mirror of
https://github.com/TACIXAT/XorShift128Plus
synced 2025-05-13 17:44:05 +00:00
Add working Chrome/Firefox/Safari checkers
This commit is contained in:
parent
29ce8b02ca
commit
1c924f964d
71
ChromeRandomnessPredictor.py
Normal file
71
ChromeRandomnessPredictor.py
Normal file
@ -0,0 +1,71 @@
|
||||
import struct
|
||||
from z3 import *
|
||||
from typing import List, Optional
|
||||
|
||||
|
||||
class ChromeRandomnessPredictor:
|
||||
def __init__(self, sequence: List[float]):
|
||||
self.sequence = sequence
|
||||
self.__c_state0, self.__c_state1 = None, None
|
||||
self.__internalSequence = sequence[::-1]
|
||||
self.__mask = 0xFFFFFFFFFFFFFFFF
|
||||
self.__solver = z3.Solver()
|
||||
self.__se_state0, self.__se_state1 = z3.BitVecs("se_state0 se_state1", 64)
|
||||
self.__s0_ref, self.__s1_ref = self.__se_state0, self.__se_state1
|
||||
|
||||
for i in range(len(self.__internalSequence)):
|
||||
self.__xorshift128p_symbolic()
|
||||
mantissa = self.__recover_mantissa(self.__internalSequence[i])
|
||||
self.__solver.add(mantissa == LShR(self.__se_state0, 11))
|
||||
|
||||
if self.__solver.check() != z3.sat:
|
||||
return None
|
||||
|
||||
model = self.__solver.model()
|
||||
self.__c_state0 = model[self.__s0_ref].as_long()
|
||||
self.__c_state1 = model[self.__s1_ref].as_long()
|
||||
|
||||
def predict_next(self) -> Optional[float]:
|
||||
if self.__c_state0 is None or self.__c_state1 is None:
|
||||
return None
|
||||
out = self.__xorshift128p_concrete_backwards()
|
||||
return self.__to_double(out)
|
||||
|
||||
def __xorshift128p_symbolic(self) -> None:
|
||||
se_s1 = self.__se_state0
|
||||
se_s0 = self.__se_state1
|
||||
self.__se_state0 = se_s0
|
||||
se_s1 ^= se_s1 << 23
|
||||
se_s1 ^= z3.LShR(se_s1, 17) # Logical shift instead of Arthmetric shift
|
||||
se_s1 ^= se_s0
|
||||
se_s1 ^= z3.LShR(se_s0, 26)
|
||||
self.__se_state1 = se_s1
|
||||
|
||||
# Performs the typical XorShift128p but in reverse.
|
||||
def __xorshift128p_concrete_backwards(self):
|
||||
"""
|
||||
- V8 gives us random numbers by popping them off of their cache.
|
||||
- This is why we have to reverse `sequence` to `__internal_sequence = sequence[::-1]` in the constructor.
|
||||
- Essentially, they give us random numbers in LIFO order, so we need to process them in reverse (like a simulated FIFO).
|
||||
|
||||
- In order to move forward down the chain, we have to perform our concrete XOR backwards. If we performed
|
||||
our XOR forwards, we would technically be moving backwards in time, and therefore return numbers to the caller
|
||||
that they already have.
|
||||
"""
|
||||
# Must set resullt here, otherwise we skip numbers by 1 step
|
||||
result = self.__c_state0
|
||||
ps1 = self.__c_state0
|
||||
ps0 = self.__c_state1 ^ (self.__c_state0 >> 26)
