1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-07-04 10:53:17 +00:00
gnss-sdr/src/tests/system-tests/libs/geofunctions.cc

461 lines
15 KiB
C++
Raw Normal View History

/*!
* \file geofunctions.cc
* \brief A set of coordinate transformations functions and helpers,
* some of them migrated from MATLAB, for geographic information systems.
* \author Javier Arribas, 2018. jarribas(at)cttc.es
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "geofunctions.h"
const double STRP_G_SI = 9.80665;
const double STRP_PI = 3.1415926535898; //!< Pi as defined in IS-GPS-200E
arma::mat Skew_symmetric(const arma::vec &a)
{
arma::mat A = arma::zeros(3, 3);
A << 0.0 << -a(2) << a(1) << arma::endr
<< a(2) << 0.0 << -a(0) << arma::endr
<< -a(1) << a(0) << 0 << arma::endr;
// {{0, -a(2), a(1)},
// {a(2), 0, -a(0)},
// {-a(1), a(0), 0}};
return A;
}
double WGS84_g0(double Lat_rad)
{
const double k = 0.001931853; // normal gravity constant
const double e2 = 0.00669438002290; // the square of the first numerical eccentricity
const double nge = 9.7803253359; // normal gravity value on the equator (m/sec^2)
double b = sin(Lat_rad); // Lat in degrees
b = b * b;
double g0 = nge * (1 + k * b) / (sqrt(1 - e2 * b));
return g0;
}
double WGS84_geocentric_radius(double Lat_geodetic_rad)
{
// WGS84 earth model Geocentric radius (Eq. 2.88)
const double WGS84_A = 6378137.0; // Semi-major axis of the Earth, a [m]
const double WGS84_IF = 298.257223563; // Inverse flattening of the Earth
const double WGS84_F = (1.0 / WGS84_IF); // The flattening of the Earth
// double WGS84_B=(WGS84_A*(1-WGS84_F)); // Semi-minor axis of the Earth [m]
double WGS84_E = (sqrt(2 * WGS84_F - WGS84_F * WGS84_F)); // Eccentricity of the Earth
// transverse radius of curvature
double R_E = WGS84_A / sqrt(1 - WGS84_E * WGS84_E * sin(Lat_geodetic_rad) * sin(Lat_geodetic_rad)); // (Eq. 2.66)
// geocentric radius at the Earth surface
double r_eS = R_E * sqrt(cos(Lat_geodetic_rad) * cos(Lat_geodetic_rad) +
(1 - WGS84_E * WGS84_E) * (1 - WGS84_E * WGS84_E) * sin(Lat_geodetic_rad) * sin(Lat_geodetic_rad)); // (Eq. 2.88)
return r_eS;
}
int topocent(double *Az, double *El, double *D, const arma::vec &x, const arma::vec &dx)
{
double lambda;
double phi;
double h;
const double dtr = STRP_PI / 180.0;
const double a = 6378137.0; // semi-major axis of the reference ellipsoid WGS-84
const double finv = 298.257223563; // inverse of flattening of the reference ellipsoid WGS-84
// Transform x into geodetic coordinates
togeod(&phi, &lambda, &h, a, finv, x(0), x(1), x(2));
double cl = cos(lambda * dtr);
double sl = sin(lambda * dtr);
double cb = cos(phi * dtr);
double sb = sin(phi * dtr);
arma::mat F = {{-sl, -sb * cl, cb * cl},
{cl, -sb * sl, cb * sl},
{0.0, cb, sb}};
arma::vec local_vector;
local_vector = arma::htrans(F) * dx;
double E = local_vector(0);
double N = local_vector(1);
double U = local_vector(2);
double hor_dis;
hor_dis = sqrt(E * E + N * N);
if (hor_dis < 1.0E-20)
{
*Az = 0.0;
*El = 90.0;
}
else
{
*Az = atan2(E, N) / dtr;
*El = atan2(U, hor_dis) / dtr;
}
if (*Az < 0)
{
*Az = *Az + 360.0;
}
*D = sqrt(dx(0) * dx(0) + dx(1) * dx(1) + dx(2) * dx(2));
