1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-11-17 23:34:56 +00:00
gnss-sdr/src/algorithms/libs/opencl/fft_execute.cc

406 lines
14 KiB
C++
Raw Normal View History

//
// File: fft_execute.cpp
//
// Version: <1.0>
//
// Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Inc. ("Apple")
// in consideration of your agreement to the following terms, and your use,
// installation, modification or redistribution of this Apple software
// constitutes acceptance of these terms. If you do not agree with these
// terms, please do not use, install, modify or redistribute this Apple
// software.¬
//
// In consideration of your agreement to abide by the following terms, and
// subject to these terms, Apple grants you a personal, non - exclusive
// license, under Apple's copyrights in this original Apple software ( the
// "Apple Software" ), to use, reproduce, modify and redistribute the Apple
// Software, with or without modifications, in source and / or binary forms;
// provided that if you redistribute the Apple Software in its entirety and
// without modifications, you must retain this notice and the following text
// and disclaimers in all such redistributions of the Apple Software. Neither
// the name, trademarks, service marks or logos of Apple Inc. may be used to
// endorse or promote products derived from the Apple Software without specific
// prior written permission from Apple. Except as expressly stated in this
// notice, no other rights or licenses, express or implied, are granted by
// Apple herein, including but not limited to any patent rights that may be
// infringed by your derivative works or by other works in which the Apple
// Software may be incorporated.
//
// The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO
// WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED
// WARRANTIES OF NON - INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION
// ALONE OR IN COMBINATION WITH YOUR PRODUCTS.
//
// IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR
// CONSEQUENTIAL DAMAGES ( INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION ) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION
// AND / OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER
// UNDER THEORY OF CONTRACT, TORT ( INCLUDING NEGLIGENCE ), STRICT LIABILITY OR
// OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright ( C ) 2008 Apple Inc. All Rights Reserved.
//
////////////////////////////////////////////////////////////////////////////////////////////////////
#include "fft_internal.h"
#include "clFFT.h"
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#define max(a,b) (((a)>(b)) ? (a) : (b))
#define min(a,b) (((a)<(b)) ? (a) : (b))
static cl_int
allocateTemporaryBufferInterleaved(cl_fft_plan *plan, cl_uint batchSize)
{
cl_int err = CL_SUCCESS;
if(plan->temp_buffer_needed && plan->last_batch_size != batchSize)
{
plan->last_batch_size = batchSize;
size_t tmpLength = plan->n.x * plan->n.y * plan->n.z * batchSize * 2 * sizeof(cl_float);
if(plan->tempmemobj)
clReleaseMemObject(plan->tempmemobj);
plan->tempmemobj = clCreateBuffer(plan->context, CL_MEM_READ_WRITE, tmpLength, NULL, &err);
}
return err;
}
static cl_int
allocateTemporaryBufferPlannar(cl_fft_plan *plan, cl_uint batchSize)
{
cl_int err = CL_SUCCESS;
cl_int terr;
if(plan->temp_buffer_needed && plan->last_batch_size != batchSize)
{
plan->last_batch_size = batchSize;
size_t tmpLength = plan->n.x * plan->n.y * plan->n.z * batchSize * sizeof(cl_float);
if(plan->tempmemobj_real)
clReleaseMemObject(plan->tempmemobj_real);
if(plan->tempmemobj_imag)
clReleaseMemObject(plan->tempmemobj_imag);
plan->tempmemobj_real = clCreateBuffer(plan->context, CL_MEM_READ_WRITE, tmpLength, NULL, &err);
plan->tempmemobj_imag = clCreateBuffer(plan->context, CL_MEM_READ_WRITE, tmpLength, NULL, &terr);
err |= terr;
}
return err;
}
void
getKernelWorkDimensions(cl_fft_plan *plan, cl_fft_kernel_info *kernelInfo, cl_int *batchSize, size_t *gWorkItems, size_t *lWorkItems)
{
*lWorkItems = kernelInfo->num_workitems_per_workgroup;
int numWorkGroups = kernelInfo->num_workgroups;
int numXFormsPerWG = kernelInfo->num_xforms_per_workgroup;
switch(kernelInfo->dir)
{
case cl_fft_kernel_x:
