1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-11-15 14:25:00 +00:00
gnss-sdr/src/tests/system-tests/position_test.cc

598 lines
25 KiB
C++
Raw Normal View History

/*!
* \file position_test.cc
* \brief This class implements a test for the validation of computed position.
* \author Carles Fernandez-Prades, 2016. cfernandez(at)cttc.es
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include <chrono>
#include <cmath>
#include <fstream>
#include <numeric>
#include <thread>
#include <gflags/gflags.h>
#include <glog/logging.h>
#include <gtest/gtest.h>
#include "concurrent_map.h"
#include "concurrent_queue.h"
#include "control_thread.h"
#include "in_memory_configuration.h"
#include "file_configuration.h"
#include "MATH_CONSTANTS.h"
#include "signal_generator_flags.h"
DEFINE_string(config_file_ptest, std::string(""), "File containing the configuration parameters for the position test.");
// For GPS NAVIGATION (L1)
concurrent_queue<Gps_Acq_Assist> global_gps_acq_assist_queue;
concurrent_map<Gps_Acq_Assist> global_gps_acq_assist_map;
class StaticPositionSystemTest: public ::testing::Test
{
public:
std::string generator_binary;
std::string p1;
std::string p2;
std::string p3;
std::string p4;
std::string p5;
const double baseband_sampling_freq = static_cast<double>(FLAGS_fs_gen_hz);
std::string filename_rinex_obs = FLAGS_filename_rinex_obs;
std::string filename_raw_data = FLAGS_filename_raw_data;
int configure_generator();
int generate_signal();
int configure_receiver();
int run_receiver();
void check_results();
double compute_stdev_precision(const std::vector<double> & vec);
double compute_stdev_accuracy(const std::vector<double> & vec, double ref);
void geodetic2Enu(const double latitude, const double longitude, const double altitude,
double* east, double* north, double* up);
std::shared_ptr<InMemoryConfiguration> config;
std::shared_ptr<FileConfiguration> config_f;
std::string generated_kml_file;
private:
void geodetic2Ecef(const double latitude, const double longitude, const double altitude,
double* x, double* y, double* z);
};
void StaticPositionSystemTest::geodetic2Ecef(const double latitude, const double longitude, const double altitude,
double* x, double* y, double* z)
{
const double a = 6378137.0; // WGS84
const double b = 6356752.314245; // WGS84
double aux_x, aux_y, aux_z;
// Convert to ECEF (See https://en.wikipedia.org/wiki/Geographic_coordinate_conversion#From_geodetic_to_ECEF_coordinates )
const double cLat = cos(latitude);
const double cLon = cos(longitude);
const double sLon = sin(longitude);
const double sLat = sin(latitude);
double N = std::pow(a, 2.0) / sqrt(std::pow(a, 2.0) * std::pow(cLat, 2.0) + std::pow(b, 2.0) * std::pow(sLat, 2.0));
aux_x = (N + altitude) * cLat * cLon;
aux_y = (N + altitude) * cLat * sLon;
aux_z = ((std::pow(b, 2.0) / std::pow(a, 2.0)) * N + altitude) * sLat;
*x = aux_x;
*y = aux_y;
*z = aux_z;
}
void StaticPositionSystemTest::geodetic2Enu(const double latitude, const double longitude, const double altitude,
double* east, double* north, double* up)
{
double x, y, z;
const double d2r = PI / 180.0;
geodetic2Ecef(latitude * d2r, longitude * d2r, altitude, &x, &y, &z);
double aux_north, aux_east, aux_down;
std::istringstream iss2(FLAGS_static_position);
std::string str_aux;
std::getline(iss2, str_aux, ',');
double ref_long = std::stod(str_aux);
std::getline(iss2, str_aux, ',');
double ref_lat = std::stod(str_aux);
std::getline(iss2, str_aux, '\n');
double ref_h = std::stod(str_aux);
