/*! * \file fft_length_test.cc * \brief This file implements timing tests for the FFT. * \author Carles Fernandez-Prades, 2016. cfernandez(at)cttc.es * * * ------------------------------------------------------------------------- * * Copyright (C) 2010-2016 (see AUTHORS file for a list of contributors) * * GNSS-SDR is a software defined Global Navigation * Satellite Systems receiver * * This file is part of GNSS-SDR. * * GNSS-SDR is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GNSS-SDR is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNSS-SDR. If not, see . * * ------------------------------------------------------------------------- */ #include #include #include #include #include DEFINE_int32(fft_iterations_test, 1000, "Number of averaged iterations in FFT length timing test"); TEST(FFTLengthTest, MeasureExecutionTime) { unsigned int fft_sizes [] = { 1000, 1024, 1960, 2000, 2048, 4000, 4096, 4725, 5000, 8000, 8192, 10368, 12000, 16000, 16384, 27000, 32768, 50000, 65536 }; std::chrono::time_point start, end; std::random_device r; std::default_random_engine e1(r()); std::default_random_engine e2(r()); std::uniform_real_distribution uniform_dist(-1, 1); auto func = [] (float a, float b) { return gr_complex(a, b); }; // Helper lambda function that returns a gr_complex auto random_number1 = std::bind(uniform_dist, e1); auto random_number2 = std::bind(uniform_dist, e2); auto gen = std::bind(func, random_number1, random_number2); // Function that returns a random gr_complex std::vector fft_sizes_v(fft_sizes, fft_sizes + sizeof(fft_sizes) / sizeof(unsigned int) ); std::vector::const_iterator it; unsigned int d_fft_size; EXPECT_NO_THROW( for(it = fft_sizes_v.cbegin(); it != fft_sizes_v.cend(); ++it) { gr::fft::fft_complex* d_fft; d_fft_size = *it; d_fft = new gr::fft::fft_complex(d_fft_size, true); std::generate_n( d_fft->get_inbuf(), d_fft_size, gen ); start = std::chrono::system_clock::now(); for(int k = 0; k < FLAGS_fft_iterations_test; k++) { d_fft->execute(); } end = std::chrono::system_clock::now(); std::chrono::duration elapsed_seconds = end - start; double execution_time = elapsed_seconds.count() / static_cast(FLAGS_fft_iterations_test); std::cout << "FFT execution time for length=" << d_fft_size << " : " << execution_time << " [s]" << std::endl; delete d_fft; } ); }