof(devicename), devicename, NULL);
ERR_MACRO(err);
fprintf(stdout, "FFT program build log on device %s\n", devicename);
fprintf(stdout, "%s\n", build_log);
free(build_log);
ERR_MACRO(err);
}
}
}
if(!gpu_found)
ERR_MACRO(CL_INVALID_CONTEXT);
err = createKernelList(plan);
ERR_MACRO(err);
// we created program and kernels based on "some max work group size (default 256)" ... this work group size
// may be larger than what kernel may execute with ... if thats the case we need to regenerate the kernel source
// setting this as limit i.e max group size and rebuild.
unsigned int max_kernel_wg_size;
int patching_req = getMaxKernelWorkGroupSize(plan, &max_kernel_wg_size, num_devices, devices);
if(patching_req == -1)
{
ERR_MACRO(err);
}
if(patching_req)
{
destroy_plan(plan);
plan->max_work_item_per_workgroup = max_kernel_wg_size;
goto patch_kernel_source;
}
cl_fft_kernel_info *kInfo = plan->kernel_info;
while(kInfo)
{
plan->num_kernels++;
kInfo = kInfo->next;
}
if(error_code)
*error_code = CL_SUCCESS;
return (clFFT_Plan) plan;
}
void
clFFT_DestroyPlan(clFFT_Plan plan)
{
cl_fft_plan *Plan = (cl_fft_plan *) plan;
if(Plan)
{
destroy_plan(Plan);
clReleaseContext(Plan->context);
free(Plan);
}
}
void clFFT_DumpPlan( clFFT_Plan Plan, FILE *file)
{
size_t gDim, lDim;
FILE *out;
if(!file)
out = stdout;
else
out = file;
cl_fft_plan *plan = (cl_fft_plan *) Plan;
cl_fft_kernel_info *kInfo = plan->kernel_info;
while(kInfo)
{
cl_int s = 1;
getKernelWorkDimensions(plan, kInfo, &s, &gDim, &lDim);
fprintf(out, "Run kernel %s with global dim = {%zd*BatchSize}, local dim={%zd}\n", kInfo->kernel_name, gDim, lDim);
kInfo = kInfo->next;
}
fprintf(out, "%s\n", plan->kernel_string->c_str());
}

View File

@ -158,7 +158,7 @@ galileo_e1_code_gen_complex_sampled(std::complex<float>* _dest, char _Signal[3],
std::string _galileo_signal = _Signal;
unsigned int _samplesPerCode;
const unsigned int _codeFreqBasis = Galileo_E1_CODE_CHIP_RATE_HZ; //Hz
const int _codeFreqBasis = Galileo_E1_CODE_CHIP_RATE_HZ; //Hz
unsigned int _codeLength = Galileo_E1_B_CODE_LENGTH_CHIPS;
int primary_code_E1_chips[(int)Galileo_E1_B_CODE_LENGTH_CHIPS];
_samplesPerCode = round(_fs / (_codeFreqBasis / _codeLength));

View File

@ -54,6 +54,7 @@
#include "fir_filter.h"
#include "freq_xlating_fir_filter.h"
#include "gps_l1_ca_pcps_acquisition.h"
#include "gps_l1_ca_pcps_multithread_acquisition.h"
#include "gps_l1_ca_pcps_tong_acquisition.h"
#include "gps_l1_ca_pcps_assisted_acquisition.h"
#include "gps_l1_ca_pcps_acquisition_fine_doppler.h"
@ -74,6 +75,10 @@
#include "gps_l1_ca_pvt.h"
#include "galileo_e1_pvt.h"
#if OPENCL
#include "gps_l1_ca_pcps_opencl_acquisition.h"
#endif
#if GN3S_DRIVER
#include "gn3s_signal_source.h"
#endif
@ -346,9 +351,18 @@ GNSSBlockInterface* GNSSBlockFactory::GetBlock(
}
else if (implementation.compare("GPS_L1_CA_PCPS_Multithread_Acquisition") == 0)
{
block = new GpsL1CaPcpsAcquisition(configuration, role, in_streams,
block = new GpsL1CaPcpsMultithreadAcquisition(configuration, role, in_streams,
out_streams, queue);
}
#if OPENCL
else if (implementation.compare("GPS_L1_CA_PCPS_OpenCl_Acquisition") == 0)
{
block = new GpsL1CaPcpsOpenClAcquisition(configuration, role, in_streams,
out_streams, queue);
}
#endif
else if (implementation.compare("GPS_L1_CA_PCPS_Acquisition_Fine_Doppler") == 0)
{
block = new GpsL1CaPcpsAcquisitionFineDoppler(configuration, role, in_streams,