double ref_x, ref_y, ref_z;
geodetic2Ecef(ref_lat * d2r, ref_long * d2r, ref_h, &ref_x, &ref_y, &ref_z);
double aux_x = x - ref_x;
double aux_y = y - ref_y;
double aux_z = z - ref_z;
// ECEF to NED matrix
double phiP = atan2(ref_z, sqrt(std::pow(ref_x, 2.0) + std::pow(ref_y, 2.0)));
const double sLat = sin(phiP);
const double sLon = sin(ref_long * d2r);
const double cLat = cos(phiP);
const double cLon = cos(ref_long * d2r);
aux_north = -aux_x * sLat * cLon - aux_y * sLon + aux_z * cLat * cLon;
aux_east = -aux_x * sLat * sLon + aux_y * cLon + aux_z * cLat * sLon;
aux_down = aux_x * cLat + aux_z * sLat;
*east = aux_east;
*north = aux_north;
*up = -aux_down;
}
double StaticPositionSystemTest::compute_stdev_precision(const std::vector<double> & vec)
{
double sum__ = std::accumulate(vec.begin(), vec.end(), 0.0);
double mean__ = sum__ / vec.size();
double accum__ = 0.0;
std::for_each (std::begin(vec), std::end(vec), [&](const double d) {
accum__ += (d - mean__) * (d - mean__);
});
double stdev__ = std::sqrt(accum__ / (vec.size() - 1));
return stdev__;
}
double StaticPositionSystemTest::compute_stdev_accuracy(const std::vector<double> & vec, const double ref)
{
const double mean__ = ref;
double accum__ = 0.0;
std::for_each (std::begin(vec), std::end(vec), [&](const double d) {
accum__ += (d - mean__) * (d - mean__);
});
double stdev__ = std::sqrt(accum__ / (vec.size() - 1));
return stdev__;
}
int StaticPositionSystemTest::configure_generator()
{
// Configure signal generator
generator_binary = FLAGS_generator_binary;
p1 = std::string("-rinex_nav_file=") + FLAGS_rinex_nav_file;
if(FLAGS_dynamic_position.empty())
{
p2 = std::string("-static_position=") + FLAGS_static_position + std::string(",") + std::to_string(std::min(FLAGS_duration * 10, 3000));
if(FLAGS_duration > 300) std::cout << "WARNING: Duration has been set to its maximum value of 300 s" << std::endl;
}
else
{
p2 = std::string("-obs_pos_file=") + std::string(FLAGS_dynamic_position);
}
p3 = std::string("-rinex_obs_file=") + FLAGS_filename_rinex_obs; // RINEX 2.10 observation file output
p4 = std::string("-sig_out_file=") + FLAGS_filename_raw_data; // Baseband signal output file. Will be stored in int8_t IQ multiplexed samples
p5 = std::string("-sampling_freq=") + std::to_string(baseband_sampling_freq); //Baseband sampling frequency [MSps]
return 0;
}
int StaticPositionSystemTest::generate_signal()
{
pid_t wait_result;
int child_status;
char *const parmList[] = { &generator_binary[0], &generator_binary[0], &p1[0], &p2[0], &p3[0], &p4[0], &p5[0], NULL };
int pid;
if ((pid = fork()) == -1)
perror("fork error");
else if (pid == 0)
{
execv(&generator_binary[0], parmList);
std::cout << "Return not expected. Must be an execv error." << std::endl;
std::terminate();
}
wait_result = waitpid(pid, &child_status, 0);
if (wait_result == -1) perror("waitpid error");
return 0;
}
int StaticPositionSystemTest::configure_receiver()
{
if(FLAGS_config_file_ptest.empty())
{
config = std::make_shared<InMemoryConfiguration>();
const int sampling_rate_internal = baseband_sampling_freq;
const int number_of_taps = 11;
const int number_of_bands = 2;
const float band1_begin = 0.0;
const float band1_end = 0.48;
const float band2_begin = 0.52;
const float band2_end = 1.0;
const float ampl1_begin = 1.0;
const float ampl1_end = 1.0;
const float ampl2_begin = 0.0;
const float ampl2_end = 0.0;
const float band1_error = 1.0;
const float band2_error = 1.0;
const int grid_density = 16;