|
||||
ps0 = ps0 ^ self.__c_state0
|
||||
# Performs the normal shift 17 but in reverse.
|
||||
ps0 = ps0 ^ (ps0 >> 17) ^ (ps0 >> 34) ^ (ps0 >> 51) & self.__mask
|
||||
# Performs the normal shift 23 bbut in reverse.
|
||||
ps0 = (ps0 ^ (ps0 << 23) ^ (ps0 << 46)) & self.__mask
|
||||
self.__c_state0, self.__c_state1 = ps0, ps1
|
||||
return result
|
||||
|
||||
def __recover_mantissa(self, double: float) -> int:
|
||||
return double * (0x1 << 53)
|
||||
|
||||
def __to_double(self, val: int) -> float:
|
||||
return (val >> 11) / (2**53)
|
69
FirefoxAndSafariRandomnessPredictor.py
Normal file
69
FirefoxAndSafariRandomnessPredictor.py
Normal file
@ -0,0 +1,69 @@
|
||||
from z3 import *
|
||||
from typing import List, Optional
|
||||
|
||||
class FirefoxAndSafariRandomnessPredictor:
|
||||
def __init__(self, sequence: List[float]):
|
||||
self.sequence = sequence
|
||||
self.__mask = 0xFFFFFFFFFFFFFFFF
|
||||
self.__concrete_state0, self.__concrete_state1 = [None, None]
|
||||
self.__se_state0, self.__se_state1 = BitVecs("se_state0 se_state1", 64)
|
||||
self.__s0_ref, self.__s1_ref = self.__se_state0, self.__se_state1
|
||||
self.__solver = Solver()
|
||||
|
||||
for i in range(len(sequence)):
|
||||
mantissa = self.__recover_mantissa(sequence[i])
|
||||
self.__xorshift128p_symbolic()
|
||||
self.__solver.add(
|
||||
((self.__se_state0 + self.__se_state1) & 0x1FFFFFFFFFFFFF)
|
||||
== int(mantissa)
|
||||
)
|
||||
|
||||
if self.__solver.check() != sat:
|
||||
return None
|
||||
|
||||
model = self.__solver.model()
|
||||
self.__concrete_state0 = model[self.__s0_ref].as_long()
|
||||
self.__concrete_state1 = model[self.__s1_ref].as_long()
|
||||
|
||||
# We have to get our concrete state up to the same point as our symbolic state,
|
||||
# therefore, we discard as many "predict_next()" calls as we have len(sequence).
|
||||
# Otherwise, we would return random numbers to the caller that they already have.
|
||||
# Now, when we return from predict_next() we get the actual next
|
||||
for i in range(len(sequence)):
|
||||
self.__xorshift128p_concrete()
|
||||
|
||||
def predict_next(self) -> Optional[float]:
|
||||
"""
|
||||
Predict the next random number.
|
||||
"""
|
||||
if self.__concrete_state0 is None or self.__concrete_state1 is None:
|
||||
return None
|
||||
out = self.__xorshift128p_concrete()
|
||||
return self.__to_double(out)
|
||||
|
||||
def __xorshift128p_concrete(self) -> int:
|
||||
s1 = self.__concrete_state0 & self.__mask # state0 & self.__mask
|
||||
s0 = self.__concrete_state1 & self.__mask # state1 & self.__mask
|
||||
s1 ^= (s1 << 23) & self.__mask
|
||||
s1 ^= (s1 >> 17) & self.__mask
|
||||
s1 ^= s0 & self.__mask
|
||||
s1 ^= (s0 >> 26) & self.__mask
|
||||
self.__concrete_state0 = s0 & self.__mask
|
||||
self.__concrete_state1 = s1 & self.__mask
|
||||
return (self.__concrete_state0 + self.__concrete_state1) & self.__mask