View File

@ -129,6 +129,7 @@ add_executable(gnss_block_test EXCLUDE_FROM_ALL
${CMAKE_CURRENT_SOURCE_DIR}/gnss_block/gps_l1_ca_pcps_acquisition_test.cc
${CMAKE_CURRENT_SOURCE_DIR}/gnss_block/gps_l1_ca_pcps_acquisition_gsoc2013_test.cc
${CMAKE_CURRENT_SOURCE_DIR}/gnss_block/gps_l1_ca_pcps_multithread_acquisition_gsoc2013_test.cc
${CMAKE_CURRENT_SOURCE_DIR}/gnss_block/gps_l1_ca_pcps_opencl_acquisition_gsoc2013_test.cc
${CMAKE_CURRENT_SOURCE_DIR}/gnss_block/gps_l1_ca_pcps_tong_acquisition_gsoc2013_test.cc
${CMAKE_CURRENT_SOURCE_DIR}/gnss_block/galileo_e1_pcps_ambiguous_acquisition_test.cc
${CMAKE_CURRENT_SOURCE_DIR}/gnss_block/galileo_e1_pcps_ambiguous_acquisition_gsoc_test.cc

View File

@ -238,14 +238,14 @@ void GalileoE1Pcps8msAmbiguousAcquisitionGSoC2013Test::config_2()
config->set_property("SignalSource.doppler_Hz_1", "1000");
config->set_property("SignalSource.delay_chips_1", "100");
config->set_property("SignalSource.system_2", "G");
config->set_property("SignalSource.PRN_2", "10");
config->set_property("SignalSource.system_2", "E");
config->set_property("SignalSource.PRN_2", "21");
config->set_property("SignalSource.CN0_dB_2", "44");
config->set_property("SignalSource.doppler_Hz_2", "2000");
config->set_property("SignalSource.delay_chips_2", "200");
config->set_property("SignalSource.system_3", "G");
config->set_property("SignalSource.PRN_3", "20");
config->set_property("SignalSource.system_3", "E");
config->set_property("SignalSource.PRN_3", "22");
config->set_property("SignalSource.CN0_dB_3", "44");
config->set_property("SignalSource.doppler_Hz_3", "3000");
config->set_property("SignalSource.delay_chips_3", "300");
@ -279,7 +279,7 @@ void GalileoE1Pcps8msAmbiguousAcquisitionGSoC2013Test::config_2()
std::to_string(integration_time_ms));
config->set_property("Acquisition.max_dwells", "1");
config->set_property("Acquisition.implementation", "Galileo_E1_PCPS_8ms_Ambiguous_Acquisition");
config->set_property("Acquisition.pfa", "1e-1");
config->set_property("Acquisition.pfa", "0.1");
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "250");
config->set_property("Acquisition.dump", "false");

View File

@ -242,14 +242,14 @@ void GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test::config_2()
config->set_property("SignalSource.doppler_Hz_1", "1000");
config->set_property("SignalSource.delay_chips_1", "100");
config->set_property("SignalSource.system_2", "G");
config->set_property("SignalSource.PRN_2", "10");
config->set_property("SignalSource.system_2", "E");
config->set_property("SignalSource.PRN_2", "21");
config->set_property("SignalSource.CN0_dB_2", "44");
config->set_property("SignalSource.doppler_Hz_2", "2000");
config->set_property("SignalSource.delay_chips_2", "200");
config->set_property("SignalSource.system_3", "G");
config->set_property("SignalSource.PRN_3", "20");
config->set_property("SignalSource.system_3", "E");
config->set_property("SignalSource.PRN_3", "22");
config->set_property("SignalSource.CN0_dB_3", "44");
config->set_property("SignalSource.doppler_Hz_3", "3000");
config->set_property("SignalSource.delay_chips_3", "300");
@ -284,7 +284,7 @@ void GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test::config_2()
config->set_property("Acquisition.max_dwells", "1");
config->set_property("Acquisition.bit_transition_flag","false");
config->set_property("Acquisition.implementation", "Galileo_E1_PCPS_Ambiguous_Acquisition");
config->set_property("Acquisition.pfa", "1e-1");
config->set_property("Acquisition.pfa", "0.1");
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "250");
config->set_property("Acquisition.dump", "false");

View File

@ -240,14 +240,14 @@ void GalileoE1PcpsCccwsrAmbiguousAcquisitionTest::config_2()
config->set_property("SignalSource.doppler_Hz_1", "1000");
config->set_property("SignalSource.delay_chips_1", "100");
config->set_property("SignalSource.system_2", "G");
config->set_property("SignalSource.PRN_2", "10");
config->set_property("SignalSource.system_2", "E");
config->set_property("SignalSource.PRN_2", "21");
config->set_property("SignalSource.CN0_dB_2", "44");
config->set_property("SignalSource.doppler_Hz_2", "2000");
config->set_property("SignalSource.delay_chips_2", "200");
config->set_property("SignalSource.system_3", "G");
config->set_property("SignalSource.PRN_3", "20");
config->set_property("SignalSource.system_3", "E");
config->set_property("SignalSource.PRN_3", "22");
config->set_property("SignalSource.CN0_dB_3", "44");
config->set_property("SignalSource.doppler_Hz_3", "3000");
config->set_property("SignalSource.delay_chips_3", "300");
@ -281,7 +281,7 @@ void GalileoE1PcpsCccwsrAmbiguousAcquisitionTest::config_2()
std::to_string(integration_time_ms));
config->set_property("Acquisition.max_dwells", "1");
config->set_property("Acquisition.implementation", "Galileo_E1_PCPS_CCCWSR_Ambiguous_Acquisition");
config->set_property("Acquisition.threshold", "0.0025");
config->set_property("Acquisition.threshold", "0.00215"); // Pfa,a = 0.1
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "250");
config->set_property("Acquisition.dump", "false");
@ -536,7 +536,7 @@ TEST_F(GalileoE1PcpsCccwsrAmbiguousAcquisitionTest, ValidationOfResultsProbabili
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
}) << "Failure connecting the blocks of acquisition test." << std::endl;
std::cout << "Probability of false alarm (target) = " << 0.0065 << std::endl;
std::cout << "Probability of false alarm (target) = " << 0.1 << std::endl;
// i = 0 --> sallite in acquisition is visible (prob of detection and prob of detection with wrong estimation)
// i = 1 --> satellite in acquisition is not visible (prob of false detection)

