1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-16 13:10:35 +00:00
gnss-sdr/src/tests/unit-tests/arithmetic/fft_length_test.cc

82 lines
3.3 KiB
C++
Raw Normal View History

/*!
* \file fft_length_test.cc
* \brief This file implements timing tests for the FFT.
* \author Carles Fernandez-Prades, 2016. cfernandez(at)cttc.es
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2016 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include <algorithm>
#include <chrono>
#include <functional>
#include <random>
#include <gnuradio/fft/fft.h>
DEFINE_int32(fft_iterations_test, 1000, "Number of averaged iterations in FFT length timing test");
TEST(FFTLengthTest, MeasureExecutionTime)
{
unsigned int fft_sizes [] = { 1000, 1024, 1960, 2000, 2048, 4000, 4096, 4725, 5000, 8000, 8192, 10368, 12000, 16000, 16384, 27000, 32768, 50000, 65536 };
std::chrono::time_point<std::chrono::system_clock> start, end;
std::random_device r;
std::default_random_engine e1(r());
std::default_random_engine e2(r());
std::uniform_real_distribution<float> uniform_dist(-1, 1);
auto func = [] (float a, float b) { return gr_complex(a, b); }; // Helper lambda function that returns a gr_complex
auto random_number1 = std::bind(uniform_dist, e1);
auto random_number2 = std::bind(uniform_dist, e2);
auto gen = std::bind(func, random_number1, random_number2); // Function that returns a random gr_complex
std::vector<unsigned int> fft_sizes_v(fft_sizes, fft_sizes + sizeof(fft_sizes) / sizeof(unsigned int) );
std::vector<unsigned int>::const_iterator it;
unsigned int d_fft_size;
EXPECT_NO_THROW(
for(it = fft_sizes_v.cbegin(); it != fft_sizes_v.cend(); ++it)
{
gr::fft::fft_complex* d_fft;
d_fft_size = *it;
d_fft = new gr::fft::fft_complex(d_fft_size, true);
std::generate_n( d_fft->get_inbuf(), d_fft_size, gen );
start = std::chrono::system_clock::now();
for(int k = 0; k < FLAGS_fft_iterations_test; k++)
{
d_fft->execute();
}
end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
double execution_time = elapsed_seconds.count() / static_cast<double>(FLAGS_fft_iterations_test);
std::cout << "FFT execution time for length=" << d_fft_size << " : " << execution_time << " [s]" << std::endl;
delete d_fft;
}
);
}