const int decimation_factor = 1;
const float zero = 0.0;
const int number_of_channels = 8;
const int in_acquisition = 1;
const float threshold = 0.01;
const float doppler_max = 8000.0;
const float doppler_step = 500.0;
const int max_dwells = 1;
const int tong_init_val = 2;
const int tong_max_val = 10;
const int tong_max_dwells = 30;
const int coherent_integration_time_ms = 1;
const float pll_bw_hz = 30.0;
const float dll_bw_hz = 4.0;
const float early_late_space_chips = 0.5;
const float pll_bw_narrow_hz = 20.0;
const float dll_bw_narrow_hz = 2.0;
const int extend_correlation_ms = 1;
const int display_rate_ms = 1000;
const int output_rate_ms = 1000;
config->set_property("GNSS-SDR.internal_fs_hz", std::to_string(sampling_rate_internal));
// Set the assistance system parameters
config->set_property("GNSS-SDR.SUPL_read_gps_assistance_xml", "false");
config->set_property("GNSS-SDR.SUPL_gps_enabled", "false");
config->set_property("GNSS-SDR.SUPL_gps_ephemeris_server", "supl.google.com");
config->set_property("GNSS-SDR.SUPL_gps_ephemeris_port", std::to_string(7275));
config->set_property("GNSS-SDR.SUPL_gps_acquisition_server", "supl.google.com");
config->set_property("GNSS-SDR.SUPL_gps_acquisition_port", std::to_string(7275));
config->set_property("GNSS-SDR.SUPL_MCC", std::to_string(244));
config->set_property("GNSS-SDR.SUPL_MNS", std::to_string(5));
config->set_property("GNSS-SDR.SUPL_LAC", "0x59e2");
config->set_property("GNSS-SDR.SUPL_CI", "0x31b0");
// Set the Signal Source
config->set_property("SignalSource.implementation", "File_Signal_Source");
config->set_property("SignalSource.filename", "./" + filename_raw_data);
config->set_property("SignalSource.sampling_frequency", std::to_string(sampling_rate_internal));
config->set_property("SignalSource.item_type", "ibyte");
config->set_property("SignalSource.samples", std::to_string(zero));
// Set the Signal Conditioner
config->set_property("SignalConditioner.implementation", "Signal_Conditioner");
config->set_property("DataTypeAdapter.implementation", "Ibyte_To_Complex");
config->set_property("InputFilter.implementation", "Fir_Filter");
config->set_property("InputFilter.dump", "false");
config->set_property("InputFilter.input_item_type", "gr_complex");
config->set_property("InputFilter.output_item_type", "gr_complex");
config->set_property("InputFilter.taps_item_type", "float");
config->set_property("InputFilter.number_of_taps", std::to_string(number_of_taps));
config->set_property("InputFilter.number_of_bands", std::to_string(number_of_bands));
config->set_property("InputFilter.band1_begin", std::to_string(band1_begin));
config->set_property("InputFilter.band1_end", std::to_string(band1_end));
config->set_property("InputFilter.band2_begin", std::to_string(band2_begin));
config->set_property("InputFilter.band2_end", std::to_string(band2_end));
config->set_property("InputFilter.ampl1_begin", std::to_string(ampl1_begin));
config->set_property("InputFilter.ampl1_end", std::to_string(ampl1_end));
config->set_property("InputFilter.ampl2_begin", std::to_string(ampl2_begin));
config->set_property("InputFilter.ampl2_end", std::to_string(ampl2_end));
config->set_property("InputFilter.band1_error", std::to_string(band1_error));
config->set_property("InputFilter.band2_error", std::to_string(band2_error));
config->set_property("InputFilter.filter_type", "bandpass");
config->set_property("InputFilter.grid_density", std::to_string(grid_density));