View File

@ -191,8 +191,8 @@ void GalileoE1PcpsTongAmbiguousAcquisitionGSoC2013Test::config_1()
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.coherent_integration_time_ms",
std::to_string(integration_time_ms));
config->set_property("Acquisition.tong_init_val", "5");
config->set_property("Acquisition.tong_max_val", "10");
config->set_property("Acquisition.tong_init_val", "1");
config->set_property("Acquisition.tong_max_val", "8");
config->set_property("Acquisition.implementation", "Galileo_E1_PCPS_Tong_Ambiguous_Acquisition");
config->set_property("Acquisition.threshold", "0.3");
config->set_property("Acquisition.doppler_max", "10000");
@ -241,14 +241,14 @@ void GalileoE1PcpsTongAmbiguousAcquisitionGSoC2013Test::config_2()
config->set_property("SignalSource.doppler_Hz_1", "1000");
config->set_property("SignalSource.delay_chips_1", "100");
config->set_property("SignalSource.system_2", "G");
config->set_property("SignalSource.PRN_2", "10");
config->set_property("SignalSource.system_2", "E");
config->set_property("SignalSource.PRN_2", "21");
config->set_property("SignalSource.CN0_dB_2", "44");
config->set_property("SignalSource.doppler_Hz_2", "2000");
config->set_property("SignalSource.delay_chips_2", "200");
config->set_property("SignalSource.system_3", "G");
config->set_property("SignalSource.PRN_3", "20");
config->set_property("SignalSource.system_3", "E");
config->set_property("SignalSource.PRN_3", "22");
config->set_property("SignalSource.CN0_dB_3", "44");
config->set_property("SignalSource.doppler_Hz_3", "3000");
config->set_property("SignalSource.delay_chips_3", "300");
@ -280,10 +280,10 @@ void GalileoE1PcpsTongAmbiguousAcquisitionGSoC2013Test::config_2()
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.coherent_integration_time_ms",
std::to_string(integration_time_ms));
config->set_property("Acquisition.tong_init_val", "5");
config->set_property("Acquisition.tong_max_val", "10");
config->set_property("Acquisition.tong_init_val", "1");
config->set_property("Acquisition.tong_max_val", "8");
config->set_property("Acquisition.implementation", "Galileo_E1_PCPS_Tong_Ambiguous_Acquisition");
config->set_property("Acquisition.threshold", "0.0005");
config->set_property("Acquisition.threshold", "0.00028"); // Pfa,a = 0.1
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "250");
config->set_property("Acquisition.dump", "false");
@ -536,7 +536,7 @@ TEST_F(GalileoE1PcpsTongAmbiguousAcquisitionGSoC2013Test, ValidationOfResultsPro
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
}) << "Failure connecting the blocks of acquisition test." << std::endl;
std::cout << "Probability of false alarm (target) = " << 0.0 << std::endl;
std::cout << "Probability of false alarm (target) = " << 0.1 << std::endl;
// i = 0 --> sallite in acquisition is visible (prob of detection and prob of detection with wrong estimation)
// i = 1 --> satellite in acquisition is not visible (prob of false detection)

View File

@ -238,13 +238,13 @@ void GpsL1CaPcpsAcquisitionGSoC2013Test::config_2()
config->set_property("SignalSource.doppler_Hz_1", "1000");
config->set_property("SignalSource.delay_chips_1", "100");
config->set_property("SignalSource.system_2", "E");
config->set_property("SignalSource.system_2", "G");
config->set_property("SignalSource.PRN_2", "21");
config->set_property("SignalSource.CN0_dB_2", "44");
config->set_property("SignalSource.doppler_Hz_2", "2000");
config->set_property("SignalSource.delay_chips_2", "200");
config->set_property("SignalSource.system_3", "E");
config->set_property("SignalSource.system_3", "G");
config->set_property("SignalSource.PRN_3", "22");
config->set_property("SignalSource.CN0_dB_3", "44");
config->set_property("SignalSource.doppler_Hz_3", "3000");
@ -279,7 +279,7 @@ void GpsL1CaPcpsAcquisitionGSoC2013Test::config_2()
std::to_string(integration_time_ms));
config->set_property("Acquisition.max_dwells", "1");
config->set_property("Acquisition.implementation", "GPS_L1_CA_PCPS_Acquisition");
config->set_property("Acquisition.pfa", "1e-1");
config->set_property("Acquisition.pfa", "0.1");
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "250");
config->set_property("Acquisition.bit_transition_flag", "false");

