1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-07 07:50:32 +00:00
gnss-sdr/tests/unit-tests/signal-processing-blocks/tracking/tracking_pull-in_test_fpga.cc

1519 lines
76 KiB
C++
Raw Normal View History

/*!
* \file tracking_pull-in_test_fpga.cc
* \brief This class implements a tracking Pull-In test for FPGA HW accelerator
* implementations based on some input parameters.
* \authors <ul>
* <li> Marc Majoral, 2019. mmajoral(at)cttc.cat
* <li> Javier Arribas, 2018. jarribas(at)cttc.es
* </ul>
*
*
2020-07-28 14:57:15 +00:00
* -----------------------------------------------------------------------------
2019-12-30 17:43:46 +00:00
*
* GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
* This file is part of GNSS-SDR.
*
* Copyright (C) 2012-2020 (see AUTHORS file for a list of contributors)
* SPDX-License-Identifier: GPL-3.0-or-later
*
2020-07-28 14:57:15 +00:00
* -----------------------------------------------------------------------------
*/
#include "GPS_L1_CA.h"
2019-12-21 12:25:17 +00:00
#include "GPS_L5.h"
#include "Galileo_E1.h"
#include "Galileo_E5a.h"
2019-02-03 18:24:44 +00:00
#include "acquisition_msg_rx.h"
2019-12-21 12:25:17 +00:00
#include "concurrent_queue.h"
#include "galileo_e1_pcps_ambiguous_acquisition_fpga.h"
#include "galileo_e5a_pcps_acquisition_fpga.h"
#include "gnss_block_factory.h"
#include "gnss_block_interface.h"
#include "gnss_sdr_filesystem.h"
2019-12-21 12:25:17 +00:00
#include "gnuplot_i.h"
#include "gps_l1_ca_pcps_acquisition_fpga.h"
#include "gps_l5i_pcps_acquisition_fpga.h"
#include "in_memory_configuration.h"
#include "signal_generator_flags.h"
#include "test_flags.h"
#include "tracking_dump_reader.h"
#include "tracking_interface.h"
#include "tracking_tests_flags.h"
#include "tracking_true_obs_reader.h"
#include <armadillo>
#include <gnuradio/blocks/file_source.h>
#include <gnuradio/blocks/head.h>
#include <gnuradio/blocks/interleaved_char_to_complex.h>
#include <gnuradio/blocks/null_sink.h>
#include <gnuradio/blocks/skiphead.h>
2019-12-21 12:25:17 +00:00
#include <gnuradio/filter/firdes.h>
#include <gnuradio/top_block.h>
#include <gtest/gtest.h>
2019-12-21 12:25:17 +00:00
#include <pmt/pmt.h>
#include <chrono>
2019-12-21 12:25:17 +00:00
#include <cstdint>
2019-12-30 17:43:46 +00:00
#include <pthread.h>
#include <utility>
#include <vector>
#if HAS_GENERIC_LAMBDA
#else
#include <boost/bind/bind.hpp>
#endif
2019-12-21 12:25:17 +00:00
#ifdef GR_GREATER_38
#include <gnuradio/filter/fir_filter_blk.h>
#else
#include <gnuradio/filter/fir_filter_ccf.h>
#endif
#if PMT_USES_BOOST_ANY
namespace wht = boost;
#else
namespace wht = std;
#endif
// ######## GNURADIO TRACKING BLOCK MESSAGE RECEVER #########
class TrackingPullInTest_msg_rx_Fpga;
using TrackingPullInTest_msg_rx_Fpga_sptr = gnss_shared_ptr<TrackingPullInTest_msg_rx_Fpga>;
TrackingPullInTest_msg_rx_Fpga_sptr TrackingPullInTest_msg_rx_Fpga_make();
class TrackingPullInTest_msg_rx_Fpga : public gr::block
{
private:
friend TrackingPullInTest_msg_rx_Fpga_sptr TrackingPullInTest_msg_rx_Fpga_make();
void msg_handler_channel_events(const pmt::pmt_t msg);
TrackingPullInTest_msg_rx_Fpga();
public:
int rx_message;
~TrackingPullInTest_msg_rx_Fpga(); //!< Default destructor
};
TrackingPullInTest_msg_rx_Fpga_sptr TrackingPullInTest_msg_rx_Fpga_make()
{
return TrackingPullInTest_msg_rx_Fpga_sptr(new TrackingPullInTest_msg_rx_Fpga());
}
void TrackingPullInTest_msg_rx_Fpga::msg_handler_channel_events(const pmt::pmt_t msg)
{
try
{
int64_t message = pmt::to_long(std::move(msg));
rx_message = message; // 3 -> loss of lock
}
catch (const wht::bad_any_cast& e)
{
LOG(WARNING) << "msg_handler_tracking Bad cast!";
rx_message = 0;
}
}
TrackingPullInTest_msg_rx_Fpga::TrackingPullInTest_msg_rx_Fpga() : gr::block("TrackingPullInTest_msg_rx_Fpga", gr::io_signature::make(0, 0, 0), gr::io_signature::make(0, 0, 0))
{
this->message_port_register_in(pmt::mp("events"));
this->set_msg_handler(pmt::mp("events"),
#if HAS_GENERIC_LAMBDA
[this](auto&& PH1) { msg_handler_channel_events(PH1); });
#else
#if USE_BOOST_BIND_PLACEHOLDERS
boost::bind(&TrackingPullInTest_msg_rx_Fpga::msg_handler_channel_events, this, boost::placeholders::_1));
2020-05-18 20:50:34 +00:00
#else
boost::bind(&TrackingPullInTest_msg_rx_Fpga::msg_handler_channel_events, this, _1));
2020-05-18 20:50:34 +00:00
#endif
#endif
rx_message = 0;
}
TrackingPullInTest_msg_rx_Fpga::~TrackingPullInTest_msg_rx_Fpga() = default;
struct DMA_handler_args_trk_pull_in_test
{
std::string file;
int32_t nsamples_tx;
int32_t skip_used_samples;
unsigned int freq_band; // 0 for GPS L1/ Galileo E1, 1 for GPS L5/Galileo E5
float scaling_factor;
};
struct acquisition_handler_args_trk_pull_in_test
{
2019-12-30 17:43:46 +00:00
std::shared_ptr<AcquisitionInterface> acquisition;
};
void* handler_acquisition_trk_pull_in_test(void* arguments)
{
2019-12-30 17:43:46 +00:00
// the acquisition is a blocking function so we have to
// create a thread
auto* args = (struct acquisition_handler_args_trk_pull_in_test*)arguments;
args->acquisition->reset();
return nullptr;
}
void* handler_DMA_trk_pull_in_test(void* arguments)
{
2019-12-30 17:43:46 +00:00
const int MAX_INPUT_SAMPLES_TOTAL = 16384;
2019-12-30 17:43:46 +00:00
auto* args = (struct DMA_handler_args_trk_pull_in_test*)arguments;
2019-12-30 17:43:46 +00:00
std::string Filename = args->file; // input filename
int32_t skip_used_samples = args->skip_used_samples;
int32_t nsamples_tx = args->nsamples_tx;
std::vector<int8_t> input_samples(MAX_INPUT_SAMPLES_TOTAL * 2);
std::vector<int8_t> input_samples_dma(MAX_INPUT_SAMPLES_TOTAL * 2 * 2);
bool file_completed = false;
int32_t nsamples_remaining;
int32_t nsamples_block_size;
unsigned int dma_index;
int tx_fd; // DMA descriptor
std::ifstream infile;
infile.exceptions(std::ifstream::failbit | std::ifstream::badbit);
try
{
infile.open(Filename, std::ios::binary);
}
2019-12-30 17:43:46 +00:00
catch (const std::ifstream::failure& e)
{
std::cerr << "Exception opening file " << Filename << '\n';
return nullptr;
}
// *************************************************************************
// Open DMA device
// *************************************************************************
tx_fd = open("/dev/loop_tx", O_WRONLY);
if (tx_fd < 0)
{
std::cout << "Cannot open loop device\n";
return nullptr;
}
// *************************************************************************
// Open input file
// *************************************************************************
#if USE_GLOG_AND_GFLAGS
uint32_t skip_samples = static_cast<uint32_t>(FLAGS_skip_samples);
#else
uint32_t skip_samples = static_cast<uint32_t>(absl::GetFlag(FLAGS_skip_samples));
#endif
2019-12-30 17:43:46 +00:00
if (skip_samples + skip_used_samples > 0)
{
try
{
infile.ignore((skip_samples + skip_used_samples) * 2);
}
catch (const std::ifstream::failure& e)
{
std::cerr << "Exception reading file " << Filename << '\n';
2019-12-30 17:43:46 +00:00
}
}
nsamples_remaining = nsamples_tx;
nsamples_block_size = 0;
while (file_completed == false)
{
dma_index = 0;
if (nsamples_remaining > MAX_INPUT_SAMPLES_TOTAL)
2019-12-30 17:43:46 +00:00
{
nsamples_block_size = MAX_INPUT_SAMPLES_TOTAL;
}
else
2019-12-30 17:43:46 +00:00
{
nsamples_block_size = nsamples_remaining;
}
2019-12-30 17:43:46 +00:00
try
{
// 2 bytes per complex sample