|
||||
|
||||
def __xorshift128p_symbolic(self) -> None:
|
||||
s1 = self.__se_state0 # sym_state0
|
||||
s0 = self.__se_state1 # sym_state1
|
||||
s1 ^= s1 << 23
|
||||
s1 ^= LShR(s1, 17)
|
||||
s1 ^= s0
|
||||
s1 ^= LShR(s0, 26)
|
||||
self.__se_state0 = self.__se_state1 # sym_state0 = sym_state1
|
||||
self.__se_state1 = s1 # sym_state1 = s1
|
||||
|
||||
def __to_double(self, val: int):
|
||||
return float(val & 0x1FFFFFFFFFFFFF) / (0x1 << 53)
|
||||
|
||||
def __recover_mantissa(self, double: float) -> float:
|
||||
return double * (0x1 << 53)
|
203
xs128p.py
203
xs128p.py
@ -1,92 +1,29 @@
|
||||
import sys
|
||||
import math
|
||||
import struct
|
||||
import random
|
||||
from z3 import *
|
||||
|
||||
MASK = 0xFFFFFFFFFFFFFFFF
|
||||
from ChromeRandomnessPredictor import ChromeRandomnessPredictor
|
||||
from FirefoxAndSafariRandomnessPredictor import FirefoxAndSafariRandomnessPredictor
|
||||
|
||||
# xor_shift_128_plus algorithm
|
||||
def xs128p(state0, state1, browser):
|
||||
s1 = state0 & MASK
|
||||
s0 = state1 & MASK
|
||||
s1 ^= (s1 << 23) & MASK
|
||||
s1 ^= (s1 >> 17) & MASK
|
||||
s1 ^= s0 & MASK
|
||||
s1 ^= (s0 >> 26) & MASK
|
||||
state0 = state1 & MASK
|
||||
state1 = s1 & MASK
|
||||
if browser == 'chrome':
|
||||
generated = state0 & MASK
|
||||
else:
|
||||
generated = (state0 + state1) & MASK
|
||||
|
||||
return state0, state1, generated
|
||||
|
||||
# Symbolic execution of xs128p
|
||||
def sym_xs128p(slvr, sym_state0, sym_state1, generated, browser):
|
||||
s1 = sym_state0
|
||||
s0 = sym_state1
|
||||
s1 ^= (s1 << 23)
|
||||
s1 ^= LShR(s1, 17)
|
||||
s1 ^= s0
|
||||
s1 ^= LShR(s0, 26)
|
||||
sym_state0 = sym_state1
|
||||
sym_state1 = s1
|
||||
if browser == 'chrome':
|
||||
calc = sym_state0
|
||||
else:
|
||||
calc = (sym_state0 + sym_state1)
|
||||
|
||||
condition = Bool('c%d' % int(generated * random.random()))
|
||||
if browser == 'chrome':
|
||||
impl = Implies(condition, LShR(calc, 12) == int(generated))
|
||||
elif browser == 'firefox' or browser == 'safari':
|
||||
# Firefox and Safari save an extra bit
|
||||
impl = Implies(condition, (calc & 0x1FFFFFFFFFFFFF) == int(generated))
|
||||
|
||||
slvr.add(impl)
|
||||
return sym_state0, sym_state1, [condition]
|
||||
|
||||
def reverse17(val):
|
||||
return val ^ (val >> 17) ^ (val >> 34) ^ (val >> 51)
|
||||
|
||||
def reverse23(val):
|
||||
return (val ^ (val << 23) ^ (val << 46)) & MASK
|
||||
|
||||
def xs128p_backward(state0, state1, browser):
|
||||
prev_state1 = state0
|
||||
prev_state0 = state1 ^ (state0 >> 26)
|
||||
prev_state0 = prev_state0 ^ state0
|
||||
prev_state0 = reverse17(prev_state0)
|
||||
prev_state0 = reverse23(prev_state0)
|
||||
# this is only called from an if chrome
|
||||
# but let's be safe in case someone copies it out
|
||||
if browser == 'chrome':
|
||||
generated = prev_state0
|
||||
else:
|
||||
generated = (prev_state0 + prev_state1) & MASK
|
||||
return prev_state0, prev_state1, generated
|
||||
|
||||
# Print 'last seen' random number
|
||||
# and winning numbers following that.
|
||||
# This was for debugging. We know that Math.random()
|
||||
# is called in the browser zero times (updated) for each page click
|
||||
# is called in the browser zero times (updated) for each page click
|
||||
# in Chrome and once for each page click in Firefox.
|
||||
# Since we have to click once to enter the numbers
|
||||
# and once for Play, we indicate the winning numbers
|
||||
# with an arrow.
|
||||
def power_ball(generated, browser):
|
||||
def power_ball(browser, generated, skip=4):
|
||||
# for each random number (skip 4 of 5 that we generated)
|
||||
for idx in range(len(generated[4:])):
|
||||
for idx in range(len(generated[skip:])):
|
||||
# powerball range is 1 to 69
|
||||
poss = list(range(1, 70))
|
||||
# base index 4 to skip
|
||||
gen = generated[4+idx:]
|
||||
gen = generated[skip + idx :]
|
||||
# get 'last seen' number
|
||||
g0 = gen[0]
|
||||
gen = gen[1:]
|
||||
# make sure we have enough numbers
|
||||
# make sure we have enough numbers
|
||||
if len(gen) < 6:
|
||||
break
|
||||
print(g0)
|
||||
@ -96,112 +33,60 @@ def power_ball(generated, browser):
|
||||
for jdx in range(5):
|
||||
index = int(gen[jdx] * len(poss))
|
||||
val = poss[index]
|
||||
poss = poss[:index] + poss[index+1:]
|
||||
poss = poss[:index] + poss[index + 1 :]
|
||||
nums.append(val)
|
||||
|
||||
# print indicator
|
||||
if idx == 0 and browser == 'chrome':
|
||||
print('--->', end='')
|
||||
elif idx == 2 and browser == 'firefox':
|
||||
print('--->', end='')
|
||||
if idx == 0 and browser == "chrome":
|
||||
print("--->", end="")
|
||||
elif idx == 2 and browser == "firefox":
|
||||
print("--->", end="")
|
||||
else:
|
||||
print(' ', end='')
|
||||
print(" ", end="")
|
||||
# print winning numbers
|
||||
print(sorted(nums), end='')
|
||||
print(sorted(nums), end="")
|
||||
|
||||
# generate / print power number or w/e it's called
|
||||
double = gen[5]
|
||||
double = gen[skip + 1]
|
||||
val = int(math.floor(double * 26) + 1)
|
||||
print(val)
|
||||
|
||||
# Firefox nextDouble():
|
||||
# (rand_uint64 & ((1 << 53) - 1)) / (1 << 53)
|
||||
# Chrome nextDouble():
|
||||
# (state0 | 0x3FF0000000000000) - 1.0
|
||||
# Safari weakRandom.get():
|
||||
# (rand_uint64 & ((1 << 53) - 1) * (1.0 / (1 << 53)))
|
||||
def to_double(browser, out):
|
||||
if browser == 'chrome':
|
||||
double_bits = (out >> 12) | 0x3FF0000000000000
|
||||
double = struct.unpack('d', struct.pack('<Q', double_bits))[0] - 1
|
||||
elif browser == 'firefox':
|
||||
double = float(out & 0x1FFFFFFFFFFFFF) / (0x1 << 53)
|
||||
elif browser == 'safari':
|
||||
double = float(out & 0x1FFFFFFFFFFFFF) * (1.0 / (0x1 << 53))
|
||||
return double
|
||||
|
||||
|
||||
def main():