View File

@ -1,5 +1,5 @@
/*!
* \file gps_l1_ca_pcps_acquisition_gsoc2013_test.cc
* \file gps_l1_ca_pcps_multithread_acquisition_gsoc2013_test.cc
* \brief This class implements an acquisition test for
* GpsL1CaPcpsMultithreadAcquisition class.
* \author Marc Molina, 2013. marc.molina.pena(at)gmail.com
@ -205,7 +205,7 @@ void GpsL1CaPcpsMultithreadAcquisitionGSoC2013Test::config_2()
std::string signal = "1C";
signal.copy(gnss_synchro.Signal,2,0);
integration_time_ms = 4;
integration_time_ms = 1;
fs_in = 4e6;
expected_delay_chips = 600;
@ -237,13 +237,13 @@ void GpsL1CaPcpsMultithreadAcquisitionGSoC2013Test::config_2()
config->set_property("SignalSource.doppler_Hz_1", "1000");
config->set_property("SignalSource.delay_chips_1", "100");
config->set_property("SignalSource.system_2", "E");
config->set_property("SignalSource.system_2", "G");
config->set_property("SignalSource.PRN_2", "21");
config->set_property("SignalSource.CN0_dB_2", "44");
config->set_property("SignalSource.doppler_Hz_2", "2000");
config->set_property("SignalSource.delay_chips_2", "200");
config->set_property("SignalSource.system_3", "E");
config->set_property("SignalSource.system_3", "G");
config->set_property("SignalSource.PRN_3", "22");
config->set_property("SignalSource.CN0_dB_3", "44");
config->set_property("SignalSource.doppler_Hz_3", "3000");
@ -278,10 +278,10 @@ void GpsL1CaPcpsMultithreadAcquisitionGSoC2013Test::config_2()
std::to_string(integration_time_ms));
config->set_property("Acquisition.max_dwells", "1");
config->set_property("Acquisition.implementation", "GPS_L1_CA_PCPS_Multithread_Acquisition");
config->set_property("Acquisition.pfa", "1e-1");
config->set_property("Acquisition.pfa", "0.1");
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "250");
config->set_property("Acquisition.bit_transition_flag", "true");
config->set_property("Acquisition.bit_transition_flag", "false");
config->set_property("Acquisition.dump", "false");
}