infile.read(reinterpret_cast<char*>(input_samples.data()), nsamples_block_size * 2);
}
catch (const std::ifstream::failure& e)
{
std::cerr << "Exception reading file " << Filename << '\n';
2019-12-30 17:43:46 +00:00
}
for (int index0 = 0; index0 < (nsamples_block_size * 2); index0 += 2)
{
if (args->freq_band == 0)
{
2019-12-30 17:43:46 +00:00
// channel 1 (queue 1) -> E5/L5
input_samples_dma[dma_index] = 0;
input_samples_dma[dma_index + 1] = 0;
// channel 0 (queue 0) -> E1/L1
input_samples_dma[dma_index + 2] = static_cast<int8_t>(input_samples[index0] * args->scaling_factor);
input_samples_dma[dma_index + 3] = static_cast<int8_t>(input_samples[index0 + 1] * args->scaling_factor);
}
2019-12-30 17:43:46 +00:00
else
{
2019-12-30 17:43:46 +00:00
// channel 1 (queue 1) -> E5/L5
input_samples_dma[dma_index] = static_cast<int8_t>(input_samples[index0] * args->scaling_factor);
input_samples_dma[dma_index + 1] = static_cast<int8_t>(input_samples[index0 + 1] * args->scaling_factor);
// channel 0 (queue 0) -> E1/L1
input_samples_dma[dma_index + 2] = 0;
input_samples_dma[dma_index + 3] = 0;
}
2019-12-30 17:43:46 +00:00
dma_index += 4;
}
2019-12-30 17:43:46 +00:00
if (write(tx_fd, input_samples_dma.data(), nsamples_block_size * 2 * 2) != nsamples_block_size * 2 * 2)
{
std::cerr << "Error: DMA could not send all the required samples \n";
2019-12-30 17:43:46 +00:00
}
2019-12-30 17:43:46 +00:00
// Throttle the DMA
std::this_thread::sleep_for(std::chrono::milliseconds(1));
nsamples_remaining -= nsamples_block_size;
if (nsamples_remaining == 0)
{
file_completed = true;
}
}
try
{
infile.close();
}
2019-12-30 17:43:46 +00:00
catch (const std::ifstream::failure& e)
{
std::cerr << "Exception closing files " << Filename << '\n';
}
try
{
2019-12-30 17:43:46 +00:00
close(tx_fd);
}
2019-12-30 17:43:46 +00:00
catch (const std::ifstream::failure& e)
{
std::cerr << "Exception closing loop device \n";
}
2019-12-30 17:43:46 +00:00
return nullptr;
}
class TrackingPullInTestFpga : public ::testing::Test
{
public:
enum StringValue
{
evGPS_1C,
evGPS_2S,
evGPS_L5,
evSBAS_1C,
evGAL_1B,
evGAL_5X,
evGLO_1G,
evGLO_2G
};
std::string generator_binary;
std::string p1;
std::string p2;
std::string p3;
std::string p4;
std::string p5;
std::string p6;
#if USE_GLOG_AND_GFLAGS
std::string implementation = FLAGS_trk_test_implementation;
const int baseband_sampling_freq = FLAGS_fs_gen_sps;
std::string filename_rinex_obs = FLAGS_filename_rinex_obs;
std::string filename_raw_data = FLAGS_signal_file;
#else
std::string implementation = absl::GetFlag(FLAGS_trk_test_implementation);
const int baseband_sampling_freq = absl::GetFlag(FLAGS_fs_gen_sps);
std::string filename_rinex_obs = absl::GetFlag(FLAGS_filename_rinex_obs);
std::string filename_raw_data = absl::GetFlag(FLAGS_signal_file);
#endif
std::map<int, double> doppler_measurements_map;
std::map<int, double> code_delay_measurements_map;
std::map<int, uint64_t> acq_samplestamp_map;
int configure_generator(double CN0_dBHz, int file_idx);
int generate_signal();
std::vector<double> check_results_doppler(arma::vec& true_time_s,
arma::vec& true_value,
arma::vec& meas_time_s,
arma::vec& meas_value,
double& mean_error,
double& std_dev_error);
std::vector<double> check_results_acc_carrier_phase(arma::vec& true_time_s,
arma::vec& true_value,
arma::vec& meas_time_s,
arma::vec& meas_value,
double& mean_error,
double& std_dev_error);
std::vector<double> check_results_codephase(arma::vec& true_time_s,
arma::vec& true_value,
arma::vec& meas_time_s,
arma::vec& meas_value,
double& mean_error,
double& std_dev_error);
TrackingPullInTestFpga()
{
factory = std::make_shared<GNSSBlockFactory>();
config = std::make_shared<InMemoryConfiguration>();
item_size = sizeof(gr_complex);
gnss_synchro = Gnss_Synchro();
}
~TrackingPullInTestFpga() = default;
void configure_receiver(double PLL_wide_bw_hz,
double DLL_wide_bw_hz,
double PLL_narrow_bw_hz,
double DLL_narrow_bw_hz,
int extend_correlation_symbols);
bool acquire_signal(int SV_ID);
gr::top_block_sptr top_block;
std::shared_ptr<GNSSBlockFactory> factory;
std::shared_ptr<InMemoryConfiguration> config;
Gnss_Synchro gnss_synchro;
size_t item_size;
std::shared_ptr<Concurrent_Queue<pmt::pmt_t>> queue;
static const int32_t TEST_TRK_PULL_IN_TEST_SKIP_SAMPLES = 1024; // 48
static constexpr float DMA_SIGNAL_SCALING_FACTOR = 8.0;
};
int TrackingPullInTestFpga::configure_generator(double CN0_dBHz, int file_idx)
{
#if USE_GLOG_AND_GFLAGS
// Configure signal generator
generator_binary = FLAGS_generator_binary;
p1 = std::string("-rinex_nav_file=") + FLAGS_rinex_nav_file;
if (FLAGS_dynamic_position.empty())
{
p2 = std::string("-static_position=") + FLAGS_static_position + std::string(",") + std::to_string(FLAGS_duration * 10);
}
else
{
p2 = std::string("-obs_pos_file=") + std::string(FLAGS_dynamic_position);
}
p3 = std::string("-rinex_obs_file=") + FLAGS_filename_rinex_obs; // RINEX 2.10 observation file output
p4 = std::string("-sig_out_file=") + FLAGS_signal_file + std::to_string(file_idx); // Baseband signal output file. Will be stored in int8_t IQ multiplexed samples
p5 = std::string("-sampling_freq=") + std::to_string(baseband_sampling_freq); // Baseband sampling frequency [MSps]
p6 = std::string("-CN0_dBHz=") + std::to_string(CN0_dBHz); // Signal generator CN0
#else
// Configure signal generator
generator_binary = absl::GetFlag(FLAGS_generator_binary);
p1 = std::string("-rinex_nav_file=") + absl::GetFlag(FLAGS_rinex_nav_file);
if (absl::GetFlag(FLAGS_dynamic_position).empty())
{
p2 = std::string("-static_position=") + absl::GetFlag(FLAGS_static_position) + std::string(",") + std::to_string(absl::GetFlag(FLAGS_duration) * 10);
}
else
{
p2 = std::string("-obs_pos_file=") + std::string(absl::GetFlag(FLAGS_dynamic_position));
}
p3 = std::string("-rinex_obs_file=") + absl::GetFlag(FLAGS_filename_rinex_obs); // RINEX 2.10 observation file output
p4 = std::string("-sig_out_file=") + absl::GetFlag(FLAGS_signal_file) + std::to_string(file_idx); // Baseband signal output file. Will be stored in int8_t IQ multiplexed samples
p5 = std::string("-sampling_freq=") + std::to_string(baseband_sampling_freq); // Baseband sampling frequency [MSps]
p6 = std::string("-CN0_dBHz=") + std::to_string(CN0_dBHz); // Signal generator CN0
#endif
return 0;
}
int TrackingPullInTestFpga::generate_signal()
{
int child_status;
char* const parmList[] = {&generator_binary[0], &generator_binary[0], &p1[0], &p2[0], &p3[0], &p4[0], &p5[0], &p6[0], nullptr};
int pid;
if ((pid = fork()) == -1)
{
perror("fork err");
}
else if (pid == 0)
{
execv(&generator_binary[0], parmList);
std::cout << "Return not expected. Must be an execv err.\n";
std::terminate();
}
waitpid(pid, &child_status, 0);
std::cout << "Signal and Observables RINEX and RAW files created.\n";
return 0;
}
// When using the FPGA the acquisition class calls the states
// of the channel finite state machine directly. This is done
// in order to reduce the latency of the receiver when going
// from acquisition to tracking. In order to execute the
// acquisition in the unit tests we need to create a derived
// class of the channel finite state machine. Some of the states
// of the channel state machine are modified here, in order to
// simplify the instantiation of the acquisition class in the
// unit test.
