1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-16 04:05:46 +00:00

Adding a new geographical coordinate transformations and helpers library for system testing

This commit is contained in:
Javier Arribas 2018-08-29 18:55:39 +02:00
parent a3dc0f564c
commit b4db4013eb
3 changed files with 630 additions and 0 deletions

View File

@ -18,6 +18,7 @@
set(SYSTEM_TESTING_LIB_SOURCES
geofunctions.cc
spirent_motion_csv_dump_reader.cc
rtklib_solver_dump_reader.cc
)

View File

@ -0,0 +1,473 @@
/*!
* \file geofunctions.h
* \brief A set of coordinate transformations functions and helpers,
* some of them migrated from MATLAB, for geographic information systems.
* \author Javier Arribas, 2018. jarribas(at)cttc.es
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "geofunctions.h"
#define STRP_G_SI 9.80665
#define STRP_PI 3.1415926535898 //!< Pi as defined in IS-GPS-200E
arma::mat Skew_symmetric(arma::vec a)
{
arma::mat A = arma::zeros(3, 3);
A << 0.0 << -a(2) << a(1) << arma::endr
<< a(2) << 0.0 << -a(0) << arma::endr
<< -a(1) << a(0) << 0 << arma::endr;
// {{0, -a(2), a(1)},
// {a(2), 0, -a(0)},
// {-a(1), a(0), 0}};
return A;
}
double WGS84_g0(double Lat_rad)
{
double k = 0.001931853; //normal gravity constant
double e2 = 0.00669438002290; //the square of the first numerical eccentricity
double nge = 9.7803253359; //normal gravity value on the equator (m/sec^2)
double b = sin(Lat_rad); //Lat in degrees
b = b * b;
double g0 = nge * (1 + k * b) / (sqrt(1 - e2 * b));
return g0;
}
double WGS84_geocentric_radius(double Lat_geodetic_rad)
{
//WGS84 earth model Geocentric radius (Eq. 2.88)
double WGS84_A = 6378137.0; //Semi-major axis of the Earth, a [m]
double WGS84_IF = 298.257223563; //Inverse flattening of the Earth
double WGS84_F = (1 / WGS84_IF); //The flattening of the Earth
//double WGS84_B=(WGS84_A*(1-WGS84_F)); // Semi-minor axis of the Earth [m]
double WGS84_E = (sqrt(2 * WGS84_F - WGS84_F * WGS84_F)); //Eccentricity of the Earth
//transverse radius of curvature
double R_E = WGS84_A / sqrt(1 -
WGS84_E * WGS84_E *
sin(Lat_geodetic_rad) *
sin(Lat_geodetic_rad)); // (Eq. 2.66)
//gocentric radius at the Earth surface
double r_eS = R_E * sqrt(cos(Lat_geodetic_rad) * cos(Lat_geodetic_rad) +
(1 - WGS84_E * WGS84_E) * (1 - WGS84_E * WGS84_E) * sin(Lat_geodetic_rad) * sin(Lat_geodetic_rad)); // (Eq. 2.88)
return r_eS;
}
int topocent(double *Az, double *El, double *D, const arma::vec &x, const arma::vec &dx)
{
double lambda;
double phi;
double h;
double dtr = STRP_PI / 180.0;
double a = 6378137.0; // semi-major axis of the reference ellipsoid WGS-84
double finv = 298.257223563; // inverse of flattening of the reference ellipsoid WGS-84
// Transform x into geodetic coordinates
togeod(&phi, &lambda, &h, a, finv, x(0), x(1), x(2));
double cl = cos(lambda * dtr);
double sl = sin(lambda * dtr);
double cb = cos(phi * dtr);
double sb = sin(phi * dtr);
arma::mat F = arma::zeros(3, 3);
F(0, 0) = -sl;
F(0, 1) = -sb * cl;
F(0, 2) = cb * cl;
F(1, 0) = cl;
F(1, 1) = -sb * sl;
F(1, 2) = cb * sl;
F(2, 0) = 0;
F(2, 1) = cb;
F(2, 2) = sb;
arma::vec local_vector;
local_vector = arma::htrans(F) * dx;
double E = local_vector(0);
double N = local_vector(1);
double U = local_vector(2);
double hor_dis;
hor_dis = sqrt(E * E + N * N);
if (hor_dis < 1.0E-20)
