2014-08-13 18:51:25 +00:00
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
2017-09-02 09:24:44 +00:00
;internal_fs_sps: Internal signal sampling frequency after the signal conditioning stage [samples per second].
GNSS-SDR.internal_fs_sps=4000000
2014-08-13 18:51:25 +00:00
;######### SIGNAL_SOURCE CONFIG ############
;#implementation: Use [File_Signal_Source] or [UHD_Signal_Source] or [GN3S_Signal_Source] or [Rtlsdr_Signal_Source]
SignalSource.implementation=File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
2016-05-13 15:36:11 +00:00
SignalSource.filename=/datalogger/signals/CTTC/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN.dat ; <- PUT YOUR FILE HERE
2014-08-13 18:51:25 +00:00
2015-12-25 09:25:22 +00:00
;#item_type: Type and resolution for each of the signal samples.
2016-05-13 15:36:11 +00:00
;#Use gr_complex for 32 bits float I/Q or ishort for I/Q interleaved short integer.
;#If ishort is selected you should have to instantiate the Ishort_To_Complex data_type_adapter.
2015-12-26 12:41:54 +00:00
SignalSource.item_type=ishort
2014-08-13 18:51:25 +00:00
2015-12-25 09:25:22 +00:00
;#sampling_frequency: Original Signal sampling frequency in [Hz]
2014-08-13 18:51:25 +00:00
SignalSource.sampling_frequency=4000000
2015-12-25 09:25:22 +00:00
;#freq: RF front-end center frequency in [Hz]
2014-08-13 18:51:25 +00:00
SignalSource.freq=1575420000
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource.samples=0
;#repeat: Repeat the processing file. Disable this option in this version
SignalSource.repeat=false
;#dump: Dump the Signal source data to a file. Disable this option in this version
SignalSource.dump=false
SignalSource.dump_filename=../data/signal_source.dat
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
2015-12-25 09:25:22 +00:00
; it helps to not overload the CPU, but the processing time will be longer.
2014-08-13 18:51:25 +00:00
SignalSource.enable_throttle_control=false
;######### SIGNAL_CONDITIONER CONFIG ############
2015-12-25 09:25:22 +00:00
;## It holds blocks to change data type, filter and resample input data.
2014-08-13 18:51:25 +00:00
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER CONFIG ############
2015-12-26 12:41:54 +00:00
;## Changes the type of input data.
2014-08-13 18:51:25 +00:00
;#implementation: Use [Ishort_To_Complex] or [Pass_Through]
DataTypeAdapter.implementation=Ishort_To_Complex
;#dump: Dump the filtered data to a file.
DataTypeAdapter.dump=false
;#dump_filename: Log path and filename.
DataTypeAdapter.dump_filename=../data/data_type_adapter.dat
;######### INPUT_FILTER CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
;InputFilter.implementation=Fir_Filter
;InputFilter.implementation=Freq_Xlating_Fir_Filter
InputFilter.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter.dump=false
;#dump_filename: Log path and filename.
InputFilter.dump_filename=../data/input_filter.dat
2015-12-25 09:25:22 +00:00
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
2014-08-13 18:51:25 +00:00
;#These options are based on parameters of gnuradio's function: gr_remez.
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse reponse given a set of band edges, the desired reponse on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
InputFilter.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
InputFilter.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
#used for gps
InputFilter.band1_begin=0.0
;InputFilter.band1_end=0.8
InputFilter.band1_end=0.85
InputFilter.band2_begin=0.90
InputFilter.band2_end=1.0
#used for galileo
InputFilter.band1_begin=0.0
;InputFilter.band1_end=0.8
InputFilter.band1_end=0.45
InputFilter.band2_begin=0.55
InputFilter.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter.ampl1_begin=1.0
InputFilter.ampl1_end=1.0
InputFilter.ampl2_begin=0.0
InputFilter.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter.band1_error=1.0
InputFilter.band2_error=1.0
2015-12-25 09:25:22 +00:00
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
2014-08-13 18:51:25 +00:00
InputFilter.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter.sampling_frequency=4000000
InputFilter.IF=0
;######### RESAMPLER CONFIG ############
2015-12-25 09:25:22 +00:00
;## Resamples the input data.
2014-08-13 18:51:25 +00:00
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
;Resampler.implementation=Direct_Resampler
Resampler.implementation=Pass_Through
;#dump: Dump the resamplered data to a file.
Resampler.dump=false
;#dump_filename: Log path and filename.
Resampler.dump_filename=../data/resampler.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Resampler.item_type=gr_complex
;#sample_freq_in: the sample frequency of the input signal
Resampler.sample_freq_in=4000000
;#sample_freq_out: the desired sample frequency of the output signal
Resampler.sample_freq_out=4000000
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available satellite channels.