2019-12-30 17:43:46 +00:00
class ChannelFsm_trk_pull_in_test : public ChannelFsm
{
public:
2019-12-30 17:43:46 +00:00
bool Event_valid_acquisition() override
{
acquisition_successful = true;
return true;
}
2019-12-30 17:43:46 +00:00
bool Event_failed_acquisition_repeat() override
{
acquisition_successful = false;
return true;
}
2019-12-30 17:43:46 +00:00
bool Event_failed_acquisition_no_repeat() override
{
acquisition_successful = false;
return true;
}
2019-12-30 17:43:46 +00:00
bool Event_check_test_result()
{
return acquisition_successful;
}
2019-12-30 17:43:46 +00:00
void Event_clear_test_result()
{
acquisition_successful = false;
}
private:
2019-12-30 17:43:46 +00:00
bool acquisition_successful;
};
void TrackingPullInTestFpga::configure_receiver(
double PLL_wide_bw_hz,
double DLL_wide_bw_hz,
double PLL_narrow_bw_hz,
double DLL_narrow_bw_hz,
int extend_correlation_symbols)
{
config = std::make_shared<InMemoryConfiguration>();
config->set_property("Tracking.dump", "true");
config->set_property("Tracking.dump_filename", "./tracking_ch_");
config->set_property("Tracking.implementation", implementation);
config->set_property("Tracking.pll_bw_hz", std::to_string(PLL_wide_bw_hz));
config->set_property("Tracking.dll_bw_hz", std::to_string(DLL_wide_bw_hz));
config->set_property("Tracking.extend_correlation_symbols", std::to_string(extend_correlation_symbols));
config->set_property("Tracking.pll_bw_narrow_hz", std::to_string(PLL_narrow_bw_hz));
config->set_property("Tracking.dll_bw_narrow_hz", std::to_string(DLL_narrow_bw_hz));
#if USE_GLOG_AND_GFLAGS
gnss_synchro.PRN = FLAGS_test_satellite_PRN;
#else
gnss_synchro.PRN = absl::GetFlag(FLAGS_test_satellite_PRN);
#endif
gnss_synchro.Channel_ID = 0;
config->set_property("GNSS-SDR.internal_fs_sps", std::to_string(baseband_sampling_freq));
std::string System_and_Signal;
if (implementation == "GPS_L1_CA_DLL_PLL_Tracking_FPGA")
{
gnss_synchro.System = 'G';
std::string signal = "1C";
System_and_Signal = "GPS L1 CA";
signal.copy(gnss_synchro.Signal, 2, 0);
config->set_property("Tracking.early_late_space_chips", "0.5");
config->set_property("Tracking.early_late_space_narrow_chips", "0.5");
}
else if (implementation == "Galileo_E1_DLL_PLL_VEML_Tracking_FPGA")
{
gnss_synchro.System = 'E';
std::string signal = "1B";
System_and_Signal = "Galileo E1B";
signal.copy(gnss_synchro.Signal, 2, 0);
config->set_property("Tracking.early_late_space_chips", "0.15");
config->set_property("Tracking.very_early_late_space_chips", "0.6");
config->set_property("Tracking.early_late_space_narrow_chips", "0.15");
config->set_property("Tracking.very_early_late_space_narrow_chips", "0.6");
config->set_property("Tracking.track_pilot", "true");
}
else if (implementation == "Galileo_E5a_DLL_PLL_Tracking_FPGA" or implementation == "Galileo_E5a_DLL_PLL_Tracking_b_Fpga")
{
gnss_synchro.System = 'E';
std::string signal = "5X";
System_and_Signal = "Galileo E5a";
signal.copy(gnss_synchro.Signal, 2, 0);
if (implementation == "Galileo_E5a_DLL_PLL_Tracking_b")
{
config->supersede_property("Tracking.implementation", std::string("Galileo_E5a_DLL_PLL_Tracking_FPGA"));
}
config->set_property("Tracking.early_late_space_chips", "0.5");
config->set_property("Tracking.track_pilot", "true");
config->set_property("Tracking.order", "2");
}
else if (implementation == "GPS_L5_DLL_PLL_Tracking_FPGA")
{
gnss_synchro.System = 'G';
std::string signal = "L5";
System_and_Signal = "GPS L5I";
signal.copy(gnss_synchro.Signal, 2, 0);
config->set_property("Tracking.early_late_space_chips", "0.5");
config->set_property("Tracking.track_pilot", "true");
config->set_property("Tracking.order", "2");
}
else
{
std::cout << "The test can not run with the selected tracking implementation\n ";
throw(std::exception());
}
std::cout << "*****************************************\n";
std::cout << "*** Tracking configuration parameters ***\n";
std::cout << "*****************************************\n";
std::cout << "Signal: " << System_and_Signal << "\n";
std::cout << "implementation: " << config->property("Tracking.implementation", std::string("undefined")) << " \n";
std::cout << "pll_bw_hz: " << config->property("Tracking.pll_bw_hz", 0.0) << " Hz\n";
std::cout << "dll_bw_hz: " << config->property("Tracking.dll_bw_hz", 0.0) << " Hz\n";
std::cout << "pll_bw_narrow_hz: " << config->property("Tracking.pll_bw_narrow_hz", 0.0) << " Hz\n";
std::cout << "dll_bw_narrow_hz: " << config->property("Tracking.dll_bw_narrow_hz", 0.0) << " Hz\n";
std::cout << "extend_correlation_symbols: " << config->property("Tracking.extend_correlation_symbols", 0) << " Symbols\n";
std::cout << "*****************************************\n";
std::cout << "*****************************************\n";
}
bool TrackingPullInTestFpga::acquire_signal(int SV_ID)
{
pthread_t thread_DMA, thread_acquisition;
// fsm
std::shared_ptr<ChannelFsm_trk_pull_in_test> channel_fsm_;
channel_fsm_ = std::make_shared<ChannelFsm_trk_pull_in_test>();
bool acquisition_successful;
// Satellite signal definition
Gnss_Synchro tmp_gnss_synchro;
tmp_gnss_synchro.Channel_ID = 0;
// config = std::make_shared<InMemoryConfiguration>();
config->set_property("GNSS-SDR.internal_fs_sps", std::to_string(baseband_sampling_freq));
std::shared_ptr<AcquisitionInterface> acquisition;
std::string System_and_Signal;
std::string signal;
struct DMA_handler_args_trk_pull_in_test args;
struct acquisition_handler_args_trk_pull_in_test args_acq;
#if USE_GLOG_AND_GFLAGS
std::string file = FLAGS_signal_file;
#else
std::string file = absl::GetFlag(FLAGS_signal_file);
#endif
2019-12-30 17:43:46 +00:00
args.file = file; // DMA file configuration
// instantiate the FPGA switch and set the
// switch position to DMA.