View File

@ -0,0 +1,579 @@
/*!
* \file gps_l1_ca_pcps_opencl_acquisition_gsoc2013_test.cc
* \brief This class implements an acquisition test for
* GpsL1CaPcpsOpenClAcquisition class.
* \author Marc Molina, 2013. marc.molina.pena(at)gmail.com
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2012 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include <gtest/gtest.h>
#include <sys/time.h>
#include <iostream>
#include <gnuradio/top_block.h>
#include <gnuradio/blocks/file_source.h>
#include <gnuradio/analog/sig_source_waveform.h>
#include <gnuradio/analog/sig_source_c.h>
#include <gnuradio/msg_queue.h>
#include <gnuradio/blocks/null_sink.h>
#include "gnss_block_interface.h"
#include "in_memory_configuration.h"
#include "configuration_interface.h"
#include "gnss_synchro.h"
#include "gps_l1_ca_pcps_opencl_acquisition.h"
#include "signal_generator.h"
//#include "signal_generator.cc"
#include "signal_generator_c.h"
//#include "signal_generator_c.cc"
#include "fir_filter.h"
#include "gen_signal_source.h"
#include "gnss_sdr_valve.h"
#include "boost/shared_ptr.hpp"
class GpsL1CaPcpsOpenClAcquisitionGSoC2013Test: public ::testing::Test
{
protected:
GpsL1CaPcpsOpenClAcquisitionGSoC2013Test()
{
queue = gr::msg_queue::make(0);
top_block = gr::make_top_block("Acquisition test");
item_size = sizeof(gr_complex);
stop = false;
message = 0;
}
~GpsL1CaPcpsOpenClAcquisitionGSoC2013Test()
{
}
void init();
void config_1();
void config_2();
void start_queue();
void wait_message();
void process_message();
void stop_queue();
gr::msg_queue::sptr queue;
gr::top_block_sptr top_block;
GpsL1CaPcpsOpenClAcquisition *acquisition;
InMemoryConfiguration* config;
Gnss_Synchro gnss_synchro;
size_t item_size;
concurrent_queue<int> channel_internal_queue;
bool stop;
int message;
boost::thread ch_thread;
unsigned int integration_time_ms;
unsigned int fs_in;
double expected_delay_chips;
double expected_doppler_hz;
float max_doppler_error_hz;
float max_delay_error_chips;
unsigned int num_of_realizations;
unsigned int realization_counter;
unsigned int detection_counter;
unsigned int correct_estimation_counter;
unsigned int acquired_samples;
unsigned int mean_acq_time_us;
double mse_doppler;
double mse_delay;
double Pd;
double Pfa_p;
double Pfa_a;
};
void GpsL1CaPcpsOpenClAcquisitionGSoC2013Test::init()
{
message = 0;
realization_counter = 0;
detection_counter = 0;
correct_estimation_counter = 0;
acquired_samples = 0;
mse_doppler = 0;
mse_delay = 0;
mean_acq_time_us = 0;
Pd = 0;
Pfa_p = 0;
Pfa_a = 0;
}
void GpsL1CaPcpsOpenClAcquisitionGSoC2013Test::config_1()
{
gnss_synchro.Channel_ID = 0;
gnss_synchro.System = 'G';
std::string signal = "1C";
signal.copy(gnss_synchro.Signal,2,0);
integration_time_ms = 1;
fs_in = 4e6;
expected_delay_chips = 600;
expected_doppler_hz = 750;
max_doppler_error_hz = 2/(3*integration_time_ms*1e-3);
max_delay_error_chips = 0.50;
num_of_realizations = 1;
config = new InMemoryConfiguration();
config->set_property("GNSS-SDR.internal_fs_hz", std::to_string(fs_in));
config->set_property("SignalSource.fs_hz", std::to_string(fs_in));
config->set_property("SignalSource.item_type", "gr_complex");
config->set_property("SignalSource.num_satellites", "1");
config->set_property("SignalSource.system_0", "G");
config->set_property("SignalSource.PRN_0", "10");
config->set_property("SignalSource.CN0_dB_0", "44");
config->set_property("SignalSource.doppler_Hz_0", std::to_string(expected_doppler_hz));
config->set_property("SignalSource.delay_chips_0", std::to_string(expected_delay_chips));
config->set_property("SignalSource.noise_flag", "false");
config->set_property("SignalSource.data_flag", "false");
config->set_property("SignalSource.BW_BB", "0.97");
config->set_property("InputFilter.implementation", "Fir_Filter");
config->set_property("InputFilter.input_item_type", "gr_complex");
config->set_property("InputFilter.output_item_type", "gr_complex");
config->set_property("InputFilter.taps_item_type", "float");
config->set_property("InputFilter.number_of_taps", "11");
config->set_property("InputFilter.number_of_bands", "2");
config->set_property("InputFilter.band1_begin", "0.0");
config->set_property("InputFilter.band1_end", "0.97");
config->set_property("InputFilter.band2_begin", "0.98");
config->set_property("InputFilter.band2_end", "1.0");
config->set_property("InputFilter.ampl1_begin", "1.0");
config->set_property("InputFilter.ampl1_end", "1.0");
config->set_property("InputFilter.ampl2_begin", "0.0");
config->set_property("InputFilter.ampl2_end", "0.0");
config->set_property("InputFilter.band1_error", "1.0");
config->set_property("InputFilter.band2_error", "1.0");
config->set_property("InputFilter.filter_type", "bandpass");
config->set_property("InputFilter.grid_density", "16");
config->set_property("Acquisition.item_type", "gr_complex");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.coherent_integration_time_ms",
std::to_string(integration_time_ms));
config->set_property("Acquisition.max_dwells", "1");
config->set_property("Acquisition.implementation", "GPS_L1_CA_PCPS_OpenCl_Acquisition");
config->set_property("Acquisition.threshold", "0.8");
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "250");
config->set_property("Acquisition.bit_transition_flag", "false");
config->set_property("Acquisition.dump", "false");
}
void GpsL1CaPcpsOpenClAcquisitionGSoC2013Test::config_2()
{
gnss_synchro.Channel_ID = 0;
gnss_synchro.System = 'G';
std::string signal = "1C";
signal.copy(gnss_synchro.Signal,2,0);
integration_time_ms = 1;
fs_in = 4e6;
expected_delay_chips = 600;
expected_doppler_hz = 750;
max_doppler_error_hz = 2/(3*integration_time_ms*1e-3);
max_delay_error_chips = 0.50;
num_of_realizations = 100;
config = new InMemoryConfiguration();