*batchSize *= (plan->n.y * plan->n.z);
numWorkGroups = (*batchSize % numXFormsPerWG) ? (*batchSize/numXFormsPerWG + 1) : (*batchSize/numXFormsPerWG);
numWorkGroups *= kernelInfo->num_workgroups;
break;
case cl_fft_kernel_y:
*batchSize *= plan->n.z;
numWorkGroups *= *batchSize;
break;
case cl_fft_kernel_z:
numWorkGroups *= *batchSize;
break;
}
*gWorkItems = numWorkGroups * *lWorkItems;
}
cl_int
clFFT_ExecuteInterleaved( cl_command_queue queue, clFFT_Plan Plan, cl_int batchSize, clFFT_Direction dir,
cl_mem data_in, cl_mem data_out,
cl_int num_events, cl_event *event_list, cl_event *event )
{
int s;
cl_fft_plan *plan = (cl_fft_plan *) Plan;
if(plan->format != clFFT_InterleavedComplexFormat)
return CL_INVALID_VALUE;
cl_int err;
size_t gWorkItems, lWorkItems;
int inPlaceDone;
cl_int isInPlace = data_in == data_out ? 1 : 0;
if((err = allocateTemporaryBufferInterleaved(plan, batchSize)) != CL_SUCCESS)
return err;
cl_mem memObj[3];
memObj[0] = data_in;
memObj[1] = data_out;
memObj[2] = plan->tempmemobj;
cl_fft_kernel_info *kernelInfo = plan->kernel_info;
int numKernels = plan->num_kernels;
int numKernelsOdd = numKernels & 1;
int currRead = 0;
int currWrite = 1;
// at least one external dram shuffle (transpose) required
if(plan->temp_buffer_needed)
{
// in-place transform
if(isInPlace)
{
inPlaceDone = 0;
currRead = 1;
currWrite = 2;
}
else
{
currWrite = (numKernels & 1) ? 1 : 2;
}
while(kernelInfo)
{
if( isInPlace && numKernelsOdd && !inPlaceDone && kernelInfo->in_place_possible)
{
currWrite = currRead;
inPlaceDone = 1;
}
s = batchSize;
getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj[currRead]);
err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj[currWrite]);
err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_int), &dir);
err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_int), &s);
err |= clEnqueueNDRangeKernel(queue, kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, 0, NULL, NULL);
if(err)
return err;
currRead = (currWrite == 1) ? 1 : 2;
currWrite = (currWrite == 1) ? 2 : 1;
kernelInfo = kernelInfo->next;
}
}
// no dram shuffle (transpose required) transform
// all kernels can execute in-place.
else {
while(kernelInfo)
{
s = batchSize;
getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj[currRead]);
err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj[currWrite]);
err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_int), &dir);
err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_int), &s);
err |= clEnqueueNDRangeKernel(queue, kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, 0, NULL, NULL);
if(err)
return err;
currRead = 1;
currWrite = 1;
kernelInfo = kernelInfo->next;
}
}
return err;
}
cl_int
clFFT_ExecutePlannar( cl_command_queue queue, clFFT_Plan Plan, cl_int batchSize, clFFT_Direction dir,
cl_mem data_in_real, cl_mem data_in_imag, cl_mem data_out_real, cl_mem data_out_imag,
cl_int num_events, cl_event *event_list, cl_event *event)
{
int s;
cl_fft_plan *plan = (cl_fft_plan *) Plan;
if(plan->format != clFFT_SplitComplexFormat)
return CL_INVALID_VALUE;
cl_int err;
size_t gWorkItems, lWorkItems;
int inPlaceDone;
cl_int isInPlace = ((data_in_real == data_out_real) && (data_in_imag == data_out_imag)) ? 1 : 0;
if((err = allocateTemporaryBufferPlannar(plan, batchSize)) != CL_SUCCESS)
return err;
cl_mem memObj_real[3];
cl_mem memObj_imag[3];
memObj_real[0] = data_in_real;
memObj_real[1] = data_out_real;
memObj_real[2] = plan->tempmemobj_real;
memObj_imag[0] = data_in_imag;
memObj_imag[1] = data_out_imag;
memObj_imag[2] = plan->tempmemobj_imag;
cl_fft_kernel_info *kernelInfo = plan->kernel_info;
int numKernels = plan->num_kernels;
int numKernelsOdd = numKernels & 1;
int currRead = 0;
int currWrite = 1;
// at least one external dram shuffle (transpose) required
if(plan->temp_buffer_needed)
{
// in-place transform
if(isInPlace)
{
inPlaceDone = 0;
currRead = 1;
currWrite = 2;
}
else
{
currWrite = (numKernels & 1) ? 1 : 2;
}
while(kernelInfo)
{
if( isInPlace && numKernelsOdd && !inPlaceDone && kernelInfo->in_place_possible)
{
currWrite = currRead;
inPlaceDone = 1;
}
s = batchSize;
getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj_real[currRead]);
err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj_imag[currRead]);