{
*Az = 0;
*El = 90;
}
else
{
*Az = atan2(E, N) / dtr;
*El = atan2(U, hor_dis) / dtr;
}
if (*Az < 0)
{
*Az = *Az + 360.0;
}
*D = sqrt(dx(0) * dx(0) + dx(1) * dx(1) + dx(2) * dx(2));
return 0;
}
int togeod(double *dphi, double *dlambda, double *h, double a, double finv, double X, double Y, double Z)
{
*h = 0;
double tolsq = 1.e-10; // tolerance to accept convergence
int maxit = 10; // max number of iterations
double rtd = 180.0 / STRP_PI;
// compute square of eccentricity
double esq;
if (finv < 1.0E-20)
{
esq = 0.0;
}
else
{
esq = (2.0 - 1.0 / finv) / finv;
}
// first guess
double P = sqrt(X * X + Y * Y); // P is distance from spin axis
//direct calculation of longitude
if (P > 1.0E-20)
{
*dlambda = atan2(Y, X) * rtd;
}
else
{
*dlambda = 0.0;
}
// correct longitude bound
if (*dlambda < 0)
{
*dlambda = *dlambda + 360.0;
}
double r = sqrt(P * P + Z * Z); // r is distance from origin (0,0,0)
double sinphi;
if (r > 1.0E-20)
{
sinphi = Z / r;
}
else
{
sinphi = 0.0;
}
*dphi = asin(sinphi);
// initial value of height = distance from origin minus
// approximate distance from origin to surface of ellipsoid
if (r < 1.0E-20)
{
*h = 0;
return 1;
}
*h = r - a * (1 - sinphi * sinphi / finv);
// iterate
double cosphi;
double N_phi;
double dP;
double dZ;
double oneesq = 1.0 - esq;
for (int i = 0; i < maxit; i++)
{
sinphi = sin(*dphi);
cosphi = cos(*dphi);
// compute radius of curvature in prime vertical direction
N_phi = a / sqrt(1 - esq * sinphi * sinphi);
// compute residuals in P and Z
dP = P - (N_phi + (*h)) * cosphi;
dZ = Z - (N_phi * oneesq + (*h)) * sinphi;
// update height and latitude
*h = *h + (sinphi * dZ + cosphi * dP);
*dphi = *dphi + (cosphi * dZ - sinphi * dP) / (N_phi + (*h));
// test for convergence
if ((dP * dP + dZ * dZ) < tolsq)
{
break;
}
if (i == (maxit - 1))
{
// LOG(WARNING) << "The computation of geodetic coordinates did not converge";
}
}
*dphi = (*dphi) * rtd;
return 0;
}
arma::mat Gravity_ECEF(arma::vec r_eb_e)
{
//Parameters
double R_0 = 6378137; //WGS84 Equatorial radius in meters
double mu = 3.986004418E14; //WGS84 Earth gravitational constant (m^3 s^-2)
double J_2 = 1.082627E-3; //WGS84 Earth's second gravitational constant
double omega_ie = 7.292115E-5; // Earth rotation rate (rad/s)
// Calculate distance from center of the Earth
double mag_r = sqrt(arma::as_scalar(r_eb_e.t() * r_eb_e));
// If the input position is 0,0,0, produce a dummy output
arma::vec g = arma::zeros(3, 1);
if (mag_r != 0)
{
//Calculate gravitational acceleration using (2.142)
double z_scale = 5 * pow((r_eb_e(2) / mag_r), 2);
arma::vec tmp_vec = {(1 - z_scale) * r_eb_e(0),
(1 - z_scale) * r_eb_e(1),
(3 - z_scale) * r_eb_e(2)};
arma::vec gamma_ = (-mu / pow(mag_r, 3)) * (r_eb_e + 1.5 * J_2 * pow(R_0 / mag_r, 2) * tmp_vec);
//Add centripetal acceleration using (2.133)
g(0) = gamma_(0) + pow(omega_ie, 2) * r_eb_e(0);
g(1) = gamma_(1) + pow(omega_ie, 2) * r_eb_e(1);
g(2) = gamma_(2);
}
return g;
}
arma::vec LLH_to_deg(arma::vec LLH)
{
double rtd = 180.0 / STRP_PI;
LLH(0) = LLH(0) * rtd;
LLH(1) = LLH(1) * rtd;
return LLH;
}
double degtorad(double angleInDegrees)
{
double angleInRadians = (STRP_PI / 180.0) * angleInDegrees;
return angleInRadians;
}
double radtodeg(double angleInRadians)
{
double angleInDegrees = (180.0 / STRP_PI) * angleInRadians;