return 0;
}
int togeod(double *dphi, double *dlambda, double *h, double a, double finv, double X, double Y, double Z)
{
*h = 0.0;
const double tolsq = 1.e-10; // tolerance to accept convergence
const int maxit = 10; // max number of iterations
const double rtd = 180.0 / STRP_PI;
// compute square of eccentricity
double esq;
if (finv < 1.0E-20)
{
esq = 0.0;
}
else
{
esq = (2.0 - 1.0 / finv) / finv;
}
// first guess
double P = sqrt(X * X + Y * Y); // P is distance from spin axis
// direct calculation of longitude
if (P > 1.0E-20)
{
*dlambda = atan2(Y, X) * rtd;
}
else
{
*dlambda = 0.0;
}
// correct longitude bound
if (*dlambda < 0)
{
*dlambda = *dlambda + 360.0;
}
double r = sqrt(P * P + Z * Z); // r is distance from origin (0,0,0)
double sinphi;
if (r > 1.0E-20)
{
sinphi = Z / r;
}
else
{
sinphi = 0.0;
}
*dphi = asin(sinphi);
// initial value of height = distance from origin minus
// approximate distance from origin to surface of ellipsoid
if (r < 1.0E-20)
{
*h = 0.0;
return 1;
}
*h = r - a * (1 - sinphi * sinphi / finv);
// iterate
double cosphi;
double N_phi;
double dP;
double dZ;
double oneesq = 1.0 - esq;
for (int i = 0; i < maxit; i++)
{
sinphi = sin(*dphi);
cosphi = cos(*dphi);
// compute radius of curvature in prime vertical direction
N_phi = a / sqrt(1 - esq * sinphi * sinphi);
// compute residuals in P and Z
dP = P - (N_phi + (*h)) * cosphi;
dZ = Z - (N_phi * oneesq + (*h)) * sinphi;
// update height and latitude
*h = *h + (sinphi * dZ + cosphi * dP);
*dphi = *dphi + (cosphi * dZ - sinphi * dP) / (N_phi + (*h));
// test for convergence
if ((dP * dP + dZ * dZ) < tolsq)
{
break;
}
if (i == (maxit - 1))
{
// LOG(WARNING) << "The computation of geodetic coordinates did not converge";
}
}
*dphi = (*dphi) * rtd;
return 0;
}
arma::mat Gravity_ECEF(const arma::vec &r_eb_e)
{
// Parameters
const double R_0 = 6378137; // WGS84 Equatorial radius in meters
const double mu = 3.986004418E14; // WGS84 Earth gravitational constant (m^3 s^-2)
const double J_2 = 1.082627E-3; // WGS84 Earth's second gravitational constant
const double omega_ie = 7.292115E-5; // Earth rotation rate (rad/s)
// Calculate distance from center of the Earth
double mag_r = sqrt(arma::as_scalar(r_eb_e.t() * r_eb_e));
// If the input position is 0,0,0, produce a dummy output
arma::vec g = arma::zeros(3, 1);
if (mag_r != 0)
{
// Calculate gravitational acceleration using (2.142)
double z_scale = 5 * pow((r_eb_e(2) / mag_r), 2);
arma::vec tmp_vec = {(1 - z_scale) * r_eb_e(0),
(1 - z_scale) * r_eb_e(1),
(3 - z_scale) * r_eb_e(2)};
arma::vec gamma_ = (-mu / pow(mag_r, 3)) * (r_eb_e + 1.5 * J_2 * pow(R_0 / mag_r, 2) * tmp_vec);
// Add centripetal acceleration using (2.133)
g(0) = gamma_(0) + pow(omega_ie, 2) * r_eb_e(0);
g(1) = gamma_(1) + pow(omega_ie, 2) * r_eb_e(1);
g(2) = gamma_(2);
}
return g;
}
arma::vec LLH_to_deg(arma::vec &LLH)
{
const double rtd = 180.0 / STRP_PI;
LLH(0) = LLH(0) * rtd;
LLH(1) = LLH(1) * rtd;
return LLH;
}
double degtorad(double angleInDegrees)
{
double angleInRadians = (STRP_PI / 180.0) * angleInDegrees;
return angleInRadians;
}
double radtodeg(double angleInRadians)
{