std::shared_ptr<Fpga_Switch> switch_fpga;
switch_fpga = std::make_shared<Fpga_Switch>();
2019-12-30 17:43:46 +00:00
switch_fpga->set_switch_position(0); // set switch position to DMA
// create the correspondign acquisition block according to the desired tracking signal
if (implementation == "GPS_L1_CA_DLL_PLL_Tracking_FPGA")
{
2019-12-30 17:43:46 +00:00
tmp_gnss_synchro.System = 'G';
signal = "1C";
const char* str = signal.c_str(); // get a C style null terminated string
std::memcpy(static_cast<void*>(tmp_gnss_synchro.Signal), str, 3); // copy string into synchro char array: 2 char + null
tmp_gnss_synchro.PRN = SV_ID;
System_and_Signal = "GPS L1 CA";
acquisition = std::make_shared<GpsL1CaPcpsAcquisitionFpga>(config.get(), "Acquisition", 0, 0);
2019-12-30 17:43:46 +00:00
args.freq_band = 0; // frequency band on which the DMA has to transfer the samples
}
else if (implementation == "Galileo_E1_DLL_PLL_VEML_Tracking_FPGA")
{
2019-12-30 17:43:46 +00:00
tmp_gnss_synchro.System = 'E';
signal = "1B";
const char* str = signal.c_str(); // get a C style null terminated string
std::memcpy(static_cast<void*>(tmp_gnss_synchro.Signal), str, 3); // copy string into synchro char array: 2 char + null
tmp_gnss_synchro.PRN = SV_ID;
System_and_Signal = "Galileo E1B";
acquisition = std::make_shared<GalileoE1PcpsAmbiguousAcquisitionFpga>(config.get(), "Acquisition", 0, 0);
2019-12-30 17:43:46 +00:00
args.freq_band = 0; // frequency band on which the DMA has to transfer the samples
}
else if (implementation == "Galileo_E5a_DLL_PLL_Tracking_FPGA")
{
2019-12-30 17:43:46 +00:00
tmp_gnss_synchro.System = 'E';
signal = "5X";
const char* str = signal.c_str(); // get a C style null terminated string
std::memcpy(static_cast<void*>(tmp_gnss_synchro.Signal), str, 3); // copy string into synchro char array: 2 char + null
tmp_gnss_synchro.PRN = SV_ID;
System_and_Signal = "Galileo E5a";
acquisition = std::make_shared<GalileoE5aPcpsAcquisitionFpga>(config.get(), "Acquisition", 0, 0);
2019-12-30 17:43:46 +00:00
args.freq_band = 1; // frequency band on which the DMA has to transfer the samples
}
else if (implementation == "GPS_L5_DLL_PLL_Tracking_FPGA")
{
2019-12-30 17:43:46 +00:00
tmp_gnss_synchro.System = 'G';
signal = "L5";
const char* str = signal.c_str(); // get a C style null terminated string
std::memcpy(static_cast<void*>(tmp_gnss_synchro.Signal), str, 3); // copy string into synchro char array: 2 char + null
tmp_gnss_synchro.PRN = SV_ID;
System_and_Signal = "GPS L5I";
acquisition = std::make_shared<GpsL5iPcpsAcquisitionFpga>(config.get(), "Acquisition", 0, 0);
2019-12-30 17:43:46 +00:00
args.freq_band = 1; // frequency band on which the DMA has to transfer the samples
}
else
{
std::cout << "The test can not run with the selected tracking implementation\n ";
throw(std::exception());
}
acquisition->set_gnss_synchro(&tmp_gnss_synchro);
acquisition->set_channel_fsm(channel_fsm_);
acquisition->set_channel(0);
#if USE_GLOG_AND_GFLAGS
acquisition->set_doppler_max(config->property("Acquisition.doppler_max", FLAGS_external_signal_acquisition_doppler_max_hz));
acquisition->set_doppler_step(config->property("Acquisition.doppler_step", FLAGS_external_signal_acquisition_doppler_step_hz));
acquisition->set_doppler_center(0);
acquisition->set_threshold(config->property("Acquisition.threshold", FLAGS_external_signal_acquisition_threshold));
#else
acquisition->set_doppler_max(config->property("Acquisition.doppler_max", absl::GetFlag(FLAGS_external_signal_acquisition_doppler_max_hz)));
acquisition->set_doppler_step(config->property("Acquisition.doppler_step", absl::GetFlag(FLAGS_external_signal_acquisition_doppler_step_hz)));
acquisition->set_doppler_center(0);
acquisition->set_threshold(config->property("Acquisition.threshold", absl::GetFlag(FLAGS_external_signal_acquisition_threshold)));
#endif
std::chrono::time_point<std::chrono::system_clock> start, end;
std::chrono::duration<double> elapsed_seconds;
start = std::chrono::system_clock::now();
bool start_msg = true;
doppler_measurements_map.clear();
code_delay_measurements_map.clear();
acq_samplestamp_map.clear();
unsigned int MAX_PRN_IDX = 0;
switch (tmp_gnss_synchro.System)
{
case 'G':
MAX_PRN_IDX = 33;
break;
case 'E':
MAX_PRN_IDX = 37;
break;
default:
MAX_PRN_IDX = 33;
}
// number of samples that the DMA has to transfer
unsigned int nsamples_to_transfer;
if (implementation == "GPS_L1_CA_DLL_PLL_Tracking_FPGA")
{
nsamples_to_transfer = static_cast<unsigned int>(std::round(static_cast<double>(baseband_sampling_freq) / (GPS_L1_CA_CODE_RATE_CPS / GPS_L1_CA_CODE_LENGTH_CHIPS)));
}
else if (implementation == "Galileo_E1_DLL_PLL_VEML_Tracking_FPGA")
{
nsamples_to_transfer = static_cast<unsigned int>(std::round(static_cast<double>(baseband_sampling_freq) / (GALILEO_E1_CODE_CHIP_RATE_CPS / GALILEO_E1_B_CODE_LENGTH_CHIPS)));
}
else if (implementation == "Galileo_E5a_DLL_PLL_Tracking_FPGA")
{
nsamples_to_transfer = static_cast<unsigned int>(std::round(static_cast<double>(baseband_sampling_freq) / (GALILEO_E5A_CODE_CHIP_RATE_CPS / GALILEO_E5A_CODE_LENGTH_CHIPS)));
}
else // (if (implementation.compare("GPS_L5_DLL_PLL_Tracking_FPGA") == 0))
{
nsamples_to_transfer = static_cast<unsigned int>(std::round(static_cast<double>(baseband_sampling_freq) / (GPS_L5I_CODE_RATE_CPS / GPS_L5I_CODE_LENGTH_CHIPS)));
}
2018-11-15 19:48:30 +00:00
// set the scaling factor
args.scaling_factor = DMA_SIGNAL_SCALING_FACTOR;
for (unsigned int PRN = 1; PRN < MAX_PRN_IDX; PRN++)
{
tmp_gnss_synchro.PRN = PRN;
2018-11-15 19:48:30 +00:00
2019-12-30 17:43:46 +00:00
channel_fsm_->Event_clear_test_result();
acquisition->stop_acquisition(); // reset the whole system including the sample counters
acquisition->init();
acquisition->set_local_code();
2018-11-15 19:48:30 +00:00
if ((implementation == "GPS_L1_CA_DLL_PLL_Tracking_FPGA") or (implementation == "Galileo_E1_DLL_PLL_VEML_Tracking_FPGA"))
{
2019-12-30 17:43:46 +00:00
// Configure the DMA to send TEST_TRK_PULL_IN_TEST_SKIP_SAMPLES in order to initialize the internal
// states of the downsampling filter in the FPGA
args.skip_used_samples = 0;
args.nsamples_tx = TEST_TRK_PULL_IN_TEST_SKIP_SAMPLES;
2018-11-15 19:48:30 +00:00
// create DMA child process
if (pthread_create(&thread_DMA, nullptr, handler_DMA_trk_pull_in_test, reinterpret_cast<void*>(&args)) < 0)
{
std::cout << "ERROR cannot create DMA Process\n";
}
2018-11-15 19:48:30 +00:00
pthread_join(thread_DMA, nullptr);
2018-11-15 19:48:30 +00:00
// Configure the DMA to skip the samples that were used to initialize the internal states of the
// downsampling filter in the FPGA
args.skip_used_samples = TEST_TRK_PULL_IN_TEST_SKIP_SAMPLES;
}
else
{
args.skip_used_samples = 0;
}
2018-11-15 19:48:30 +00:00
// Configure the DMA to send the required samples to perform an acquisition
args.nsamples_tx = nsamples_to_transfer;
2018-11-15 19:48:30 +00:00
// run the acquisition. The acquisition must run in a separate thread because it is a blocking function
args_acq.acquisition = acquisition;
2018-11-15 19:48:30 +00:00
if (pthread_create(&thread_acquisition, nullptr, handler_acquisition_trk_pull_in_test, reinterpret_cast<void*>(&args_acq)) < 0)
{
std::cout << "ERROR cannot create acquisition Process\n";
}
2018-11-15 19:48:30 +00:00
if (start_msg == true)
{
#if USE_GLOG_AND_GFLAGS
std::cout << "Reading external signal file: " << FLAGS_signal_file << '\n';
#else
std::cout << "Reading external signal file: " << absl::GetFlag(FLAGS_signal_file) << '\n';
#endif
std::cout << "Searching for " << System_and_Signal << " Satellites...\n";
std::cout << "[";
start_msg = false;
}
// wait to give time for the acquisition thread to set up the acquisition HW accelerator in the FPGA
usleep(1000000);
// create DMA child process
if (pthread_create(&thread_DMA, nullptr, handler_DMA_trk_pull_in_test, reinterpret_cast<void*>(&args)) < 0)
{
std::cout << "ERROR cannot create DMA Process\n";
}
// wait until the acquisition is finished
pthread_join(thread_acquisition, nullptr);
// wait for the child DMA process to finish
pthread_join(thread_DMA, nullptr);
acquisition_successful = channel_fsm_->Event_check_test_result();
if (acquisition_successful)
{
2019-12-30 17:43:46 +00:00
std::cout << " " << PRN << " ";
doppler_measurements_map.insert(std::pair<int, double>(PRN, tmp_gnss_synchro.Acq_doppler_hz));
code_delay_measurements_map.insert(std::pair<int, double>(PRN, tmp_gnss_synchro.Acq_delay_samples));
acq_samplestamp_map.insert(std::pair<int, double>(PRN, tmp_gnss_synchro.Acq_samplestamp_samples));
}
else
{
std::cout << " . ";
}
std::cout.flush();
}
std::cout << "]\n";
std::cout << "-------------------------------------------\n";
for (auto& x : doppler_measurements_map)
{
std::cout << "DETECTED SATELLITE " << System_and_Signal << " PRN: " << x.first << " with Doppler: " << x.second << " [Hz], code phase: " << code_delay_measurements_map.at(x.first) << " [samples] at signal SampleStamp " << acq_samplestamp_map.at(x.first) << "\n";
}
// report the elapsed time
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
std::cout << "Total signal acquisition run time "
<< elapsed_seconds.count()
<< " [seconds]\n";
2019-12-30 17:43:46 +00:00