config->set_property("InputFilter.sampling_frequency", std::to_string(sampling_rate_internal));
config->set_property("InputFilter.IF", std::to_string(zero));
config->set_property("Resampler.implementation", "Pass_Through");
config->set_property("Resampler.dump", "false");
config->set_property("Resampler.item_type", "gr_complex");
config->set_property("Resampler.sample_freq_in", std::to_string(sampling_rate_internal));
config->set_property("Resampler.sample_freq_out", std::to_string(sampling_rate_internal));
// Set the number of Channels
config->set_property("Channels_1C.count", std::to_string(number_of_channels));
config->set_property("Channels.in_acquisition", std::to_string(in_acquisition));
config->set_property("Channel.signal", "1C");
// Set Acquisition
config->set_property("Acquisition_1C.implementation", "GPS_L1_CA_PCPS_Tong_Acquisition");
config->set_property("Acquisition_1C.item_type", "gr_complex");
config->set_property("Acquisition_1C.if", std::to_string(zero));
config->set_property("Acquisition_1C.coherent_integration_time_ms", std::to_string(coherent_integration_time_ms));
config->set_property("Acquisition_1C.threshold", std::to_string(threshold));
config->set_property("Acquisition_1C.doppler_max", std::to_string(doppler_max));
config->set_property("Acquisition_1C.doppler_step", std::to_string(doppler_step));
config->set_property("Acquisition_1C.bit_transition_flag", "false");
config->set_property("Acquisition_1C.max_dwells", std::to_string(max_dwells));
config->set_property("Acquisition_1C.tong_init_val", std::to_string(tong_init_val));
config->set_property("Acquisition_1C.tong_max_val", std::to_string(tong_max_val));
config->set_property("Acquisition_1C.tong_max_dwells", std::to_string(tong_max_dwells));
// Set Tracking
config->set_property("Tracking_1C.implementation", "GPS_L1_CA_DLL_PLL_Tracking");
//config->set_property("Tracking_1C.implementation", "GPS_L1_CA_DLL_PLL_C_Aid_Tracking");
config->set_property("Tracking_1C.item_type", "gr_complex");
config->set_property("Tracking_1C.if", std::to_string(zero));
config->set_property("Tracking_1C.dump", "false");
config->set_property("Tracking_1C.dump_filename", "./tracking_ch_");
config->set_property("Tracking_1C.pll_bw_hz", std::to_string(pll_bw_hz));
config->set_property("Tracking_1C.dll_bw_hz", std::to_string(dll_bw_hz));
config->set_property("Tracking_1C.early_late_space_chips", std::to_string(early_late_space_chips));
config->set_property("Tracking_1C.pll_bw_narrow_hz", std::to_string(pll_bw_narrow_hz));
config->set_property("Tracking_1C.dll_bw_narrow_hz", std::to_string(dll_bw_narrow_hz));
config->set_property("Tracking_1C.extend_correlation_ms", std::to_string(extend_correlation_ms));
// Set Telemetry
config->set_property("TelemetryDecoder_1C.implementation", "GPS_L1_CA_Telemetry_Decoder");
config->set_property("TelemetryDecoder_1C.dump", "false");
config->set_property("TelemetryDecoder_1C.decimation_factor", std::to_string(decimation_factor));
// Set Observables
config->set_property("Observables.implementation", "Hybrid_Observables");
config->set_property("Observables.dump", "false");
config->set_property("Observables.dump_filename", "./observables.dat");
// Set PVT
config->set_property("PVT.implementation", "RTKLIB_PVT");
config->set_property("PVT.output_rate_ms", std::to_string(output_rate_ms));
config->set_property("PVT.display_rate_ms", std::to_string(display_rate_ms));
config->set_property("PVT.dump_filename", "./PVT");
config->set_property("PVT.nmea_dump_filename", "./gnss_sdr_pvt.nmea");