err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_mem), &memObj_real[currWrite]);
err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_mem), &memObj_imag[currWrite]);
err |= clSetKernelArg(kernelInfo->kernel, 4, sizeof(cl_int), &dir);
err |= clSetKernelArg(kernelInfo->kernel, 5, sizeof(cl_int), &s);
err |= clEnqueueNDRangeKernel(queue, kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, 0, NULL, NULL);
if(err)
return err;
currRead = (currWrite == 1) ? 1 : 2;
currWrite = (currWrite == 1) ? 2 : 1;
kernelInfo = kernelInfo->next;
}
}
// no dram shuffle (transpose required) transform
else {
while(kernelInfo)
{
s = batchSize;
getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj_real[currRead]);
err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj_imag[currRead]);
err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_mem), &memObj_real[currWrite]);
err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_mem), &memObj_imag[currWrite]);
err |= clSetKernelArg(kernelInfo->kernel, 4, sizeof(cl_int), &dir);
err |= clSetKernelArg(kernelInfo->kernel, 5, sizeof(cl_int), &s);
err |= clEnqueueNDRangeKernel(queue, kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, 0, NULL, NULL);
if(err)
return err;
currRead = 1;
currWrite = 1;
kernelInfo = kernelInfo->next;
}
}
return err;
}
cl_int
clFFT_1DTwistInterleaved(clFFT_Plan Plan, cl_command_queue queue, cl_mem array,
unsigned numRows, unsigned numCols, unsigned startRow, unsigned rowsToProcess, clFFT_Direction dir)
{
cl_fft_plan *plan = (cl_fft_plan *) Plan;
unsigned int N = numRows*numCols;
unsigned int nCols = numCols;
unsigned int sRow = startRow;
unsigned int rToProcess = rowsToProcess;
int d = dir;
int err = 0;
cl_device_id device_id;
err = clGetCommandQueueInfo(queue, CL_QUEUE_DEVICE, sizeof(cl_device_id), &device_id, NULL);
if(err)
return err;
size_t gSize;
err = clGetKernelWorkGroupInfo(plan->twist_kernel, device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &gSize, NULL);
if(err)
return err;
gSize = min(128, gSize);
size_t numGlobalThreads[1] = { max(numCols / gSize, 1)*gSize };
size_t numLocalThreads[1] = { gSize };
err |= clSetKernelArg(plan->twist_kernel, 0, sizeof(cl_mem), &array);
err |= clSetKernelArg(plan->twist_kernel, 1, sizeof(unsigned int), &sRow);
err |= clSetKernelArg(plan->twist_kernel, 2, sizeof(unsigned int), &nCols);
err |= clSetKernelArg(plan->twist_kernel, 3, sizeof(unsigned int), &N);
err |= clSetKernelArg(plan->twist_kernel, 4, sizeof(unsigned int), &rToProcess);
err |= clSetKernelArg(plan->twist_kernel, 5, sizeof(int), &d);
err |= clEnqueueNDRangeKernel(queue, plan->twist_kernel, 1, NULL, numGlobalThreads, numLocalThreads, 0, NULL, NULL);
return err;
}
cl_int
clFFT_1DTwistPlannar(clFFT_Plan Plan, cl_command_queue queue, cl_mem array_real, cl_mem array_imag,
unsigned numRows, unsigned numCols, unsigned startRow, unsigned rowsToProcess, clFFT_Direction dir)
{
cl_fft_plan *plan = (cl_fft_plan *) Plan;
unsigned int N = numRows*numCols;
unsigned int nCols = numCols;
unsigned int sRow = startRow;
unsigned int rToProcess = rowsToProcess;
int d = dir;
int err = 0;
cl_device_id device_id;
err = clGetCommandQueueInfo(queue, CL_QUEUE_DEVICE, sizeof(cl_device_id), &device_id, NULL);
if(err)
return err;
size_t gSize;
err = clGetKernelWorkGroupInfo(plan->twist_kernel, device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &gSize, NULL);
if(err)
return err;
gSize = min(128, gSize);
size_t numGlobalThreads[1] = { max(numCols / gSize, 1)*gSize };
size_t numLocalThreads[1] = { gSize };
err |= clSetKernelArg(plan->twist_kernel, 0, sizeof(cl_mem), &array_real);
err |= clSetKernelArg(plan->twist_kernel, 1, sizeof(cl_mem), &array_imag);
err |= clSetKernelArg(plan->twist_kernel, 2, sizeof(unsigned int), &sRow);
err |= clSetKernelArg(plan->twist_kernel, 3, sizeof(unsigned int), &nCols);
err |= clSetKernelArg(plan->twist_kernel, 4, sizeof(unsigned int), &N);
err |= clSetKernelArg(plan->twist_kernel, 5, sizeof(unsigned int), &rToProcess);
err |= clSetKernelArg(plan->twist_kernel, 6, sizeof(int), &d);
err |= clEnqueueNDRangeKernel(queue, plan->twist_kernel, 1, NULL, numGlobalThreads, numLocalThreads, 0, NULL, NULL);
return err;
}