return true;
}
TEST_F(TrackingPullInTestFpga, ValidationOfResults)
{
// pointer to the DMA thread that sends the samples to the acquisition engine
pthread_t thread_DMA;
2019-12-30 17:43:46 +00:00
struct DMA_handler_args_trk_pull_in_test args;
// *************************************************
// ***** STEP 1: Prepare the parameters sweep ******
// *************************************************
std::vector<double>
acq_doppler_error_hz_values;
std::vector<std::vector<double>> acq_delay_error_chips_values; // vector of vector
#if USE_GLOG_AND_GFLAGS
for (double doppler_hz = FLAGS_acq_Doppler_error_hz_start; doppler_hz >= FLAGS_acq_Doppler_error_hz_stop; doppler_hz = doppler_hz + FLAGS_acq_Doppler_error_hz_step)
#else
for (double doppler_hz = absl::GetFlag(FLAGS_acq_Doppler_error_hz_start); doppler_hz >= absl::GetFlag(FLAGS_acq_Doppler_error_hz_stop); doppler_hz = doppler_hz + absl::GetFlag(FLAGS_acq_Doppler_error_hz_step))
#endif
{
acq_doppler_error_hz_values.push_back(doppler_hz);
std::vector<double> tmp_vector;
// Code Delay Sweep
#if USE_GLOG_AND_GFLAGS
for (double code_delay_chips = FLAGS_acq_Delay_error_chips_start; code_delay_chips >= FLAGS_acq_Delay_error_chips_stop; code_delay_chips = code_delay_chips + FLAGS_acq_Delay_error_chips_step)
#else
for (double code_delay_chips = absl::GetFlag(FLAGS_acq_Delay_error_chips_start); code_delay_chips >= absl::GetFlag(FLAGS_acq_Delay_error_chips_stop); code_delay_chips = code_delay_chips + absl::GetFlag(FLAGS_acq_Delay_error_chips_step))
#endif
{
tmp_vector.push_back(code_delay_chips);
}
acq_delay_error_chips_values.push_back(tmp_vector);
}
// ***********************************************************
// ***** STEP 2: Generate the input signal (if required) *****
// ***********************************************************
std::vector<double> generator_CN0_values;
#if USE_GLOG_AND_GFLAGS
if (FLAGS_enable_external_signal_file)
{
generator_CN0_values.push_back(999); // an external input signal capture is selected, no CN0 information available
}
else
{
if (FLAGS_CN0_dBHz_start == FLAGS_CN0_dBHz_stop)
{
generator_CN0_values.push_back(FLAGS_CN0_dBHz_start);
}
else
{
for (double cn0 = FLAGS_CN0_dBHz_start; cn0 > FLAGS_CN0_dBHz_stop; cn0 = cn0 - FLAGS_CN0_dB_step)
{
generator_CN0_values.push_back(cn0);
}
}
}
#else
if (absl::GetFlag(FLAGS_enable_external_signal_file))
{
generator_CN0_values.push_back(999); // an external input signal capture is selected, no CN0 information available
}
else
{
if (absl::GetFlag(FLAGS_CN0_dBHz_start) == absl::GetFlag(FLAGS_CN0_dBHz_stop))
{
generator_CN0_values.push_back(absl::GetFlag(FLAGS_CN0_dBHz_start));
}
else
{
for (double cn0 = absl::GetFlag(FLAGS_CN0_dBHz_start); cn0 > absl::GetFlag(FLAGS_CN0_dBHz_stop); cn0 = cn0 - absl::GetFlag(FLAGS_CN0_dB_step))
{
generator_CN0_values.push_back(cn0);
}
}
}
#endif
// use generator or use an external capture file
#if USE_GLOG_AND_GFLAGS
if (FLAGS_enable_external_signal_file)
{
// create and configure an acquisition block and perform an acquisition to obtain the synchronization parameters
ASSERT_EQ(acquire_signal(FLAGS_test_satellite_PRN), true);
bool found_satellite = doppler_measurements_map.find(FLAGS_test_satellite_PRN) != doppler_measurements_map.end();
EXPECT_TRUE(found_satellite) << "Error: satellite SV: " << FLAGS_test_satellite_PRN << " is not acquired";
#else
if (absl::GetFlag(FLAGS_enable_external_signal_file))
{
// create and configure an acquisition block and perform an acquisition to obtain the synchronization parameters
ASSERT_EQ(acquire_signal(absl::GetFlag(FLAGS_test_satellite_PRN)), true);
bool found_satellite = doppler_measurements_map.find(absl::GetFlag(FLAGS_test_satellite_PRN)) != doppler_measurements_map.end();
EXPECT_TRUE(found_satellite) << "Error: satellite SV: " << absl::GetFlag(FLAGS_test_satellite_PRN) << " is not acquired";
#endif
if (!found_satellite)
{
return;
}
}
else
{
for (unsigned int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values.size(); current_cn0_idx++)
{
// Configure the signal generator
configure_generator(generator_CN0_values.at(current_cn0_idx), current_cn0_idx);
// Generate signal raw signal samples and observations RINEX file
#if USE_GLOG_AND_GFLAGS
if (FLAGS_disable_generator == false)
#else
if (absl::GetFlag(FLAGS_disable_generator) == false)
#endif
{
generate_signal();
}
}
}
#if USE_GLOG_AND_GFLAGS
configure_receiver(FLAGS_PLL_bw_hz_start,
FLAGS_DLL_bw_hz_start,
FLAGS_PLL_narrow_bw_hz,
FLAGS_DLL_narrow_bw_hz,
FLAGS_extend_correlation_symbols);
#else
configure_receiver(absl::GetFlag(FLAGS_PLL_bw_hz_start),
absl::GetFlag(FLAGS_DLL_bw_hz_start),
absl::GetFlag(FLAGS_PLL_narrow_bw_hz),
absl::GetFlag(FLAGS_DLL_narrow_bw_hz),
absl::GetFlag(FLAGS_extend_correlation_symbols));
#endif
// ******************************************************************************************
// ***** Obtain the initial signal sinchronization parameters (emulating an acquisition) ****
// ******************************************************************************************
int test_satellite_PRN = 0;
double true_acq_doppler_hz = 0.0;
double true_acq_delay_samples = 0.0;
uint64_t acq_samplestamp_samples = 0;
Tracking_True_Obs_Reader true_obs_data;
#if USE_GLOG_AND_GFLAGS
if (!FLAGS_enable_external_signal_file)
{
test_satellite_PRN = FLAGS_test_satellite_PRN;
#else
if (!absl::GetFlag(FLAGS_enable_external_signal_file))
{
test_satellite_PRN = absl::GetFlag(FLAGS_test_satellite_PRN);
#endif
std::string true_obs_file = std::string("./gps_l1_ca_obs_prn");
true_obs_file.append(std::to_string(test_satellite_PRN));
true_obs_file.append(".dat");
true_obs_data.close_obs_file();
ASSERT_EQ(true_obs_data.open_obs_file(true_obs_file), true) << "Failure opening true observables file";
// load acquisition data based on the first epoch of the true observations
ASSERT_EQ(true_obs_data.read_binary_obs(), true)
<< "Failure reading true tracking dump file.\n"
#if USE_GLOG_AND_GFLAGS
<< "Maybe sat PRN #" + std::to_string(FLAGS_test_satellite_PRN) +
#else
<< "Maybe sat PRN #" + std::to_string(absl::GetFlag(FLAGS_test_satellite_PRN)) +
#endif
" is not available?";
std::cout << "Testing satellite PRN=" << test_satellite_PRN << '\n';
std::cout << "True Initial Doppler " << true_obs_data.doppler_l1_hz << " [Hz], true Initial code delay [Chips]=" << true_obs_data.prn_delay_chips << "[Chips]\n";
true_acq_doppler_hz = true_obs_data.doppler_l1_hz;
true_acq_delay_samples = (GPS_L1_CA_CODE_LENGTH_CHIPS - true_obs_data.prn_delay_chips / GPS_L1_CA_CODE_LENGTH_CHIPS) * static_cast<double>(baseband_sampling_freq) * GPS_L1_CA_CODE_PERIOD_S;
acq_samplestamp_samples = 0;
}
else
{
#if USE_GLOG_AND_GFLAGS
true_acq_doppler_hz = doppler_measurements_map.find(FLAGS_test_satellite_PRN)->second;
true_acq_delay_samples = code_delay_measurements_map.find(FLAGS_test_satellite_PRN)->second;
acq_samplestamp_samples = acq_samplestamp_map.find(FLAGS_test_satellite_PRN)->second;
#else
true_acq_doppler_hz = doppler_measurements_map.find(absl::GetFlag(FLAGS_test_satellite_PRN))->second;
true_acq_delay_samples = code_delay_measurements_map.find(absl::GetFlag(FLAGS_test_satellite_PRN))->second;
acq_samplestamp_samples = acq_samplestamp_map.find(absl::GetFlag(FLAGS_test_satellite_PRN))->second;
#endif
std::cout << "Estimated Initial Doppler " << true_acq_doppler_hz
<< " [Hz], estimated Initial code delay " << true_acq_delay_samples << " [Samples]"
#if USE_GLOG_AND_GFLAGS
<< " Acquisition SampleStamp is " << acq_samplestamp_map.find(FLAGS_test_satellite_PRN)->second << '\n';
#else
<< " Acquisition SampleStamp is " << acq_samplestamp_map.find(absl::GetFlag(FLAGS_test_satellite_PRN))->second << '\n';
#endif
}
#if USE_GLOG_AND_GFLAGS
int64_t acq_to_trk_delay_samples = ceil(static_cast<double>(FLAGS_fs_gen_sps) * FLAGS_acq_to_trk_delay_s);
#else
int64_t acq_to_trk_delay_samples = ceil(static_cast<double>(absl::GetFlag(FLAGS_fs_gen_sps)) * absl::GetFlag(FLAGS_acq_to_trk_delay_s));
#endif
// set the scaling factor
args.scaling_factor = DMA_SIGNAL_SCALING_FACTOR;
// CN0 LOOP
std::vector<std::vector<double>> pull_in_results_v_v;
for (unsigned int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values.size(); current_cn0_idx++)
{
std::vector<double> pull_in_results_v;
for (unsigned int current_acq_doppler_error_idx = 0; current_acq_doppler_error_idx < acq_doppler_error_hz_values.size(); current_acq_doppler_error_idx++)
{
for (unsigned int current_acq_code_error_idx = 0; current_acq_code_error_idx < acq_delay_error_chips_values.at(current_acq_doppler_error_idx).size(); current_acq_code_error_idx++)
{
gnss_synchro.Acq_samplestamp_samples = acq_samplestamp_samples;
// simulate a Doppler error in acquisition
gnss_synchro.Acq_doppler_hz = true_acq_doppler_hz + acq_doppler_error_hz_values.at(current_acq_doppler_error_idx);
// simulate Code Delay error in acquisition
gnss_synchro.Acq_delay_samples = true_acq_delay_samples + (acq_delay_error_chips_values.at(current_acq_doppler_error_idx).at(current_acq_code_error_idx) / GPS_L1_CA_CODE_RATE_CPS) * static_cast<double>(baseband_sampling_freq);
// We need to reset the HW again in order to reset the sample counter.