double angleInDegrees = (180.0 / STRP_PI) * angleInRadians;
return angleInDegrees;
}
double mstoknotsh(double MetersPerSeconds)
{
double knots = mstokph(MetersPerSeconds) * 0.539957;
return knots;
}
double mstokph(double MetersPerSeconds)
{
double kph = 3600.0 * MetersPerSeconds / 1e3;
return kph;
}
arma::vec CTM_to_Euler(arma::mat &C)
{
// Calculate Euler angles using (2.23)
arma::vec eul = arma::zeros(3, 1);
eul(0) = atan2(C(1, 2), C(2, 2)); // roll
if (C(0, 2) < -1.0) C(0, 2) = -1.0;
if (C(0, 2) > 1.0) C(0, 2) = 1.0;
eul(1) = -asin(C(0, 2)); // pitch
eul(2) = atan2(C(0, 1), C(0, 0)); // yaw
return eul;
}
arma::mat Euler_to_CTM(const arma::vec &eul)
{
// Eq.2.15
// Euler angles to Attitude matrix is equivalent to rotate the body
// in the three axes:
// arma::mat Ax= {{1,0,0}, {0,cos(Att_phi),sin(Att_phi)} ,{0,-sin(Att_phi),cos(Att_phi)}};
// arma::mat Ay= {{cos(Att_theta), 0, -sin(Att_theta)}, {0,1,0} , {sin(Att_theta), 0, cos(Att_theta)}};
// arma::mat Az= {{cos(Att_psi), sin(Att_psi), 0}, {-sin(Att_psi), cos(Att_psi), 0},{0,0,1}};
// arma::mat C_b_n=Ax*Ay*Az; // Attitude expressed in the LOCAL FRAME (NED)
// C_b_n=C_b_n.t();
// Precalculate sines and cosines of the Euler angles
double sin_phi = sin(eul(0));
double cos_phi = cos(eul(0));
double sin_theta = sin(eul(1));
double cos_theta = cos(eul(1));
double sin_psi = sin(eul(2));
double cos_psi = cos(eul(2));
// Calculate coordinate transformation matrix using (2.22)
arma::mat C = {{cos_theta * cos_psi, cos_theta * sin_psi, -sin_theta},
{-cos_phi * sin_psi + sin_phi * sin_theta * cos_psi, cos_phi * cos_psi + sin_phi * sin_theta * sin_psi, sin_phi * cos_theta},
{sin_phi * sin_psi + cos_phi * sin_theta * cos_psi, -sin_phi * cos_psi + cos_phi * sin_theta * sin_psi, cos_phi * cos_theta}};
return C;
}
arma::vec cart2geo(const arma::vec &XYZ, int elipsoid_selection)
{
const double a[5] = {6378388.0, 6378160.0, 6378135.0, 6378137.0, 6378137.0};
const double f[5] = {1.0 / 297.0, 1.0 / 298.247, 1.0 / 298.26, 1.0 / 298.257222101, 1.0 / 298.257223563};
double lambda = atan2(XYZ[1], XYZ[0]);
double ex2 = (2.0 - f[elipsoid_selection]) * f[elipsoid_selection] / ((1.0 - f[elipsoid_selection]) * (1.0 - f[elipsoid_selection]));
double c = a[elipsoid_selection] * sqrt(1.0 + ex2);
double phi = atan(XYZ[2] / ((sqrt(XYZ[0] * XYZ[0] + XYZ[1] * XYZ[1]) * (1.0 - (2.0 - f[elipsoid_selection])) * f[elipsoid_selection])));
double h = 0.1;
double oldh = 0.0;
double N;
int iterations = 0;
do
{
oldh = h;
N = c / sqrt(1 + ex2 * (cos(phi) * cos(phi)));
phi = atan(XYZ[2] / ((sqrt(XYZ[0] * XYZ[0] + XYZ[1] * XYZ[1]) * (1.0 - (2.0 - f[elipsoid_selection]) * f[elipsoid_selection] * N / (N + h)))));
h = sqrt(XYZ[0] * XYZ[0] + XYZ[1] * XYZ[1]) / cos(phi) - N;
iterations = iterations + 1;
if (iterations > 100)
{
//std::cout << "Failed to approximate h with desired precision. h-oldh= " << h - oldh;
break;
}
}
while (std::abs(h - oldh) > 1.0e-12);
arma::vec LLH = {{phi, lambda, h}}; //radians
return LLH;
}
void ECEF_to_Geo(const arma::vec &r_eb_e, const arma::vec &v_eb_e, const arma::mat &C_b_e, arma::vec &LLH, arma::vec &v_eb_n, arma::mat &C_b_n)
{
// Compute the Latitude of the ECEF position
