1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-16 21:20:34 +00:00
gnss-sdr/src/tests/unit-tests/signal-processing-blocks/libs/acquisition_dump_reader.cc

247 lines
8.0 KiB
C++
Raw Normal View History

2017-10-28 16:15:59 +00:00
/*!
* \file acquisition_dump_reader.cc
* \brief Helper file for unit testing
2018-01-25 16:28:34 +00:00
* \authors Carles Fernandez-Prades, 2017. cfernandez(at)cttc.es
* Antonio Ramos, 2018. antonio.ramos(at)cttc.es
*
2017-10-28 16:15:59 +00:00
*
* -------------------------------------------------------------------------
*
2018-01-25 16:28:34 +00:00
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
2017-10-28 16:15:59 +00:00
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
2017-10-28 16:15:59 +00:00
*
* -------------------------------------------------------------------------
*/
#include "acquisition_dump_reader.h"
#include <matio.h>
#include <cmath>
#include <iostream>
2017-10-28 16:15:59 +00:00
bool acquisition_dump_reader::read_binary_acq()
{
2018-01-25 16:28:34 +00:00
mat_t* matfile = Mat_Open(d_dump_filename.c_str(), MAT_ACC_RDONLY);
2018-12-03 09:05:47 +00:00
if (matfile == nullptr)
{
std::cout << "¡¡¡Unreachable Acquisition dump file!!!" << std::endl;
return false;
}
matvar_t* var_ = Mat_VarRead(matfile, "acq_grid");
2018-12-03 09:05:47 +00:00
if (var_ == nullptr)
{
std::cout << "¡¡¡Unreachable grid variable into Acquisition dump file!!!" << std::endl;
Mat_Close(matfile);
return false;
}
if (var_->rank != 2)
{
std::cout << "Invalid Acquisition dump file: rank error" << std::endl;
Mat_VarFree(var_);
Mat_Close(matfile);
return false;
}
if ((var_->dims[0] != d_samples_per_code) or (var_->dims[1] != d_num_doppler_bins))
{
std::cout << "Invalid Acquisition dump file: dimension matrix error" << std::endl;
if (var_->dims[0] != d_samples_per_code)
{
std::cout << "Expected " << d_samples_per_code << " samples per code. Obtained " << var_->dims[0] << std::endl;
}
if (var_->dims[1] != d_num_doppler_bins)
{
std::cout << "Expected " << d_num_doppler_bins << " Doppler bins. Obtained " << var_->dims[1] << std::endl;
}
Mat_VarFree(var_);
Mat_Close(matfile);
return false;
}
if (var_->data_type != MAT_T_SINGLE)
{
std::cout << "Invalid Acquisition dump file: data type error" << std::endl;
Mat_VarFree(var_);
Mat_Close(matfile);
return false;
}
2018-06-21 10:21:35 +00:00
matvar_t* var2_ = Mat_VarRead(matfile, "doppler_max");
d_doppler_max = *static_cast<unsigned int*>(var2_->data);
Mat_VarFree(var2_);
var2_ = Mat_VarRead(matfile, "doppler_step");
d_doppler_step = *static_cast<unsigned int*>(var2_->data);
Mat_VarFree(var2_);
var2_ = Mat_VarRead(matfile, "input_power");
2018-06-21 10:54:36 +00:00
input_power = *static_cast<float*>(var2_->data);
Mat_VarFree(var2_);
var2_ = Mat_VarRead(matfile, "acq_doppler_hz");
acq_doppler_hz = *static_cast<float*>(var2_->data);
Mat_VarFree(var2_);
var2_ = Mat_VarRead(matfile, "acq_delay_samples");
acq_delay_samples = *static_cast<float*>(var2_->data);
Mat_VarFree(var2_);
var2_ = Mat_VarRead(matfile, "test_statistic");
test_statistic = *static_cast<float*>(var2_->data);
Mat_VarFree(var2_);
var2_ = Mat_VarRead(matfile, "threshold");
threshold = *static_cast<float*>(var2_->data);
Mat_VarFree(var2_);
var2_ = Mat_VarRead(matfile, "sample_counter");
sample_counter = *static_cast<uint64_t*>(var2_->data);
2018-06-21 10:54:36 +00:00
Mat_VarFree(var2_);
var2_ = Mat_VarRead(matfile, "d_positive_acq");
positive_acq = *static_cast<int*>(var2_->data);
2018-06-21 10:21:35 +00:00
Mat_VarFree(var2_);
2018-08-09 10:56:27 +00:00
var2_ = Mat_VarRead(matfile, "num_dwells");