return angleInDegrees;
}
double mstoknotsh(double MetersPerSeconds)
{
double knots = mstokph(MetersPerSeconds) * 0.539957;
return knots;
}
double mstokph(double MetersPerSeconds)
{
double kph = 3600.0 * MetersPerSeconds / 1e3;
return kph;
}
arma::vec CTM_to_Euler(arma::mat C)
{
//Calculate Euler angles using (2.23)
arma::vec eul = arma::zeros(3, 1);
eul(0) = atan2(C(1, 2), C(2, 2)); // roll
if (C(0, 2) < -1.0) C(0, 2) = -1.0;
if (C(0, 2) > 1.0) C(0, 2) = 1.0;
eul(1) = -asin(C(0, 2)); // pitch
eul(2) = atan2(C(0, 1), C(0, 0)); // yaw
return eul;
}
arma::mat Euler_to_CTM(arma::vec eul)
{
//Eq.2.15
//Euler angles to Attitude matrix is equivalent to rotate the body
//in the three axes:
// arma::mat Ax= {{1,0,0}, {0,cos(Att_phi),sin(Att_phi)} ,{0,-sin(Att_phi),cos(Att_phi)}};
// arma::mat Ay= {{cos(Att_theta), 0, -sin(Att_theta)}, {0,1,0} , {sin(Att_theta), 0, cos(Att_theta)}};
// arma::mat Az= {{cos(Att_psi), sin(Att_psi), 0}, {-sin(Att_psi), cos(Att_psi), 0},{0,0,1}};
// arma::mat C_b_n=Ax*Ay*Az; // Attitude expressed in the LOCAL FRAME (NED)
// C_b_n=C_b_n.t();
//Precalculate sines and cosines of the Euler angles
double sin_phi = sin(eul(0));
double cos_phi = cos(eul(0));
double sin_theta = sin(eul(1));
double cos_theta = cos(eul(1));
double sin_psi = sin(eul(2));
double cos_psi = cos(eul(2));
arma::mat C = arma::zeros(3, 3);
//Calculate coordinate transformation matrix using (2.22)
C(0, 0) = cos_theta * cos_psi;
C(0, 1) = cos_theta * sin_psi;
C(0, 2) = -sin_theta;
C(1, 0) = -cos_phi * sin_psi + sin_phi * sin_theta * cos_psi;
C(1, 1) = cos_phi * cos_psi + sin_phi * sin_theta * sin_psi;
C(1, 2) = sin_phi * cos_theta;
C(2, 0) = sin_phi * sin_psi + cos_phi * sin_theta * cos_psi;
C(2, 1) = -sin_phi * cos_psi + cos_phi * sin_theta * sin_psi;
C(2, 2) = cos_phi * cos_theta;
return C;
}
arma::vec cart2geo(arma::vec XYZ, int elipsoid_selection)
{
const double a[5] = {6378388.0, 6378160.0, 6378135.0, 6378137.0, 6378137.0};
const double f[5] = {1.0 / 297.0, 1.0 / 298.247, 1.0 / 298.26, 1.0 / 298.257222101, 1.0 / 298.257223563};
double lambda = atan2(XYZ[1], XYZ[0]);
double ex2 = (2.0 - f[elipsoid_selection]) * f[elipsoid_selection] / ((1.0 - f[elipsoid_selection]) * (1.0 - f[elipsoid_selection]));
double c = a[elipsoid_selection] * sqrt(1.0 + ex2);
double phi = atan(XYZ[2] / ((sqrt(XYZ[0] * XYZ[0] + XYZ[1] * XYZ[1]) * (1.0 - (2.0 - f[elipsoid_selection])) * f[elipsoid_selection])));
double h = 0.1;
double oldh = 0.0;
double N;
int iterations = 0;
do
{
oldh = h;
N = c / sqrt(1 + ex2 * (cos(phi) * cos(phi)));
phi = atan(XYZ[2] / ((sqrt(XYZ[0] * XYZ[0] + XYZ[1] * XYZ[1]) * (1.0 - (2.0 - f[elipsoid_selection]) * f[elipsoid_selection] * N / (N + h)))));
h = sqrt(XYZ[0] * XYZ[0] + XYZ[1] * XYZ[1]) / cos(phi) - N;
iterations = iterations + 1;
if (iterations > 100)
{
//std::cout << "Failed to approximate h with desired precision. h-oldh= " << h - oldh;
break;
}
}
while (std::abs(h - oldh) > 1.0e-12);
arma::vec LLH = {{phi, lambda, h}}; //radians
return LLH;
}
void ECEF_to_Geo(arma::vec r_eb_e, arma::vec v_eb_e, arma::mat C_b_e, arma::vec &LLH, arma::vec &v_eb_n, arma::mat &C_b_n)
{
//Compute the Latitude of the ECEF position
LLH = cart2geo(r_eb_e, 4); //ECEF -> WGS84 geographical
// Calculate ECEF to Geographical coordinate transformation matrix using (2.150)
