gnss-sdr/src/algorithms/tracking/libs/nonlinear_tracking.cc

363 lines
11 KiB
C++
Raw Normal View History

/*!
* \file cubature_filter.cc
* \brief Interface of a library for nonlinear tracking algorithms
*
* Cubature_Filter implements the functionality of the Cubature Kalman
* Filter, which uses multidimensional cubature rules to estimate the
* time evolution of a nonlinear system. UnscentedFilter implements
* an Unscented Kalman Filter which uses Unscented Transform rules to
* perform a similar estimation.
*
2019-06-14 08:21:26 +00:00
* [1] I Arasaratnam and S Haykin. Cubature kalman filters. IEEE
* Transactions on Automatic Control, 54(6):12541269,2009.
*
* \authors <ul>
* <li> Gerald LaMountain, 2019. gerald(at)ece.neu.edu
* <li> Jordi Vila-Valls 2019. jvila(at)cttc.es
* </ul>
2020-07-28 14:57:15 +00:00
* -----------------------------------------------------------------------------
*
* GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
* This file is part of GNSS-SDR.
*
* Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors)
* SPDX-License-Identifier: GPL-3.0-or-later
*
2020-07-28 14:57:15 +00:00
* -----------------------------------------------------------------------------
*/
#include "nonlinear_tracking.h"
2023-11-29 20:51:14 +00:00
#include <utility>
/***************** CUBATURE KALMAN FILTER *****************/
CubatureFilter::CubatureFilter()
: x_pred_out(arma::zeros(1, 1)),
P_x_pred_out(arma::eye(1, 1) * (1 + 1)),
x_est(x_pred_out),
P_x_est(P_x_pred_out)
{
}
2019-06-14 08:21:26 +00:00
CubatureFilter::CubatureFilter(int nx)
: x_pred_out(arma::zeros(nx, 1)),
P_x_pred_out(arma::eye(nx, nx) * (nx + 1)),
x_est(x_pred_out),
P_x_est(P_x_pred_out)
{
}
2019-06-14 08:21:26 +00:00
CubatureFilter::CubatureFilter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0)
: x_pred_out(x_pred_0),
P_x_pred_out(P_x_pred_0),
x_est(x_pred_out),
P_x_est(P_x_pred_out)
{
}
2019-06-14 08:21:26 +00:00
void CubatureFilter::initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0)
{
x_pred_out = x_pred_0;
P_x_pred_out = P_x_pred_0;
x_est = x_pred_out;
P_x_est = P_x_pred_out;
}
/*
* Perform the prediction step of the cubature Kalman filter
*/
void CubatureFilter::predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, ModelFunction* transition_fcn, const arma::mat& noise_covariance)
{
// Compute number of cubature points
int nx = x_post.n_elem;
int np = 2 * nx;
// Generator Matrix
2019-06-14 08:21:26 +00:00
arma::mat gen_one = arma::join_horiz(arma::eye(nx, nx), -1.0 * arma::eye(nx, nx));
// Initialize predicted mean and covariance
2019-06-14 08:21:26 +00:00
arma::vec x_pred = arma::zeros(nx, 1);
arma::mat P_x_pred = arma::zeros(nx, nx);
// Factorize posterior covariance
arma::mat Sm_post = arma::chol(P_x_post, "lower");
2019-06-14 08:21:26 +00:00
// Propagate and evaluate cubature points
arma::vec Xi_post;
arma::vec Xi_pred;
for (int i = 0; i < np; i++)
2019-06-14 08:21:26 +00:00
{
Xi_post = Sm_post * (std::sqrt(static_cast<float>(np) / 2.0) * gen_one.col(i)) + x_post;
Xi_pred = (*transition_fcn)(Xi_post);
x_pred = x_pred + Xi_pred;
P_x_pred = P_x_pred + Xi_pred * Xi_pred.t();
}
// Compute predicted mean and error covariance
2019-06-14 08:21:26 +00:00
x_pred = x_pred / static_cast<float>(np);
P_x_pred = P_x_pred / static_cast<float>(np) - x_pred * x_pred.t() + noise_covariance;
// Store predicted mean and error covariance
x_pred_out = std::move(x_pred);
P_x_pred_out = std::move(P_x_pred);
}
2019-06-14 08:21:26 +00:00
/*
* Perform the update step of the cubature Kalman filter
*/
void CubatureFilter::update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, ModelFunction* measurement_fcn, const arma::mat& noise_covariance)
{
// Compute number of cubature points
int nx = x_pred.n_elem;
int nz = z_upd.n_elem;