num_dwells = *static_cast<int*>(var2_->data);
Mat_VarFree(var2_);
var2_ = Mat_VarRead(matfile, "PRN");
PRN = *static_cast<int*>(var2_->data);
Mat_VarFree(var2_);
2018-01-25 16:28:34 +00:00
std::vector<std::vector<float> >::iterator it1;
std::vector<float>::iterator it2;
auto* aux = static_cast<float*>(var_->data);
2018-01-25 16:28:34 +00:00
int k = 0;
float normalization_factor = std::pow(d_samples_per_code, 4) * input_power;
for (it1 = mag.begin(); it1 != mag.end(); it1++)
2017-10-28 16:15:59 +00:00
{
for (it2 = it1->begin(); it2 != it1->end(); it2++)
{
*it2 = static_cast<float>(aux[k]) / normalization_factor;
k++;
}
2017-10-28 16:15:59 +00:00
}
2018-01-25 16:28:34 +00:00
Mat_VarFree(var_);
Mat_Close(matfile);
2017-10-28 16:15:59 +00:00
return true;
}
acquisition_dump_reader::acquisition_dump_reader(const std::string& basename,
int channel,
int execution)
{
unsigned int sat_ = 0;
unsigned int doppler_max_ = 0;
unsigned int doppler_step_ = 0;
unsigned int samples_per_code_ = 0;
mat_t* matfile = Mat_Open(d_dump_filename.c_str(), MAT_ACC_RDONLY);
2018-12-03 09:05:47 +00:00
if (matfile != nullptr)
{
matvar_t* var_ = Mat_VarRead(matfile, "doppler_max");
doppler_max_ = *static_cast<unsigned int*>(var_->data);
Mat_VarFree(var_);
var_ = Mat_VarRead(matfile, "doppler_step");
doppler_step_ = *static_cast<unsigned int*>(var_->data);
Mat_VarFree(var_);
var_ = Mat_VarRead(matfile, "PRN");
sat_ = *static_cast<int*>(var_->data);
Mat_VarFree(var_);
var_ = Mat_VarRead(matfile, "grid");
samples_per_code_ = var_->dims[0];
Mat_VarFree(var_);
Mat_Close(matfile);
}
else
{
std::cout << "¡¡¡Unreachable Acquisition dump file!!!" << std::endl;
}
2018-07-04 19:00:53 +00:00
acq_doppler_hz = 0.0;
acq_delay_samples = 0.0;
test_statistic = 0.0;
input_power = 0.0;
threshold = 0.0;
positive_acq = 0;
sample_counter = 0;
PRN = 0;
d_sat = 0;
d_doppler_max = doppler_max_;
d_doppler_step = doppler_step_;
d_samples_per_code = samples_per_code_;
d_num_doppler_bins = 0;
2018-08-09 18:14:42 +00:00
num_dwells = 0;
2018-07-04 19:00:53 +00:00
acquisition_dump_reader(basename,
sat_,
doppler_max_,
doppler_step_,
samples_per_code_,
channel,
execution);
}
2018-07-04 19:00:53 +00:00
acquisition_dump_reader::acquisition_dump_reader(const std::string& basename,
unsigned int sat,
unsigned int doppler_max,
unsigned int doppler_step,
unsigned int samples_per_code,
int channel,
int execution)
2017-10-28 16:15:59 +00:00
{
d_basename = basename;
d_sat = sat;
d_doppler_max = doppler_max;
d_doppler_step = doppler_step;
d_samples_per_code = samples_per_code;
2018-06-21 10:54:36 +00:00
acq_doppler_hz = 0.0;
acq_delay_samples = 0.0;
test_statistic = 0.0;
input_power = 0.0;
threshold = 0.0;
positive_acq = 0;
sample_counter = 0;
2018-08-09 10:56:27 +00:00
num_dwells = 0;
PRN = 0;
if (d_doppler_step == 0)
{
d_doppler_step = 1;
}
d_num_doppler_bins = static_cast<unsigned int>(ceil(static_cast<double>(static_cast<int>(d_doppler_max) - static_cast<int>(-d_doppler_max)) / static_cast<double>(d_doppler_step)));
2017-10-28 16:15:59 +00:00
std::vector<std::vector<float> > mag_aux(d_num_doppler_bins, std::vector<float>(d_samples_per_code));
mag = mag_aux;
d_dump_filename = d_basename + "_ch_" + std::to_string(channel) + "_" + std::to_string(execution) + "_sat_" + std::to_string(d_sat) + ".mat";
2017-10-28 16:15:59 +00:00
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
doppler.push_back(-static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index);
}
for (unsigned int k = 0; k < d_samples_per_code; k++)
{
samples.push_back(k);
}
}
acquisition_dump_reader::~acquisition_dump_reader() = default;