|
||||
# Note:
|
||||
# Safari tests have always turned up UNSAT
|
||||
# Wait for an update from Apple?
|
||||
# browser = 'safari'
|
||||
browser = 'chrome'
|
||||
# browser = 'firefox'
|
||||
print('BROWSER: %s' % browser)
|
||||
browser = "chrome" # | 'safari' | 'firefox'
|
||||
print("BROWSER: %s" % browser)
|
||||
|
||||
# In your browser's JavaScript console:
|
||||
# _ = []; for(var i=0; i<5; ++i) { _.push(Math.random()) } ; console.log(_)
|
||||
# Enter at least the 3 first random numbers you observed here:
|
||||
# Observations show Chrome needs ~5
|
||||
dubs = [
|
||||
0.5368584449767335, 0.883588766746984, 0.7895949638905317,
|
||||
0.5106241305628436, 0.49965622623126693]
|
||||
if browser == 'chrome':
|
||||
dubs = dubs[::-1]
|
||||
# - For Chrome/Firefox : `Array.from({ length: 5 }, Math.random);`
|
||||
# - For Safari : `JSON.stringify(Array.from({ length: 5 }, Math.random), null, 2);`
|
||||
# Enter at least the 5 first random numbers you observed here:
|
||||
# Observations show all browsers need ~5
|
||||
sequence = [
|
||||
0.5368584449767335,
|
||||
0.883588766746984,
|
||||
0.7895949638905317,
|
||||
0.5106241305628436,
|
||||
0.49965622623126693,
|
||||
]
|
||||
|
||||
print(dubs)
|
||||
print(sequence)
|
||||
# Add original created random numbers to generated (copy the list)
|
||||
generated = sequence[:]
|
||||
|
||||
# from the doubles, generate known piece of the original uint64
|
||||
generated = []
|
||||
for idx in range(len(dubs)):
|
||||
if browser == 'chrome':
|
||||
recovered = struct.unpack('<Q', struct.pack('d', dubs[idx] + 1))[0] & (MASK >> 12)
|
||||
elif browser == 'firefox':
|
||||
recovered = dubs[idx] * (0x1 << 53)
|
||||
elif browser == 'safari':
|
||||
recovered = dubs[idx] / (1.0 / (1 << 53))
|
||||
generated.append(recovered)
|
||||
RANDOM_NUMBERS_TO_GENERATE = 10
|
||||
|
||||
# setup symbolic state for xorshift128+
|
||||
ostate0, ostate1 = BitVecs('ostate0 ostate1', 64)
|
||||
sym_state0 = ostate0
|
||||
sym_state1 = ostate1
|
||||
slvr = Solver()
|
||||
conditions = []
|
||||
|
||||
# run symbolic xorshift128+ algorithm for three iterations
|
||||
# using the recovered numbers as constraints
|
||||
for ea in range(len(dubs)):
|
||||
sym_state0, sym_state1, ret_conditions = sym_xs128p(slvr, sym_state0, sym_state1, generated[ea], browser)
|
||||
conditions += ret_conditions
|
||||
|
||||
if slvr.check(conditions) == sat:
|
||||
# get a solved state
|
||||
m = slvr.model()
|
||||
state0 = m[ostate0].as_long()
|
||||
state1 = m[ostate1].as_long()
|
||||
slvr.add(Or(ostate0 != m[ostate0], ostate1 != m[ostate1]))
|
||||
if slvr.check(conditions) == sat:
|
||||
print('WARNING: multiple solutions found! use more dubs!')
|
||||
print('state', state0, state1)
|
||||
|
||||
generated = []
|
||||
# generate random numbers from recovered state
|
||||
for idx in range(15):
|
||||
if browser == 'chrome':
|
||||
state0, state1, out = xs128p_backward(state0, state1, browser)
|
||||
out = state0 & MASK
|
||||
else:
|
||||
state0, state1, out = xs128p(state0, state1, browser)
|
||||
|
||||
double = to_double(browser, out)
|
||||
print('gen', double)
|
||||
generated.append(double)
|
||||
|
||||
# use generated numbers to predict powerball numbers
|
||||
power_ball(generated, browser)
|
||||
if browser == "chrome":
|
||||
predictor = ChromeRandomnessPredictor(sequence)
|
||||
elif browser == "firefox" or browser == "safari":
|
||||
predictor = FirefoxAndSafariRandomnessPredictor(sequence)
|
||||
else:
|
||||
print('UNSAT')
|
||||
raise Exception(f"unknown browser {browser}")
|
||||
|
||||
for _ in range(RANDOM_NUMBERS_TO_GENERATE):
|
||||
next = predictor.predict_next()
|
||||
generated.append(next)
|
||||
# use generated numbers to predict powerball numbers
|
||||
power_ball(browser=browser, generated=generated, skip=len(sequence))
|
||||
|
||||
|
||||
main()
|
||||
|
Loading…
x
Reference in New Issue
Block a user