2015-07-21 17:14:17 +00:00
Channels_1B.count=4
2014-08-13 18:51:25 +00:00
;#in_acquisition: Number of channels simultaneously acquiring
Channels.in_acquisition=1
2014-09-05 22:31:47 +00:00
Channel.signal=1B
2014-08-13 18:51:25 +00:00
;######### ACQUISITION GLOBAL CONFIG ############
2015-12-25 09:25:22 +00:00
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
2015-07-21 17:14:17 +00:00
Acquisition_1B.dump=false
2014-08-13 18:51:25 +00:00
;#filename: Log path and filename
2015-07-21 17:14:17 +00:00
Acquisition_1B.dump_filename=./acq_dump.dat
2014-08-13 18:51:25 +00:00
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
2015-07-21 17:14:17 +00:00
Acquisition_1B.item_type=gr_complex
2015-12-25 09:25:22 +00:00
;#if: Signal intermediate frequency in [Hz]
2015-07-21 17:14:17 +00:00
Acquisition_1B.if=0
2014-09-05 22:31:47 +00:00
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
2015-07-21 17:14:17 +00:00
Acquisition_1B.coherent_integration_time_ms=4
2014-09-05 22:31:47 +00:00
2015-07-21 17:14:17 +00:00
Acquisition_1B.implementation=Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition
2014-09-05 22:31:47 +00:00
;#threshold: Acquisition threshold
2015-07-21 17:14:17 +00:00
Acquisition_1B.threshold=0.05
2014-09-05 22:31:47 +00:00
;#doppler_max: Maximum expected Doppler shift [Hz]
2015-07-21 17:14:17 +00:00
Acquisition_1B.doppler_max=15000
2014-09-05 22:31:47 +00:00
;#doppler_max: Doppler step in the grid search [Hz]
2015-07-21 17:14:17 +00:00
Acquisition_1B.doppler_step=125
2014-08-13 18:51:25 +00:00
;#sampled_ms: Signal block duration for the acquisition signal detection [ms];
2015-07-21 17:14:17 +00:00
Acquisition_1B.coherent_integration_time_ms=8
2014-09-05 22:31:47 +00:00
2015-07-21 17:14:17 +00:00
Acquisition_1B.cboc=false
2014-08-13 18:51:25 +00:00
;######### TRACKING GLOBAL CONFIG ############
2016-05-13 15:36:11 +00:00
;#implementation: Selected tracking algorithm [Galileo_E1_DLL_PLL_VEML_Tracking]
2015-07-21 17:14:17 +00:00
Tracking_1B.implementation=Galileo_E1_DLL_PLL_VEML_Tracking
2014-08-13 18:51:25 +00:00
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
2015-07-21 17:14:17 +00:00
Tracking_1B.item_type=gr_complex
2014-08-13 18:51:25 +00:00
2015-12-25 09:25:22 +00:00
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
2015-07-21 17:14:17 +00:00
Tracking_1B.if=0
2014-08-13 18:51:25 +00:00
2015-12-25 09:25:22 +00:00
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
2015-07-21 17:14:17 +00:00
Tracking_1B.dump=true
2014-08-13 18:51:25 +00:00
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
2015-07-21 17:14:17 +00:00
Tracking_1B.dump_filename=../data/veml_tracking_ch_
2014-08-13 18:51:25 +00:00
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
2015-07-21 17:14:17 +00:00
Tracking_1B.pll_bw_hz=20.0;
2014-08-13 18:51:25 +00:00
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
2015-07-21 17:14:17 +00:00
Tracking_1B.dll_bw_hz=2.0;
2014-08-13 18:51:25 +00:00
;#order: PLL/DLL loop filter order [2] or [3]
2015-07-21 17:14:17 +00:00
Tracking_1B.order=3;
2014-08-13 18:51:25 +00:00
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo
2015-07-21 17:14:17 +00:00
Tracking_1B.early_late_space_chips=0.15;
2014-08-13 18:51:25 +00:00
;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6]
2015-07-21 17:14:17 +00:00
Tracking_1B.very_early_late_space_chips=0.6;
2014-08-13 18:51:25 +00:00
;######### TELEMETRY DECODER CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A or [Galileo_E1B_Telemetry_Decoder] for Galileo E1B
2015-07-21 17:14:17 +00:00
TelemetryDecoder_1B.implementation=Galileo_E1B_Telemetry_Decoder
TelemetryDecoder_1B.dump=false
2014-08-13 18:51:25 +00:00
;######### OBSERVABLES CONFIG ############
2016-05-13 15:36:11 +00:00
;#implementation:
2017-03-24 14:25:17 +00:00
Observables.implementation=Hybrid_Observables
2014-08-13 18:51:25 +00:00
2015-12-25 09:25:22 +00:00
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
2014-08-13 18:51:25 +00:00
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
2016-05-13 15:36:11 +00:00
;#implementation: Position Velocity and Time (PVT) implementation algorithm:
2017-05-08 19:12:32 +00:00
PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
2014-08-13 18:51:25 +00:00
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100;
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500;
2015-12-25 09:25:22 +00:00
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
2014-08-13 18:51:25 +00:00
PVT.dump=false
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT
2015-12-25 09:25:22 +00:00
;# KML, GeoJSON, NMEA and RTCM output configuration
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump, ".kml" and ".geojson" to GIS-friendly formats.
PVT.dump_filename=./PVT
;#nmea_dump_filename: NMEA log path and filename
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
;#flag_nmea_tty_port: Enables or disables the NMEA log to a serial TTY port (Can be used with real hardware or virtual one)
PVT.flag_nmea_tty_port=true;
;#nmea_dump_devname: serial device descriptor for NMEA logging
PVT.nmea_dump_devname=/dev/pts/4
;#flag_rtcm_server: Enables or disables a TCP/IP server transmitting RTCM 3.2 messages (accepts multiple clients, port 2101 by default)
PVT.flag_rtcm_server=false;
;#flag_rtcm_tty_port: Enables or disables the RTCM log to a serial TTY port (Can be used with real hardware or virtual one)
PVT.flag_rtcm_tty_port=false;
;#rtcm_dump_devname: serial device descriptor for RTCM logging
PVT.rtcm_dump_devname=/dev/pts/1