int np = 2 * nx;
// Generator Matrix
2019-06-14 08:21:26 +00:00
arma::mat gen_one = arma::join_horiz(arma::eye(nx, nx), -1.0 * arma::eye(nx, nx));
// Initialize estimated predicted measurement and covariances
2019-06-14 08:21:26 +00:00
arma::mat z_pred = arma::zeros(nz, 1);
arma::mat P_zz_pred = arma::zeros(nz, nz);
arma::mat P_xz_pred = arma::zeros(nx, nz);
// Factorize predicted covariance
arma::mat Sm_pred = arma::chol(P_x_pred, "lower");
// Propagate and evaluate cubature points
arma::vec Xi_pred;
arma::vec Zi_pred;
for (int i = 0; i < np; i++)
2019-06-14 08:21:26 +00:00
{
Xi_pred = Sm_pred * (std::sqrt(static_cast<float>(np) / 2.0) * gen_one.col(i)) + x_pred;
Zi_pred = (*measurement_fcn)(Xi_pred);
z_pred = z_pred + Zi_pred;
P_zz_pred = P_zz_pred + Zi_pred * Zi_pred.t();
P_xz_pred = P_xz_pred + Xi_pred * Zi_pred.t();
}
// Compute measurement mean, covariance and cross covariance
2019-06-14 08:21:26 +00:00
z_pred = z_pred / static_cast<float>(np);
P_zz_pred = P_zz_pred / static_cast<float>(np) - z_pred * z_pred.t() + noise_covariance;
P_xz_pred = P_xz_pred / static_cast<float>(np) - x_pred * z_pred.t();
// Compute cubature Kalman gain
2019-06-14 08:21:26 +00:00
arma::mat W_k = P_xz_pred * arma::inv(P_zz_pred);
// Compute and store the updated mean and error covariance
2019-06-14 08:21:26 +00:00
x_est = x_pred + W_k * (z_upd - z_pred);
P_x_est = P_x_pred - W_k * P_zz_pred * W_k.t();
}
2019-06-14 08:21:26 +00:00
arma::mat CubatureFilter::get_x_pred() const
{
return x_pred_out;
}
2019-06-14 08:21:26 +00:00
arma::mat CubatureFilter::get_P_x_pred() const
{
return P_x_pred_out;
}
2019-06-14 08:21:26 +00:00
arma::mat CubatureFilter::get_x_est() const
{
return x_est;
}
2019-06-14 08:21:26 +00:00
arma::mat CubatureFilter::get_P_x_est() const
{
return P_x_est;
}
/***************** END CUBATURE KALMAN FILTER *****************/
2019-06-14 08:21:26 +00:00
/***************** UNSCENTED KALMAN FILTER *****************/
UnscentedFilter::UnscentedFilter()
: x_pred_out(arma::zeros(1, 1)),
P_x_pred_out(arma::eye(1, 1) * (1 + 1)),
x_est(x_pred_out),
P_x_est(P_x_pred_out)
{
}
2019-06-14 08:21:26 +00:00
UnscentedFilter::UnscentedFilter(int nx)
: x_pred_out(arma::zeros(nx, 1)),
P_x_pred_out(arma::eye(nx, nx) * (nx + 1)),
x_est(x_pred_out),
P_x_est(P_x_pred_out)
{
}
2019-06-14 08:21:26 +00:00
UnscentedFilter::UnscentedFilter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0)
: x_pred_out(x_pred_0),
P_x_pred_out(P_x_pred_0),
x_est(x_pred_out),
P_x_est(P_x_pred_out)
{
}
2019-06-14 08:21:26 +00:00
void UnscentedFilter::initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0)
{
x_pred_out = x_pred_0;
P_x_pred_out = P_x_pred_0;
x_est = x_pred_out;
P_x_est = P_x_pred_out;
}
/*
* Perform the prediction step of the Unscented Kalman filter
*/
void UnscentedFilter::predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, ModelFunction* transition_fcn, const arma::mat& noise_covariance)
{
// Compute number of sigma points
int nx = x_post.n_elem;
int np = 2 * nx + 1;
float alpha = 0.001;
float kappa = 0.0;
float beta = 2.0;
float lambda = std::pow(alpha, 2.0F) * (static_cast<float>(nx) + kappa) - static_cast<float>(nx);
// Compute UT Weights
2019-06-14 08:21:26 +00:00
float W0_m = lambda / (static_cast<float>(nx) + lambda);
float W0_c = lambda / (static_cast<float>(nx) + lambda) + (1 - std::pow(alpha, 2.0F) + beta);
float Wi_m = 1.0F / (2.0F * (static_cast<float>(nx) + lambda));
// Propagate and evaluate sigma points
2019-06-14 08:21:26 +00:00
arma::mat Xi_fact = arma::zeros(nx, nx);
arma::mat Xi_post = arma::zeros(nx, np);
arma::mat Xi_pred = arma::zeros(nx, np);
Xi_post.col(0) = x_post;
Xi_pred.col(0) = (*transition_fcn)(Xi_post.col(0));
for (int i = 1; i <= nx; i++)
2019-06-14 08:21:26 +00:00
{