config->set_property("PVT.flag_nmea_tty_port", "false");
config->set_property("PVT.nmea_dump_devname", "/dev/pts/4");
config->set_property("PVT.flag_rtcm_server", "false");
config->set_property("PVT.flag_rtcm_tty_port", "false");
config->set_property("PVT.rtcm_dump_devname", "/dev/pts/1");
config->set_property("PVT.dump", "false");
config->set_property("PVT.rinex_version", std::to_string(2));
config->set_property("PVT.positioning_mode", "PPP_Static");
config->set_property("PVT.iono_model", "OFF");
config->set_property("PVT.trop_model", "OFF");
config->set_property("PVT.AR_GPS", "PPP-AR");
config_f = 0;
}
else
{
config_f = std::make_shared<FileConfiguration>(FLAGS_config_file_ptest);
config = 0;
}
return 0;
}
int StaticPositionSystemTest::run_receiver()
{
std::shared_ptr<ControlThread> control_thread;
if(FLAGS_config_file_ptest.empty())
{
control_thread = std::make_shared<ControlThread>(config);
}
else
{
control_thread = std::make_shared<ControlThread>(config_f);
}
// start receiver
try
{
control_thread->run();
}
catch(const boost::exception & e)
{
std::cout << "Boost exception: " << boost::diagnostic_information(e);
}
catch(const std::exception & ex)
{
std::cout << "STD exception: " << ex.what();
}
// Get the name of the KML file generated by the receiver
std::this_thread::sleep_for(std::chrono::milliseconds(2000));
FILE *fp;
std::string argum2 = std::string("/bin/ls *kml | tail -1");
char buffer[1035];
fp = popen(&argum2[0], "r");
if (fp == NULL)
{
std::cout << "Failed to run command: " << argum2 << std::endl;
return -1;
}
while (fgets(buffer, sizeof(buffer), fp) != NULL)
{
std::string aux = std::string(buffer);
2017-04-22 21:50:21 +00:00
EXPECT_EQ(aux.empty(), false);
StaticPositionSystemTest::generated_kml_file = aux.erase(aux.length() - 1, 1);
}
pclose(fp);
EXPECT_EQ(StaticPositionSystemTest::generated_kml_file.empty(), false);
return 0;
}
void StaticPositionSystemTest::check_results()
{
std::fstream myfile(StaticPositionSystemTest::generated_kml_file, std::ios_base::in);
std::string line;
std::vector<double> pos_e;
std::vector<double> pos_n;
std::vector<double> pos_u;
// Skip header
std::getline(myfile, line);
bool is_header = true;
while(is_header)
{
std::getline(myfile, line);
std::size_t found = line.find("<coordinates>");
if (found != std::string::npos) is_header = false;
}
bool is_data = true;
//read data
while(is_data)
{
std::getline(myfile, line);
std::size_t found = line.find("</coordinates>");
if (found != std::string::npos) is_data = false;
else
{
std::string str2;
std::istringstream iss(line);
double value;
double lat, longitude, h;
for (int i = 0; i < 3; i++)
{
std::getline(iss, str2, ',');
value = std::stod(str2);
if(i == 0) lat = value;
if(i == 1) longitude = value;
if(i == 2) h = value;
}
double north, east, up;
geodetic2Enu(lat, longitude, h, &east, &north, &up);
//std::cout << "E = " << east << ", N = " << north << " U = " << up << std::endl;
pos_e.push_back(east);
pos_n.push_back(north);
pos_u.push_back(up);
}
}
myfile.close();
double sigma_E_2_precision = std::pow(compute_stdev_precision(pos_e), 2.0);
double sigma_N_2_precision = std::pow(compute_stdev_precision(pos_n), 2.0);
double sigma_U_2_precision = std::pow(compute_stdev_precision(pos_u), 2.0);
double sigma_E_2_accuracy = std::pow(compute_stdev_accuracy(pos_e, 0.0), 2.0);
double sigma_N_2_accuracy = std::pow(compute_stdev_accuracy(pos_n, 0.0), 2.0);
double sigma_U_2_accuracy = std::pow(compute_stdev_accuracy(pos_u, 0.0), 2.0);