config->set_property("GNSS-SDR.internal_fs_hz", std::to_string(fs_in));
config->set_property("SignalSource.fs_hz", std::to_string(fs_in));
config->set_property("SignalSource.item_type", "gr_complex");
config->set_property("SignalSource.num_satellites", "4");
config->set_property("SignalSource.system_0", "G");
config->set_property("SignalSource.PRN_0", "10");
config->set_property("SignalSource.CN0_dB_0", "44");
config->set_property("SignalSource.doppler_Hz_0", std::to_string(expected_doppler_hz));
config->set_property("SignalSource.delay_chips_0", std::to_string(expected_delay_chips));
config->set_property("SignalSource.system_1", "G");
config->set_property("SignalSource.PRN_1", "15");
config->set_property("SignalSource.CN0_dB_1", "44");
config->set_property("SignalSource.doppler_Hz_1", "1000");
config->set_property("SignalSource.delay_chips_1", "100");
config->set_property("SignalSource.system_2", "G");
config->set_property("SignalSource.PRN_2", "21");
config->set_property("SignalSource.CN0_dB_2", "44");
config->set_property("SignalSource.doppler_Hz_2", "2000");
config->set_property("SignalSource.delay_chips_2", "200");
config->set_property("SignalSource.system_3", "G");
config->set_property("SignalSource.PRN_3", "22");
config->set_property("SignalSource.CN0_dB_3", "44");
config->set_property("SignalSource.doppler_Hz_3", "3000");
config->set_property("SignalSource.delay_chips_3", "300");
config->set_property("SignalSource.noise_flag", "true");
config->set_property("SignalSource.data_flag", "true");
config->set_property("SignalSource.BW_BB", "0.97");
config->set_property("InputFilter.implementation", "Fir_Filter");
config->set_property("InputFilter.input_item_type", "gr_complex");
config->set_property("InputFilter.output_item_type", "gr_complex");
config->set_property("InputFilter.taps_item_type", "float");
config->set_property("InputFilter.number_of_taps", "11");
config->set_property("InputFilter.number_of_bands", "2");
config->set_property("InputFilter.band1_begin", "0.0");
config->set_property("InputFilter.band1_end", "0.97");
config->set_property("InputFilter.band2_begin", "0.98");
config->set_property("InputFilter.band2_end", "1.0");
config->set_property("InputFilter.ampl1_begin", "1.0");
config->set_property("InputFilter.ampl1_end", "1.0");
config->set_property("InputFilter.ampl2_begin", "0.0");
config->set_property("InputFilter.ampl2_end", "0.0");
config->set_property("InputFilter.band1_error", "1.0");
config->set_property("InputFilter.band2_error", "1.0");
config->set_property("InputFilter.filter_type", "bandpass");
config->set_property("InputFilter.grid_density", "16");
config->set_property("Acquisition.item_type", "gr_complex");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.coherent_integration_time_ms",
std::to_string(integration_time_ms));
config->set_property("Acquisition.max_dwells", "1");
config->set_property("Acquisition.implementation", "GPS_L1_CA_PCPS_OpenCl_Acquisition");
config->set_property("Acquisition.pfa", "0.1");
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "250");
config->set_property("Acquisition.bit_transition_flag", "false");
config->set_property("Acquisition.dump", "false");
}
void GpsL1CaPcpsOpenClAcquisitionGSoC2013Test::start_queue()
{
stop = false;
ch_thread = boost::thread(&GpsL1CaPcpsOpenClAcquisitionGSoC2013Test::wait_message, this);
}
void GpsL1CaPcpsOpenClAcquisitionGSoC2013Test::wait_message()
{
struct timeval tv;
long long int begin = 0;
long long int end = 0;
while (!stop)
{
acquisition->reset();
gettimeofday(&tv, NULL);
begin = tv.tv_sec *1e6 + tv.tv_usec;
channel_internal_queue.wait_and_pop(message);
gettimeofday(&tv, NULL);
end = tv.tv_sec *1e6 + tv.tv_usec;
mean_acq_time_us += (end-begin);
process_message();
}
}
void GpsL1CaPcpsOpenClAcquisitionGSoC2013Test::process_message()
{
if (message == 1)
{
detection_counter++;
// The term -5 is here to correct the additional delay introduced by the FIR filter
double delay_error_chips = abs((double)expected_delay_chips - (double)(gnss_synchro.Acq_delay_samples-5)*1023.0/((double)fs_in*1e-3));
double doppler_error_hz = abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
mse_delay += std::pow(delay_error_chips, 2);
mse_doppler += std::pow(doppler_error_hz, 2);
if ((delay_error_chips < max_delay_error_chips) && (doppler_error_hz < max_doppler_error_hz))
{
correct_estimation_counter++;
}
// std::cout << "Acq delay samples = " << (double)gnss_synchro.Acq_delay_samples << std::endl;
// std::cout << "Acq doppler Hz = " << (double)gnss_synchro.Acq_doppler_hz << std::endl;
}
realization_counter++;
std::cout << "Progress: " << round((float)realization_counter/num_of_realizations*100) << "% \r" << std::flush;
if (realization_counter == num_of_realizations)
{
mse_delay /= num_of_realizations;
mse_doppler /= num_of_realizations;
Pd = (double)correct_estimation_counter / (double)num_of_realizations;
Pfa_a = (double)detection_counter / (double)num_of_realizations;
Pfa_p = (double)(detection_counter-correct_estimation_counter) / (double)num_of_realizations;
mean_acq_time_us /= num_of_realizations;
stop_queue();
top_block->stop();
std::cout << std::endl;
}
}
void GpsL1CaPcpsOpenClAcquisitionGSoC2013Test::stop_queue()
{
stop = true;
}
TEST_F(GpsL1CaPcpsOpenClAcquisitionGSoC2013Test, Instantiate)
{
config_1();
acquisition = new GpsL1CaPcpsOpenClAcquisition(config, "Acquisition", 1, 1, queue);
delete acquisition;
delete config;
}
TEST_F(GpsL1CaPcpsOpenClAcquisitionGSoC2013Test, ConnectAndRun)
{
int nsamples = floor(fs_in*integration_time_ms*1e-3);
struct timeval tv;
long long int begin = 0;
long long int end = 0;
config_1();
acquisition = new GpsL1CaPcpsOpenClAcquisition(config, "Acquisition", 1, 1, queue);
ASSERT_NO_THROW( {