// The HW is reset by sending a command to the acquisition HW accelerator
// In order to send the reset command to the HW we instantiate the acquisition module.
std::shared_ptr<AcquisitionInterface> acquisition;
// reset the HW to clear the sample counters: the acquisition constructor generates a reset
if (implementation == "GPS_L1_CA_DLL_PLL_Tracking_FPGA")
{
acquisition = std::make_shared<GpsL1CaPcpsAcquisitionFpga>(config.get(), "Acquisition", 0, 0);
args.freq_band = 0;
}
else if (implementation == "Galileo_E1_DLL_PLL_VEML_Tracking_FPGA")
{
acquisition = std::make_shared<GalileoE1PcpsAmbiguousAcquisitionFpga>(config.get(), "Acquisition", 0, 0);
args.freq_band = 0;
}
else if (implementation == "Galileo_E5a_DLL_PLL_Tracking_FPGA")
{
acquisition = std::make_shared<GalileoE5aPcpsAcquisitionFpga>(config.get(), "Acquisition", 0, 0);
args.freq_band = 1;
}
else if (implementation == "GPS_L5_DLL_PLL_Tracking_FPGA")
{
acquisition = std::make_shared<GpsL5iPcpsAcquisitionFpga>(config.get(), "Acquisition", 0, 0);
args.freq_band = 1;
}
else
{
std::cout << "The test can not run with the selected tracking implementation\n ";
throw(std::exception());
}
acquisition->stop_acquisition(); // reset the whole system including the sample counters
// create flowgraph
top_block = gr::make_top_block("Tracking test");
std::shared_ptr<GNSSBlockInterface> trk_ = factory->GetBlock(config.get(), "Tracking", 1, 1);
std::shared_ptr<TrackingInterface> tracking = std::dynamic_pointer_cast<TrackingInterface>(trk_);
auto msg_rx = TrackingPullInTest_msg_rx_Fpga_make();
ASSERT_NO_THROW({
tracking->set_channel(gnss_synchro.Channel_ID);
}) << "Failure setting channel.";
ASSERT_NO_THROW({
tracking->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW({
tracking->connect(top_block);
}) << "Failure connecting tracking to the top_block.";
std::string file;
ASSERT_NO_THROW({
#if USE_GLOG_AND_GFLAGS
if (!FLAGS_enable_external_signal_file)
#else
if (!absl::GetFlag(FLAGS_enable_external_signal_file))
#endif
{
file = "./" + filename_raw_data + std::to_string(current_cn0_idx);
}
else
{
#if USE_GLOG_AND_GFLAGS
file = FLAGS_signal_file;
#else
file = absl::GetFlag(FLAGS_signal_file);
#endif
}
gr::blocks::null_sink::sptr sink = gr::blocks::null_sink::make(sizeof(Gnss_Synchro));
top_block->connect(tracking->get_right_block(), 0, sink, 0);
top_block->msg_connect(tracking->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of tracking test.";
// initialize the internal status of the LPF in the FPGA in the L1/E1 frequency band
// ********************************************************************
// ***** STEP 5: Perform the signal tracking and read the results *****
// ********************************************************************
std::cout << "--- START TRACKING WITH PULL-IN ERROR: " << acq_doppler_error_hz_values.at(current_acq_doppler_error_idx) << " [Hz] and " << acq_delay_error_chips_values.at(current_acq_doppler_error_idx).at(current_acq_code_error_idx) << " [Chips] ---\n";
std::chrono::time_point<std::chrono::system_clock> start, end;
2019-12-30 17:43:46 +00:00
top_block->start();
2019-12-30 17:43:46 +00:00
usleep(1000000); // give time for the system to start before receiving the start tracking command.
if (acq_to_trk_delay_samples > 0)
2019-12-30 17:43:46 +00:00
{
#if USE_GLOG_AND_GFLAGS
2019-12-30 17:43:46 +00:00
std::cout << "--- SIMULATING A PULL-IN DELAY OF " << FLAGS_acq_to_trk_delay_s << " SECONDS ---\n";
#else
std::cout << "--- SIMULATING A PULL-IN DELAY OF " << absl::GetFlag(FLAGS_acq_to_trk_delay_s) << " SECONDS ---\n";
#endif
2019-12-30 17:43:46 +00:00
args.file = file;
args.nsamples_tx = acq_to_trk_delay_samples; // 150 s for now but will be all file
2019-12-30 17:43:46 +00:00
args.skip_used_samples = 0;
2019-12-30 17:43:46 +00:00
if (pthread_create(&thread_DMA, nullptr, handler_DMA_trk_pull_in_test, reinterpret_cast<void*>(&args)) < 0)
{
std::cout << "ERROR cannot create DMA Process\n";
2019-12-30 17:43:46 +00:00
}
}
std::cout << " Starting tracking...\n";
tracking->start_tracking();
std::cout << " Waiting flowgraph..\n";
args.file = file;
#if USE_GLOG_AND_GFLAGS
args.nsamples_tx = baseband_sampling_freq * FLAGS_duration;
#else
args.nsamples_tx = baseband_sampling_freq * absl::GetFlag(FLAGS_duration);
#endif
args.skip_used_samples = acq_to_trk_delay_samples;
if (pthread_create(&thread_DMA, nullptr, handler_DMA_trk_pull_in_test, reinterpret_cast<void*>(&args)) < 0)
{
std::cout << "ERROR cannot create DMA Process\n";
}
// wait for the child DMA process to finish
pthread_join(thread_DMA, nullptr);
// stop the top block
top_block->stop();
tracking->stop_tracking();
// reset the HW in order to produce an interrupt to the tracking
// modules that are in a waiting state
acquisition->stop_acquisition();
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "Signal tracking completed in " << elapsed_seconds.count() << " seconds\n";
pull_in_results_v.push_back(msg_rx->rx_message != 3); // save last asynchronous tracking message in order to detect a loss of lock
// ********************************
// ***** STEP 7: Plot results *****
// ********************************
#if USE_GLOG_AND_GFLAGS
if (FLAGS_plot_detail_level >= 2 and FLAGS_show_plots)
#else
if (absl::GetFlag(FLAGS_plot_detail_level) >= 2 and absl::GetFlag(FLAGS_show_plots))
#endif
{
// load the measured values
Tracking_Dump_Reader trk_dump;
ASSERT_EQ(trk_dump.open_obs_file(std::string("./tracking_ch_0.dat")), true)
<< "Failure opening tracking dump file";
int64_t n_measured_epochs = trk_dump.num_epochs();
// todo: use vectors instead
arma::vec trk_timestamp_s = arma::zeros(n_measured_epochs, 1);
arma::vec trk_acc_carrier_phase_cycles = arma::zeros(n_measured_epochs, 1);
arma::vec trk_Doppler_Hz = arma::zeros(n_measured_epochs, 1);
arma::vec trk_prn_delay_chips = arma::zeros(n_measured_epochs, 1);
std::vector<double> timestamp_s;
std::vector<double> prompt;
std::vector<double> early;
std::vector<double> late;
std::vector<double> v_early;
std::vector<double> v_late;
std::vector<double> promptI;
std::vector<double> promptQ;
std::vector<double> CN0_dBHz;
std::vector<double> Doppler;
int64_t epoch_counter = 0;
while (trk_dump.read_binary_obs())
{
trk_timestamp_s(epoch_counter) = static_cast<double>(trk_dump.PRN_start_sample_count) / static_cast<double>(baseband_sampling_freq);