double sum__e = std::accumulate(pos_e.begin(), pos_e.end(), 0.0);
double mean__e = sum__e / pos_e.size();
double sum__n = std::accumulate(pos_n.begin(), pos_n.end(), 0.0);
double mean__n = sum__n / pos_n.size();
double sum__u = std::accumulate(pos_u.begin(), pos_u.end(), 0.0);
double mean__u = sum__u / pos_u.size();
if(FLAGS_config_file_ptest.empty())
{
std::cout << "---- ACCURACY ----" << std::endl;
std::cout << "2DRMS = " << 2 * sqrt(sigma_E_2_accuracy + sigma_N_2_accuracy) << " [m]" << std::endl;
std::cout << "DRMS = " << sqrt(sigma_E_2_accuracy + sigma_N_2_accuracy) << " [m]" << std::endl;
std::cout << "CEP = " << 0.62 * compute_stdev_accuracy(pos_n, 0.0) + 0.56 * compute_stdev_accuracy(pos_e, 0.0) << " [m]" << std::endl;
std::cout << "99% SAS = " << 1.122 * (sigma_E_2_accuracy + sigma_N_2_accuracy + sigma_U_2_accuracy) << " [m]" << std::endl;
std::cout << "90% SAS = " << 0.833 * (sigma_E_2_accuracy + sigma_N_2_accuracy + sigma_U_2_accuracy) << " [m]" << std::endl;
std::cout << "MRSE = " << sqrt(sigma_E_2_accuracy + sigma_N_2_accuracy + sigma_U_2_accuracy) << " [m]" << std::endl;
std::cout << "SEP = " << 0.51 * (sigma_E_2_accuracy + sigma_N_2_accuracy + sigma_U_2_accuracy) << " [m]" << std::endl;
std::cout << "Bias 2D = " << sqrt(std::pow(mean__e, 2.0) + std::pow(mean__n, 2.0)) << " [m]" << std::endl;
std::cout << "Bias 3D = " << sqrt(std::pow(mean__e, 2.0) + std::pow(mean__n, 2.0) + std::pow(mean__u, 2.0)) << " [m]" << std::endl;
std::cout << std::endl;
}
std::cout << "---- PRECISION ----" << std::endl;
std::cout << "2DRMS = " << 2 * sqrt(sigma_E_2_precision + sigma_N_2_precision) << " [m]" << std::endl;
std::cout << "DRMS = " << sqrt(sigma_E_2_precision + sigma_N_2_precision) << " [m]" << std::endl;
std::cout << "CEP = " << 0.62 * compute_stdev_precision(pos_n) + 0.56 * compute_stdev_precision(pos_e) << " [m]" << std::endl;
std::cout << "99% SAS = " << 1.122 * (sigma_E_2_precision + sigma_N_2_precision + sigma_U_2_precision) << " [m]" << std::endl;
std::cout << "90% SAS = " << 0.833 * (sigma_E_2_precision + sigma_N_2_precision + sigma_U_2_precision) << " [m]" << std::endl;
std::cout << "MRSE = " << sqrt(sigma_E_2_precision + sigma_N_2_precision + sigma_U_2_precision) << " [m]" << std::endl;
std::cout << "SEP = " << 0.51 * (sigma_E_2_precision + sigma_N_2_precision + sigma_U_2_precision) << " [m]" << std::endl;
// Sanity Check
double precision_SEP = 0.51 * (sigma_E_2_precision + sigma_N_2_precision + sigma_U_2_precision);
ASSERT_LT(precision_SEP, 20.0);
}
TEST_F(StaticPositionSystemTest, Position_system_test)
{
if(FLAGS_config_file_ptest.empty())
{
// Configure the signal generator
configure_generator();
// Generate signal raw signal samples and observations RINEX file
if(!FLAGS_disable_generator)
{
generate_signal();
}
}
// Configure receiver
configure_receiver();
// Run the receiver
EXPECT_EQ( run_receiver(), 0) << "Problem executing the software-defined signal generator";
// Check results
check_results();
}
int main(int argc, char **argv)
{
std::cout << "Running Position precision test..." << std::endl;
int res = 0;
try
{
testing::InitGoogleTest(&argc, argv);
}
catch(...) {} // catch the "testing::internal::<unnamed>::ClassUniqueToAlwaysTrue" from gtest
google::ParseCommandLineFlags(&argc, &argv, true);
google::InitGoogleLogging(argv[0]);
// Run the Tests
try
{
res = RUN_ALL_TESTS();
}
catch(...)
{
LOG(WARNING) << "Unexpected catch";
}
google::ShutDownCommandLineFlags();
return res;
}