acquisition->connect(top_block);
boost::shared_ptr<gr::analog::sig_source_c> source = gr::analog::sig_source_c::make(fs_in, gr::analog::GR_SIN_WAVE, 1000, 1, gr_complex(0));
boost::shared_ptr<gr::block> valve = gnss_sdr_make_valve(sizeof(gr_complex), nsamples, queue);
top_block->connect(source, 0, valve, 0);
top_block->connect(valve, 0, acquisition->get_left_block(), 0);
}) << "Failure connecting the blocks of acquisition test."<< std::endl;
EXPECT_NO_THROW( {
gettimeofday(&tv, NULL);
begin = tv.tv_sec *1e6 + tv.tv_usec;
top_block->run(); // Start threads and wait
gettimeofday(&tv, NULL);
end = tv.tv_sec *1e6 + tv.tv_usec;
}) << "Failure running the top_block."<< std::endl;
std::cout << "Processed " << nsamples << " samples in " << (end-begin) << " microseconds" << std::endl;
delete acquisition;
delete config;
}
TEST_F(GpsL1CaPcpsOpenClAcquisitionGSoC2013Test, ValidationOfResults)
{
config_1();
acquisition = new GpsL1CaPcpsOpenClAcquisition(config, "Acquisition", 1, 1, queue);
ASSERT_NO_THROW( {
acquisition->set_channel(1);
}) << "Failure setting channel."<< std::endl;
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro."<< std::endl;
ASSERT_NO_THROW( {
acquisition->set_channel_queue(&channel_internal_queue);
}) << "Failure setting channel_internal_queue."<< std::endl;
ASSERT_NO_THROW( {
acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000));
}) << "Failure setting doppler_max."<< std::endl;
ASSERT_NO_THROW( {
acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 500));
}) << "Failure setting doppler_step."<< std::endl;
ASSERT_NO_THROW( {
acquisition->set_threshold(config->property("Acquisition.threshold", 0.0));
}) << "Failure setting threshold."<< std::endl;
ASSERT_NO_THROW( {
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block."<< std::endl;
acquisition->init();
ASSERT_NO_THROW( {
boost::shared_ptr<GenSignalSource> signal_source;
SignalGenerator* signal_generator = new SignalGenerator(config, "SignalSource", 0, 1, queue);
FirFilter* filter = new FirFilter(config, "InputFilter", 1, 1, queue);
signal_source.reset(new GenSignalSource(config, signal_generator, filter, "SignalSource", queue));
signal_source->connect(top_block);
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
}) << "Failure connecting the blocks of acquisition test." << std::endl;
// i = 0 --> sallite in acquisition is visible
// i = 1 --> satellite in acquisition is not visible
for (unsigned int i = 0; i < 2; i++)
{
init();
if (i == 0)
{
gnss_synchro.PRN = 10; // This satellite is visible
}
else if (i == 1)
{
gnss_synchro.PRN = 20; // This satellite is not visible
}
acquisition->set_local_code();
start_queue();
EXPECT_NO_THROW( {
top_block->run(); // Start threads and wait
}) << "Failure running he top_block."<< std::endl;
if (i == 0)
{
EXPECT_EQ(1, message) << "Acquisition failure. Expected message: 1=ACQ SUCCESS.";
if (message == 1)
{
EXPECT_EQ((unsigned int)1, correct_estimation_counter) << "Acquisition failure. Incorrect parameters estimation.";
}
}
else if (i == 1)
{
EXPECT_EQ(2, message) << "Acquisition failure. Expected message: 2=ACQ FAIL.";
}
}
delete acquisition;
delete config;
}
TEST_F(GpsL1CaPcpsOpenClAcquisitionGSoC2013Test, ValidationOfResultsProbabilities)
{
config_2();
acquisition = new GpsL1CaPcpsOpenClAcquisition(config, "Acquisition", 1, 1, queue);
ASSERT_NO_THROW( {
acquisition->set_channel(1);
}) << "Failure setting channel."<< std::endl;
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro."<< std::endl;
ASSERT_NO_THROW( {
acquisition->set_channel_queue(&channel_internal_queue);
}) << "Failure setting channel_internal_queue."<< std::endl;
ASSERT_NO_THROW( {
acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000));
}) << "Failure setting doppler_max."<< std::endl;
ASSERT_NO_THROW( {
acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 500));
}) << "Failure setting doppler_step."<< std::endl;
ASSERT_NO_THROW( {
acquisition->set_threshold(config->property("Acquisition.threshold", 0.0));
}) << "Failure setting threshold."<< std::endl;
ASSERT_NO_THROW( {
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block."<< std::endl;
acquisition->init();
ASSERT_NO_THROW( {
boost::shared_ptr<GenSignalSource> signal_source;
SignalGenerator* signal_generator = new SignalGenerator(config, "SignalSource", 0, 1, queue);
FirFilter* filter = new FirFilter(config, "InputFilter", 1, 1, queue);
signal_source.reset(new GenSignalSource(config, signal_generator, filter, "SignalSource", queue));
signal_source->connect(top_block);
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
}) << "Failure connecting the blocks of acquisition test." << std::endl;
std::cout << "Probability of false alarm (target) = " << 0.1 << std::endl;
// i = 0 --> sallite in acquisition is visible (prob of detection and prob of detection with wrong estimation)
// i = 1 --> satellite in acquisition is not visible (prob of false detection)
for (unsigned int i = 0; i < 2; i++)
{
init();
if (i == 0)
{
gnss_synchro.PRN = 10; // This satellite is visible
}
else if (i == 1)
{
gnss_synchro.PRN = 20; // This satellite is not visible
}
acquisition->set_local_code();
start_queue();
EXPECT_NO_THROW( {
top_block->run(); // Start threads and wait
}) << "Failure running he top_block."<< std::endl;
if (i == 0)
{
std::cout << "Probability of detection = " << Pd << std::endl;
std::cout << "Probability of false alarm (satellite present) = " << Pfa_p << std::endl;
// std::cout << "Mean acq time = " << mean_acq_time_us << " microseconds." << std::endl;
}
else if (i == 1)
{
std::cout << "Probability of false alarm (satellite absent) = " << Pfa_a << std::endl;
// std::cout << "Mean acq time = " << mean_acq_time_us << " microseconds." << std::endl;
}
}
delete acquisition;
delete config;
}