trk_acc_carrier_phase_cycles(epoch_counter) = trk_dump.acc_carrier_phase_rad / TWO_PI;
trk_Doppler_Hz(epoch_counter) = trk_dump.carrier_doppler_hz;
double delay_chips = GPS_L1_CA_CODE_LENGTH_CHIPS - GPS_L1_CA_CODE_LENGTH_CHIPS * (fmod((static_cast<double>(trk_dump.PRN_start_sample_count) + trk_dump.aux1) / static_cast<double>(baseband_sampling_freq), 1.0e-3) / 1.0e-3);
trk_prn_delay_chips(epoch_counter) = delay_chips;
timestamp_s.push_back(trk_timestamp_s(epoch_counter));
prompt.push_back(trk_dump.abs_P);
early.push_back(trk_dump.abs_E);
late.push_back(trk_dump.abs_L);
v_early.push_back(trk_dump.abs_VE);
v_late.push_back(trk_dump.abs_VL);
promptI.push_back(trk_dump.prompt_I);
promptQ.push_back(trk_dump.prompt_Q);
CN0_dBHz.push_back(trk_dump.CN0_SNV_dB_Hz);
Doppler.push_back(trk_dump.carrier_doppler_hz);
epoch_counter++;
}
#if USE_GLOG_AND_GFLAGS
const std::string gnuplot_executable(FLAGS_gnuplot_executable);
#else
const std::string gnuplot_executable(absl::GetFlag(FLAGS_gnuplot_executable));
#endif
if (gnuplot_executable.empty())
{
std::cout << "WARNING: Although the flag show_plots has been set to TRUE,\n";
std::cout << "gnuplot has not been found in your system.\n";
std::cout << "Test results will not be plotted.\n";
}
else
{
try
{
fs::path p(gnuplot_executable);
fs::path dir = p.parent_path();
const std::string& gnuplot_path = dir.native();
Gnuplot::set_GNUPlotPath(gnuplot_path);
#if USE_GLOG_AND_GFLAGS
auto decimate = static_cast<unsigned int>(FLAGS_plot_decimate);
if (FLAGS_plot_detail_level >= 2 and FLAGS_show_plots)
{
Gnuplot g1("linespoints");
g1.showonscreen(); // window output
if (!FLAGS_enable_external_signal_file)
{
g1.set_title(std::to_string(generator_CN0_values.at(current_cn0_idx)) + " dB-Hz, " + "PLL/DLL BW: " + std::to_string(FLAGS_PLL_bw_hz_start) + "," + std::to_string(FLAGS_DLL_bw_hz_start) + " [Hz], GPS L1 C/A (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
}
else
{
g1.set_title("D_e=" + std::to_string(acq_doppler_error_hz_values.at(current_acq_doppler_error_idx)) + " [Hz] " + "T_e= " + std::to_string(acq_delay_error_chips_values.at(current_acq_doppler_error_idx).at(current_acq_code_error_idx)) + " [Chips], PLL/DLL BW: " + std::to_string(FLAGS_PLL_bw_hz_start) + "," + std::to_string(FLAGS_DLL_bw_hz_start) + " [Hz], (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
}
#else
auto decimate = static_cast<unsigned int>(absl::GetFlag(FLAGS_plot_decimate));
if (absl::GetFlag(FLAGS_plot_detail_level) >= 2 and absl::GetFlag(FLAGS_show_plots))
{
Gnuplot g1("linespoints");
g1.showonscreen(); // window output
if (!absl::GetFlag(FLAGS_enable_external_signal_file))
{
g1.set_title(std::to_string(generator_CN0_values.at(current_cn0_idx)) + " dB-Hz, " + "PLL/DLL BW: " + std::to_string(absl::GetFlag(FLAGS_PLL_bw_hz_start)) + "," + std::to_string(absl::GetFlag(FLAGS_DLL_bw_hz_start)) + " [Hz], GPS L1 C/A (PRN #" + std::to_string(absl::GetFlag(FLAGS_test_satellite_PRN)) + ")");
}
else
{
g1.set_title("D_e=" + std::to_string(acq_doppler_error_hz_values.at(current_acq_doppler_error_idx)) + " [Hz] " + "T_e= " + std::to_string(acq_delay_error_chips_values.at(current_acq_doppler_error_idx).at(current_acq_code_error_idx)) + " [Chips], PLL/DLL BW: " + std::to_string(absl::GetFlag(FLAGS_PLL_bw_hz_start)) + "," + std::to_string(absl::GetFlag(FLAGS_DLL_bw_hz_start)) + " [Hz], (PRN #" + std::to_string(absl::GetFlag(FLAGS_test_satellite_PRN)) + ")");
}
#endif
g1.set_grid();
g1.set_xlabel("Time [s]");
g1.set_ylabel("Correlators' output");
// g1.cmd("set key box opaque");
g1.plot_xy(trk_timestamp_s, prompt, "Prompt", decimate);
g1.plot_xy(trk_timestamp_s, early, "Early", decimate);
g1.plot_xy(trk_timestamp_s, late, "Late", decimate);
if (implementation == "Galileo_E1_DLL_PLL_VEML_Tracking")
{
g1.plot_xy(trk_timestamp_s, v_early, "Very Early", decimate);
g1.plot_xy(trk_timestamp_s, v_late, "Very Late", decimate);
}
g1.set_legend();
g1.savetops("Correlators_outputs");
Gnuplot g2("points");
g2.showonscreen(); // window output
#if USE_GLOG_AND_GFLAGS
if (!FLAGS_enable_external_signal_file)
{
g2.set_title(std::to_string(generator_CN0_values.at(current_cn0_idx)) + " dB-Hz Constellation " + "PLL/DLL BW: " + std::to_string(FLAGS_PLL_bw_hz_start) + "," + std::to_string(FLAGS_DLL_bw_hz_start) + " [Hz], (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
}
else
{
g2.set_title("D_e=" + std::to_string(acq_doppler_error_hz_values.at(current_acq_doppler_error_idx)) + " [Hz] " + "T_e= " + std::to_string(acq_delay_error_chips_values.at(current_acq_doppler_error_idx).at(current_acq_code_error_idx)) + " [Chips], PLL/DLL BW: " + std::to_string(FLAGS_PLL_bw_hz_start) + "," + std::to_string(FLAGS_DLL_bw_hz_start) + " [Hz], (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
}
#else
if (!absl::GetFlag(FLAGS_enable_external_signal_file))
{
g2.set_title(std::to_string(generator_CN0_values.at(current_cn0_idx)) + " dB-Hz Constellation " + "PLL/DLL BW: " + std::to_string(absl::GetFlag(FLAGS_PLL_bw_hz_start)) + "," + std::to_string(absl::GetFlag(FLAGS_DLL_bw_hz_start)) + " [Hz], (PRN #" + std::to_string(absl::GetFlag(FLAGS_test_satellite_PRN)) + ")");
}
else
{
g2.set_title("D_e=" + std::to_string(acq_doppler_error_hz_values.at(current_acq_doppler_error_idx)) + " [Hz] " + "T_e= " + std::to_string(acq_delay_error_chips_values.at(current_acq_doppler_error_idx).at(current_acq_code_error_idx)) + " [Chips], PLL/DLL BW: " + std::to_string(absl::GetFlag(FLAGS_PLL_bw_hz_start)) + "," + std::to_string(absl::GetFlag(FLAGS_DLL_bw_hz_start)) + " [Hz], (PRN #" + std::to_string(absl::GetFlag(FLAGS_test_satellite_PRN)) + ")");
}
#endif
g2.set_grid();
g2.set_xlabel("Inphase");
g2.set_ylabel("Quadrature");
// g2.cmd("set size ratio -1");
g2.plot_xy(promptI, promptQ);
g2.savetops("Constellation");
Gnuplot g3("linespoints");
#if USE_GLOG_AND_GFLAGS
if (!FLAGS_enable_external_signal_file)
{
g3.set_title(std::to_string(generator_CN0_values.at(current_cn0_idx)) + " dB-Hz, GPS L1 C/A tracking CN0 output (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
}
else
{
g3.set_title("D_e=" + std::to_string(acq_doppler_error_hz_values.at(current_acq_doppler_error_idx)) + " [Hz] " + "T_e= " + std::to_string(acq_delay_error_chips_values.at(current_acq_doppler_error_idx).at(current_acq_code_error_idx)) + " [Chips] PLL/DLL BW: " + std::to_string(FLAGS_PLL_bw_hz_start) + "," + std::to_string(FLAGS_DLL_bw_hz_start) + " [Hz], (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