LLH = cart2geo(r_eb_e, 4); // ECEF -> WGS84 geographical
// Calculate ECEF to Geographical coordinate transformation matrix using (2.150)
double cos_lat = cos(LLH(0));
double sin_lat = sin(LLH(0));
double cos_long = cos(LLH(1));
double sin_long = sin(LLH(1));
// C++11 and arma >= 5.2
// arma::mat C_e_n = {{-sin_lat * cos_long, -sin_lat * sin_long, cos_lat},
// {-sin_long, cos_long, 0},
// {-cos_lat * cos_long, -cos_lat * sin_long, -sin_lat}}; //ECEF to Geo
arma::mat C_e_n = arma::zeros(3, 3);
C_e_n << -sin_lat * cos_long << -sin_lat * sin_long << cos_lat << arma::endr
<< -sin_long << cos_long << 0 << arma::endr
<< -cos_lat * cos_long << -cos_lat * sin_long << -sin_lat << arma::endr; // ECEF to Geo
// Transform velocity using (2.73)
v_eb_n = C_e_n * v_eb_e;
C_b_n = C_e_n * C_b_e; // Attitude conversion from ECEF to NED
}
void Geo_to_ECEF(const arma::vec &LLH, const arma::vec &v_eb_n, const arma::mat &C_b_n, arma::vec &r_eb_e, arma::vec &v_eb_e, arma::mat &C_b_e)
{
// Parameters
double R_0 = 6378137; // WGS84 Equatorial radius in meters
double e = 0.0818191908425; // WGS84 eccentricity
// Calculate transverse radius of curvature using (2.105)
double R_E = R_0 / sqrt(1 - (e * sin(LLH(0))) * (e * sin(LLH(0))));
// Convert position using (2.112)
double cos_lat = cos(LLH(0));
double sin_lat = sin(LLH(0));
double cos_long = cos(LLH(1));
double sin_long = sin(LLH(1));
r_eb_e = {(R_E + LLH(2)) * cos_lat * cos_long,
(R_E + LLH(2)) * cos_lat * sin_long,
((1 - e * e) * R_E + LLH(2)) * sin_lat};
// Calculate ECEF to Geo coordinate transformation matrix using (2.150)
// C++11 and arma>=5.2
// arma::mat C_e_n = {{-sin_lat * cos_long, -sin_lat * sin_long, cos_lat},
// {-sin_long, cos_long, 0},
// {-cos_lat * cos_long, -cos_lat * sin_long, -sin_lat}};
arma::mat C_e_n = arma::zeros(3, 3);
C_e_n << -sin_lat * cos_long << -sin_lat * sin_long << cos_lat << arma::endr
<< -sin_long << cos_long << 0 << arma::endr
<< -cos_lat * cos_long << -cos_lat * sin_long << -sin_lat << arma::endr;
// Transform velocity using (2.73)
v_eb_e = C_e_n.t() * v_eb_n;
// Transform attitude using (2.15)
C_b_e = C_e_n.t() * C_b_n;
}
void pv_Geo_to_ECEF(double L_b, double lambda_b, double h_b, const arma::vec &v_eb_n, arma::vec &r_eb_e, arma::vec &v_eb_e)
{
// Parameters
const double R_0 = 6378137; // WGS84 Equatorial radius in meters
const double e = 0.0818191908425; // WGS84 eccentricity
// Calculate transverse radius of curvature using (2.105)
double R_E = R_0 / sqrt(1 - pow(e * sin(L_b), 2));
// Convert position using (2.112)
double cos_lat = cos(L_b);
double sin_lat = sin(L_b);
double cos_long = cos(lambda_b);
double sin_long = sin(lambda_b);
r_eb_e = {(R_E + h_b) * cos_lat * cos_long,
(R_E + h_b) * cos_lat * sin_long,
((1 - pow(e, 2)) * R_E + h_b) * sin_lat};
// Calculate ECEF to Geo coordinate transformation matrix using (2.150)
arma::mat C_e_n = arma::zeros(3, 3);
C_e_n << -sin_lat * cos_long << -sin_lat * sin_long << cos_lat << arma::endr
<< -sin_long << cos_long << 0 << arma::endr
<< -cos_lat * cos_long << -cos_lat * sin_long << -sin_lat << arma::endr;
// Transform velocity using (2.73)
v_eb_e = C_e_n.t() * v_eb_n;
}