View File

@ -191,8 +191,8 @@ void GpsL1CaPcpsTongAcquisitionGSoC2013Test::config_1()
std::to_string(integration_time_ms));
config->set_property("Acquisition.implementation", "GPS_L1_CA_PCPS_Tong_Acquisition");
config->set_property("Acquisition.threshold", "0.8");
config->set_property("Acquisition.tong_init_val", "5");
config->set_property("Acquisition.tong_max_val", "10");
config->set_property("Acquisition.tong_init_val", "1");
config->set_property("Acquisition.tong_max_val", "8");
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "250");
config->set_property("Acquisition.dump", "false");
@ -237,14 +237,14 @@ void GpsL1CaPcpsTongAcquisitionGSoC2013Test::config_2()
config->set_property("SignalSource.doppler_Hz_1", "1000");
config->set_property("SignalSource.delay_chips_1", "100");
config->set_property("SignalSource.system_2", "E");
config->set_property("SignalSource.PRN_2", "10");
config->set_property("SignalSource.system_2", "G");
config->set_property("SignalSource.PRN_2", "21");
config->set_property("SignalSource.CN0_dB_2", "44");
config->set_property("SignalSource.doppler_Hz_2", "2000");
config->set_property("SignalSource.delay_chips_2", "200");
config->set_property("SignalSource.system_3", "E");
config->set_property("SignalSource.PRN_3", "20");
config->set_property("SignalSource.system_3", "G");
config->set_property("SignalSource.PRN_3", "22");
config->set_property("SignalSource.CN0_dB_3", "44");
config->set_property("SignalSource.doppler_Hz_3", "3000");
config->set_property("SignalSource.delay_chips_3", "300");
@ -277,9 +277,9 @@ void GpsL1CaPcpsTongAcquisitionGSoC2013Test::config_2()
config->set_property("Acquisition.coherent_integration_time_ms",
std::to_string(integration_time_ms));
config->set_property("Acquisition.implementation", "GPS_L1_CA_PCPS_Tong_Acquisition");
config->set_property("Acquisition.threshold", "0.002");
config->set_property("Acquisition.tong_init_val", "5");
config->set_property("Acquisition.tong_max_val", "10");
config->set_property("Acquisition.threshold", "0.00108"); // Pfa,a = 0.1
config->set_property("Acquisition.tong_init_val", "1");
config->set_property("Acquisition.tong_max_val", "8");
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "250");
config->set_property("Acquisition.dump", "false");
@ -532,7 +532,7 @@ TEST_F(GpsL1CaPcpsTongAcquisitionGSoC2013Test, ValidationOfResultsProbabilities)
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
}) << "Failure connecting the blocks of acquisition test." << std::endl;
std::cout << "Probability of false alarm (target) = " << 0.0 << std::endl;
std::cout << "Probability of false alarm (target) = " << 0.1 << std::endl;
// i = 0 --> sallite in acquisition is visible (prob of detection and prob of detection with wrong estimation)
// i = 1 --> satellite in acquisition is not visible (prob of false detection)

View File

@ -73,6 +73,9 @@
//#include "gnss_block/gps_l1_ca_pcps_acquisition_test.cc"
#include "gnss_block/gps_l1_ca_pcps_acquisition_gsoc2013_test.cc"
#include "gnss_block/gps_l1_ca_pcps_multithread_acquisition_gsoc2013_test.cc"
#if OPENCL
#include "gnss_block/gps_l1_ca_pcps_opencl_acquisition_gsoc2013_test.cc"
#endif
#include "gnss_block/gps_l1_ca_pcps_tong_acquisition_gsoc2013_test.cc"
//#include "gnss_block/galileo_e1_pcps_ambiguous_acquisition_test.cc"
//#include "gnss_block/galileo_e1_pcps_ambiguous_acquisition_gsoc_test.cc"