}
#else
if (!absl::GetFlag(FLAGS_enable_external_signal_file))
{
g3.set_title(std::to_string(generator_CN0_values.at(current_cn0_idx)) + " dB-Hz, GPS L1 C/A tracking CN0 output (PRN #" + std::to_string(absl::GetFlag(FLAGS_test_satellite_PRN)) + ")");
}
else
{
g3.set_title("D_e=" + std::to_string(acq_doppler_error_hz_values.at(current_acq_doppler_error_idx)) + " [Hz] " + "T_e= " + std::to_string(acq_delay_error_chips_values.at(current_acq_doppler_error_idx).at(current_acq_code_error_idx)) + " [Chips] PLL/DLL BW: " + std::to_string(absl::GetFlag(FLAGS_PLL_bw_hz_start)) + "," + std::to_string(absl::GetFlag(FLAGS_DLL_bw_hz_start)) + " [Hz], (PRN #" + std::to_string(absl::GetFlag(FLAGS_test_satellite_PRN)) + ")");
}
#endif
g3.set_grid();
g3.set_xlabel("Time [s]");
g3.set_ylabel("Reported CN0 [dB-Hz]");
g3.cmd("set key box opaque");
g3.plot_xy(trk_timestamp_s, CN0_dBHz,
std::to_string(static_cast<int>(round(generator_CN0_values.at(current_cn0_idx)))) + "[dB-Hz]", decimate);
g3.set_legend();
g3.savetops("CN0_output");
g3.showonscreen(); // window output
Gnuplot g4("linespoints");
#if USE_GLOG_AND_GFLAGS
if (!FLAGS_enable_external_signal_file)
{
g4.set_title(std::to_string(generator_CN0_values.at(current_cn0_idx)) + " dB-Hz, GPS L1 C/A tracking CN0 output (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
}
else
{
g4.set_title("D_e=" + std::to_string(acq_doppler_error_hz_values.at(current_acq_doppler_error_idx)) + " [Hz] " + "T_e= " + std::to_string(acq_delay_error_chips_values.at(current_acq_doppler_error_idx).at(current_acq_code_error_idx)) + " [Chips] PLL/DLL BW: " + std::to_string(FLAGS_PLL_bw_hz_start) + "," + std::to_string(FLAGS_DLL_bw_hz_start) + " [Hz], (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
}
#else
if (!absl::GetFlag(FLAGS_enable_external_signal_file))
{
g4.set_title(std::to_string(generator_CN0_values.at(current_cn0_idx)) + " dB-Hz, GPS L1 C/A tracking CN0 output (PRN #" + std::to_string(absl::GetFlag(FLAGS_test_satellite_PRN)) + ")");
}
else
{
g4.set_title("D_e=" + std::to_string(acq_doppler_error_hz_values.at(current_acq_doppler_error_idx)) + " [Hz] " + "T_e= " + std::to_string(acq_delay_error_chips_values.at(current_acq_doppler_error_idx).at(current_acq_code_error_idx)) + " [Chips] PLL/DLL BW: " + std::to_string(absl::GetFlag(FLAGS_PLL_bw_hz_start)) + "," + std::to_string(absl::GetFlag(FLAGS_DLL_bw_hz_start)) + " [Hz], (PRN #" + std::to_string(absl::GetFlag(FLAGS_test_satellite_PRN)) + ")");
}
#endif
g4.set_grid();
g4.set_xlabel("Time [s]");
g4.set_ylabel("Estimated Doppler [Hz]");
g4.cmd("set key box opaque");
g4.plot_xy(trk_timestamp_s, Doppler,
std::to_string(static_cast<int>(round(generator_CN0_values.at(current_cn0_idx)))) + "[dB-Hz]", decimate);
g4.set_legend();
g4.savetops("Doppler");
g4.showonscreen(); // window output
}
}
catch (const GnuplotException& ge)
{
std::cout << ge.what() << '\n';
}
}
} // end plot
2020-02-23 01:43:17 +00:00
} // end acquisition Delay errors loop
} // end acquisition Doppler errors loop
pull_in_results_v_v.push_back(pull_in_results_v);
} // end CN0 LOOP
// build the mesh grid
std::vector<double> doppler_error_mesh;
std::vector<double> code_delay_error_mesh;
for (unsigned int current_acq_doppler_error_idx = 0; current_acq_doppler_error_idx < acq_doppler_error_hz_values.size(); current_acq_doppler_error_idx++)
{
for (unsigned int current_acq_code_error_idx = 0; current_acq_code_error_idx < acq_delay_error_chips_values.at(current_acq_doppler_error_idx).size(); current_acq_code_error_idx++)
{
doppler_error_mesh.push_back(acq_doppler_error_hz_values.at(current_acq_doppler_error_idx));
code_delay_error_mesh.push_back(acq_delay_error_chips_values.at(current_acq_doppler_error_idx).at(current_acq_code_error_idx));
}
}
for (unsigned int current_cn0_idx = 0; current_cn0_idx < generator_CN0_values.size(); current_cn0_idx++)
{
std::vector<double> pull_in_result_mesh;
pull_in_result_mesh = pull_in_results_v_v.at(current_cn0_idx);
// plot grid
Gnuplot g4("points palette pointsize 2 pointtype 7");
#if USE_GLOG_AND_GFLAGS
if (FLAGS_show_plots)
#else
if (absl::GetFlag(FLAGS_show_plots))
#endif
{
g4.showonscreen(); // window output
}
else
{
g4.disablescreen();
}
g4.cmd(R"(set palette defined ( 0 "black", 1 "green" ))");
g4.cmd("set key off");
g4.cmd("set view map");
std::string title;
#if USE_GLOG_AND_GFLAGS
if (!FLAGS_enable_external_signal_file)
{
title = std::string("Tracking Pull-in result grid at CN0:" + std::to_string(static_cast<int>(round(generator_CN0_values.at(current_cn0_idx)))) + " [dB-Hz], PLL/DLL BW: " + std::to_string(FLAGS_PLL_bw_hz_start) + "," + std::to_string(FLAGS_DLL_bw_hz_start) + " [Hz].");
}
else
{
title = std::string("Tracking Pull-in result grid, PLL/DLL BW: " + std::to_string(FLAGS_PLL_bw_hz_start) + "," + std::to_string(FLAGS_DLL_bw_hz_start) + " [Hz], GPS L1 C/A (PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
}
#else
if (!absl::GetFlag(FLAGS_enable_external_signal_file))
{
title = std::string("Tracking Pull-in result grid at CN0:" + std::to_string(static_cast<int>(round(generator_CN0_values.at(current_cn0_idx)))) + " [dB-Hz], PLL/DLL BW: " + std::to_string(absl::GetFlag(FLAGS_PLL_bw_hz_start)) + "," + std::to_string(absl::GetFlag(FLAGS_DLL_bw_hz_start)) + " [Hz].");
}
else
{
title = std::string("Tracking Pull-in result grid, PLL/DLL BW: " + std::to_string(absl::GetFlag(FLAGS_PLL_bw_hz_start)) + "," + std::to_string(absl::GetFlag(FLAGS_DLL_bw_hz_start)) + " [Hz], GPS L1 C/A (PRN #" + std::to_string(absl::GetFlag(FLAGS_test_satellite_PRN)) + ")");
}
#endif
g4.set_title(title);
g4.set_grid();
g4.set_xlabel("Acquisition Doppler error [Hz]");
g4.set_ylabel("Acquisition Code Delay error [Chips]");
g4.cmd("set cbrange[0:1]");
g4.plot_xyz(doppler_error_mesh,
code_delay_error_mesh,
pull_in_result_mesh);
g4.set_legend();
#if USE_GLOG_AND_GFLAGS
if (!FLAGS_enable_external_signal_file)
#else
if (!absl::GetFlag(FLAGS_enable_external_signal_file))
#endif
{
g4.savetops("trk_pull_in_grid_" + std::to_string(static_cast<int>(round(generator_CN0_values.at(current_cn0_idx)))));
g4.savetopdf("trk_pull_in_grid_" + std::to_string(static_cast<int>(round(generator_CN0_values.at(current_cn0_idx)))), 12);
}
else
{
g4.savetops("trk_pull_in_grid_external_file");
g4.savetopdf("trk_pull_in_grid_external_file", 12);
}
}
}