double cos_lat = cos(LLH(0));
double sin_lat = sin(LLH(0));
double cos_long = cos(LLH(1));
double sin_long = sin(LLH(1));
//C++11 and arma >= 5.2
// arma::mat C_e_n = {{-sin_lat * cos_long, -sin_lat * sin_long, cos_lat},
// {-sin_long, cos_long, 0},
// {-cos_lat * cos_long, -cos_lat * sin_long, -sin_lat}}; //ECEF to Geo
//C++98 arma <5.2
arma::mat C_e_n = arma::zeros(3, 3);
C_e_n << -sin_lat * cos_long << -sin_lat * sin_long << cos_lat << arma::endr
<< -sin_long << cos_long << 0 << arma::endr
<< -cos_lat * cos_long << -cos_lat * sin_long << -sin_lat << arma::endr; //ECEF to Geo
// Transform velocity using (2.73)
v_eb_n = C_e_n * v_eb_e;
C_b_n = C_e_n * C_b_e; // Attitude conversion from ECEF to NED
}
void Geo_to_ECEF(arma::vec LLH, arma::vec v_eb_n, arma::mat C_b_n, arma::vec &r_eb_e, arma::vec &v_eb_e, arma::mat &C_b_e)
{
// Parameters
double R_0 = 6378137; //WGS84 Equatorial radius in meters
double e = 0.0818191908425; //WGS84 eccentricity
// Calculate transverse radius of curvature using (2.105)
double R_E = R_0 / sqrt(1 - (e * sin(LLH(0))) * (e * sin(LLH(0))));
// Convert position using (2.112)
double cos_lat = cos(LLH(0));
double sin_lat = sin(LLH(0));
double cos_long = cos(LLH(1));
double sin_long = sin(LLH(1));
r_eb_e = {(R_E + LLH(2)) * cos_lat * cos_long,
(R_E + LLH(2)) * cos_lat * sin_long,
((1 - e * e) * R_E + LLH(2)) * sin_lat};
//Calculate ECEF to Geo coordinate transformation matrix using (2.150)
//C++11 and arma>=5.2
// arma::mat C_e_n = {{-sin_lat * cos_long, -sin_lat * sin_long, cos_lat},
// {-sin_long, cos_long, 0},
// {-cos_lat * cos_long, -cos_lat * sin_long, -sin_lat}};
//C++98 arma <5.2
//Calculate ECEF to Geo coordinate transformation matrix using (2.150)
arma::mat C_e_n = arma::zeros(3, 3);
C_e_n << -sin_lat * cos_long << -sin_lat * sin_long << cos_lat << arma::endr
<< -sin_long << cos_long << 0 << arma::endr
<< -cos_lat * cos_long << -cos_lat * sin_long << -sin_lat << arma::endr;
// Transform velocity using (2.73)
v_eb_e = C_e_n.t() * v_eb_n;
// Transform attitude using (2.15)
C_b_e = C_e_n.t() * C_b_n;
}
void pv_Geo_to_ECEF(double L_b, double lambda_b, double h_b, arma::vec v_eb_n, arma::vec &r_eb_e, arma::vec &v_eb_e)
{
//% Parameters
double R_0 = 6378137; //WGS84 Equatorial radius in meters
double e = 0.0818191908425; //WGS84 eccentricity
// Calculate transverse radius of curvature using (2.105)
double R_E = R_0 / sqrt(1 - pow(e * sin(L_b), 2));
// Convert position using (2.112)
double cos_lat = cos(L_b);
double sin_lat = sin(L_b);
double cos_long = cos(lambda_b);
double sin_long = sin(lambda_b);
r_eb_e = {(R_E + h_b) * cos_lat * cos_long,
(R_E + h_b) * cos_lat * sin_long,
((1 - pow(e, 2)) * R_E + h_b) * sin_lat};
// Calculate ECEF to Geo coordinate transformation matrix using (2.150)
arma::mat C_e_n = arma::zeros(3, 3);
C_e_n << -sin_lat * cos_long << -sin_lat * sin_long << cos_lat << arma::endr
<< -sin_long << cos_long << 0 << arma::endr
<< -cos_lat * cos_long << -cos_lat * sin_long << -sin_lat << arma::endr;
// Transform velocity using (2.73)
v_eb_e = C_e_n.t() * v_eb_n;
}

View File

@ -0,0 +1,156 @@
/*!
* \file geofunctions.h
* \brief A set of coordinate transformations functions and helpers,
* some of them migrated from MATLAB, for geographic information systems.