Xi_fact = std::sqrt(static_cast<float>(nx) + lambda) * arma::sqrtmat_sympd(P_x_post);
Xi_post.col(i) = x_post + Xi_fact.col(i - 1);
Xi_post.col(i + nx) = x_post - Xi_fact.col(i - 1);
2019-06-14 08:21:26 +00:00
Xi_pred.col(i) = (*transition_fcn)(Xi_post.col(i));
Xi_pred.col(i + nx) = (*transition_fcn)(Xi_post.col(i + nx));
}
// Compute predicted mean
2019-06-14 08:21:26 +00:00
arma::vec x_pred = W0_m * Xi_pred.col(0) + Wi_m * arma::sum(Xi_pred.cols(1, np - 1), 1);
// Compute predicted error covariance
2019-06-14 08:21:26 +00:00
arma::mat P_x_pred = W0_c * ((Xi_pred.col(0) - x_pred) * (Xi_pred.col(0).t() - x_pred.t()));
for (int i = 1; i < np; i++)
2019-06-14 08:21:26 +00:00
{
P_x_pred = P_x_pred + Wi_m * ((Xi_pred.col(i) - x_pred) * (Xi_pred.col(i).t() - x_pred.t()));
}
P_x_pred = P_x_pred + noise_covariance;
// Store predicted mean and error covariance
x_pred_out = std::move(x_pred);
P_x_pred_out = std::move(P_x_pred);
}
2019-06-14 08:21:26 +00:00
/*
* Perform the update step of the Unscented Kalman filter
*/
void UnscentedFilter::update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, ModelFunction* measurement_fcn, const arma::mat& noise_covariance)
{
// Compute number of sigma points
int nx = x_pred.n_elem;
int nz = z_upd.n_elem;
int np = 2 * nx + 1;
float alpha = 0.001;
float kappa = 0.0;
float beta = 2.0;
float lambda = std::pow(alpha, 2.0F) * (static_cast<float>(nx) + kappa) - static_cast<float>(nx);
// Compute UT Weights
2019-06-14 08:21:26 +00:00
float W0_m = lambda / (static_cast<float>(nx) + lambda);
float W0_c = lambda / (static_cast<float>(nx) + lambda) + (1.0F - std::pow(alpha, 2.0F) + beta);
float Wi_m = 1.0F / (2.0F * (static_cast<float>(nx) + lambda));
// Propagate and evaluate sigma points
2019-06-14 08:21:26 +00:00
arma::mat Xi_fact = arma::zeros(nx, nx);
arma::mat Xi_pred = arma::zeros(nx, np);
arma::mat Zi_pred = arma::zeros(nz, np);
Xi_pred.col(0) = x_pred;
Zi_pred.col(0) = (*measurement_fcn)(Xi_pred.col(0));
for (int i = 1; i <= nx; i++)
2019-06-14 08:21:26 +00:00
{
Xi_fact = std::sqrt(static_cast<float>(nx) + lambda) * arma::sqrtmat_sympd(P_x_pred);
Xi_pred.col(i) = x_pred + Xi_fact.col(i - 1);
Xi_pred.col(i + nx) = x_pred - Xi_fact.col(i - 1);
2019-06-14 08:21:26 +00:00
Zi_pred.col(i) = (*measurement_fcn)(Xi_pred.col(i));
Zi_pred.col(i + nx) = (*measurement_fcn)(Xi_pred.col(i + nx));
}
// Compute measurement mean
2019-06-14 08:21:26 +00:00
arma::mat z_pred = W0_m * Zi_pred.col(0) + Wi_m * arma::sum(Zi_pred.cols(1, np - 1), 1);
// Compute measurement covariance and cross covariance
arma::mat P_zz_pred = W0_c * ((Zi_pred.col(0) - z_pred) * (Zi_pred.col(0).t() - z_pred.t()));
arma::mat P_xz_pred = W0_c * ((Xi_pred.col(0) - x_pred) * (Zi_pred.col(0).t() - z_pred.t()));
for (int i = 0; i < np; i++)
2019-06-14 08:21:26 +00:00
{
P_zz_pred = P_zz_pred + Wi_m * ((Zi_pred.col(i) - z_pred) * (Zi_pred.col(i).t() - z_pred.t()));
P_xz_pred = P_xz_pred + Wi_m * ((Xi_pred.col(i) - x_pred) * (Zi_pred.col(i).t() - z_pred.t()));
}
P_zz_pred = P_zz_pred + noise_covariance;
// Estimate cubature Kalman gain
2019-06-14 08:21:26 +00:00
arma::mat W_k = P_xz_pred * arma::inv(P_zz_pred);
// Estimate and store the updated mean and error covariance
2019-06-14 08:21:26 +00:00
x_est = x_pred + W_k * (z_upd - z_pred);
P_x_est = P_x_pred - W_k * P_zz_pred * W_k.t();
}
2019-06-14 08:21:26 +00:00
arma::mat UnscentedFilter::get_x_pred() const
{
return x_pred_out;
}
2019-06-14 08:21:26 +00:00
arma::mat UnscentedFilter::get_P_x_pred() const
{
return P_x_pred_out;
}
2019-06-14 08:21:26 +00:00
arma::mat UnscentedFilter::get_x_est() const
{
return x_est;
}
2019-06-14 08:21:26 +00:00
arma::mat UnscentedFilter::get_P_x_est() const
{
return P_x_est;
}
2019-06-14 08:21:26 +00:00
/***************** END UNSCENTED KALMAN FILTER *****************/