* \author Javier Arribas, 2018. jarribas(at)cttc.es
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GEOFUNCTIONS_H
#define GEOFUNCTIONS_H
#include <armadillo>
// %Skew_symmetric - Calculates skew-symmetric matrix
arma::mat Skew_symmetric(arma::vec a);
double WGS84_g0(double Lat_rad);
double WGS84_geocentric_radius(double Lat_geodetic_rad);
/* Transformation of vector dx into topocentric coordinate
system with origin at x
Inputs:
x - vector origin coordinates (in ECEF system [X; Y; Z;])
dx - vector ([dX; dY; dZ;]).
Outputs:
D - vector length. Units like the input
Az - azimuth from north positive clockwise, degrees
El - elevation angle, degrees
Based on a Matlab function by Kai Borre
*/
int topocent(double *Az, double *El, double *D, const arma::vec &x, const arma::vec &dx);
/* Subroutine to calculate geodetic coordinates latitude, longitude,
height given Cartesian coordinates X,Y,Z, and reference ellipsoid
values semi-major axis (a) and the inverse of flattening (finv).
The output units of angular quantities will be in decimal degrees
(15.5 degrees not 15 deg 30 min). The output units of h will be the
same as the units of X,Y,Z,a.
Inputs:
a - semi-major axis of the reference ellipsoid
finv - inverse of flattening of the reference ellipsoid
X,Y,Z - Cartesian coordinates
Outputs:
dphi - latitude
dlambda - longitude
h - height above reference ellipsoid
Based in a Matlab function by Kai Borre
*/
int togeod(double *dphi, double *dlambda, double *h, double a, double finv, double X, double Y, double Z);
//Gravitation_ECI - Calculates acceleration due to gravity resolved about
//ECEF-frame
arma::mat Gravity_ECEF(arma::vec r_eb_e);
/* Conversion of Cartesian coordinates (X,Y,Z) to geographical
coordinates (latitude, longitude, h) on a selected reference ellipsoid.
Choices of Reference Ellipsoid for Geographical Coordinates
0. International Ellipsoid 1924
1. International Ellipsoid 1967
2. World Geodetic System 1972
3. Geodetic Reference System 1980
4. World Geodetic System 1984
*/
arma::vec cart2geo(arma::vec XYZ, int elipsoid_selection);
arma::vec LLH_to_deg(arma::vec LLH);
double degtorad(double angleInDegrees);
double radtodeg(double angleInRadians);
double mstoknotsh(double MetersPerSeconds);
double mstokph(double Kph);
arma::vec CTM_to_Euler(arma::mat C);
arma::mat Euler_to_CTM(arma::vec eul);
void ECEF_to_Geo(arma::vec r_eb_e, arma::vec v_eb_e, arma::mat C_b_e, arma::vec &LLH, arma::vec &v_eb_n, arma::mat &C_b_n);
// %
// % Inputs:
// % L_b latitude (rad)
// % lambda_b longitude (rad)
// % h_b height (m)
// % v_eb_n velocity of body frame w.r.t. ECEF frame, resolved along
// % north, east, and down (m/s)
// % C_b_n body-to-NED coordinate transformation matrix
// %
// % Outputs:
// % r_eb_e Cartesian position of body frame w.r.t. ECEF frame, resolved
// % along ECEF-frame axes (m)
// % v_eb_e velocity of body frame w.r.t. ECEF frame, resolved along
// % ECEF-frame axes (m/s)
// % C_b_e body-to-ECEF-frame coordinate transformation matrix
//
// % Copyright 2012, Paul Groves
// % License: BSD; see license.txt for details
void Geo_to_ECEF(arma::vec LLH, arma::vec v_eb_n, arma::mat C_b_n, arma::vec &r_eb_e, arma::vec &v_eb_e, arma::mat &C_b_e);
//pv_Geo_to_ECEF - Converts curvilinear to Cartesian position and velocity
//resolving axes from NED to ECEF
//This function created 11/4/2012 by Paul Groves
//%
//% Inputs:
//% L_b latitude (rad)
//% lambda_b longitude (rad)
//% h_b height (m)
//% v_eb_n velocity of body frame w.r.t. ECEF frame, resolved along
//% north, east, and down (m/s)
//%
//% Outputs:
//% r_eb_e Cartesian position of body frame w.r.t. ECEF frame, resolved
//% along ECEF-frame axes (m)
//% v_eb_e velocity of body frame w.r.t. ECEF frame, resolved along
//% ECEF-frame axes (m/s)
void pv_Geo_to_ECEF(double L_b, double lambda_b, double h_b, arma::vec v_eb_n, arma::vec &r_eb_e, arma::vec &v_eb_e);
#endif