We've been out-of-date for a while now, as we needed to update
lua_menhir to work with lrgrep 3.
- Better handling of standalone names/expressions - we now correctly
handle lists of names.
- Handle missing commas in tables in a few more places.
This commit adds abstract classes to describe the interface for our
mod-loader-specific generic peripherals (inventories, fluid storage,
item storage).
This offers several advantages:
- Javadoc to illuaminate conversion no longer needs the Forge project
(just core and common).
- Ensures we have a consistent interface between Forge and Fabric.
Note, this does /not/ implement fluid or energy storage for Fabric. We
probably could do fluid without issue, but not something worth doing
right now.
In practice, we're never going to change this to true by default. The
old Tekkit Legends pack enabled this[^1], and that caused a lot of
problems, though admittedly back in 2016 so things might be better now.
If people do want this functionality, it should be fairly easy to
replicate with a datapack, adding a file to rom/autorun.
[^1]: See https://www.computercraft.info/forums2/index.php?/topic/27663-
Hate that I remember this, why is this still in my brain?
Historically we've used copy-cat to provide a web-based emulator for
running example code on our documentation site. However, copy-cat is
often out-of-date with CC:T, which means example snippets fail when you
try to run them!
This commit vendors in copy-cat (or rather an updated version of it)
into CC:T itself, allowing us to ensure the emulator is always in sync
with the mod.
While the ARCHITECTURE.md documentation goes into a little bit more
detail here, the general implementation is as follows
- In project/src/main we implement the core of the emulator. This
includes a basic reimplementation of some of CC's classes to work on
the web (mostly the HTTP API and ComputerThread), and some additional
code to expose the computers to Javascript.
- This is all then compiled to Javascript using [TeaVM][1] (we actually
use a [personal fork of it][2] as there's a couple of changes I've
not upstreamed yet).
- The Javascript side then pulls in the these compiled classes (and
the CC ROM) and hooks them up to [cc-web-term][3] to display the
actual computer.
- As we're no longer pulling in copy-cat, we can simplify our bundling
system a little - we now just compile to ESM modules directly.
[1]: https://github.com/konsoletyper/teavm
[2]: https://github.com/SquidDev/teavm/tree/squid-patches
[3]: https://github.com/squiddev-cc/cc-web-term
- Move the frontend code into src/frontend
- Move our custom element SSR system into src/htmlTransform.
This is mostly in prep for merging in copy-cat's core, as that's a whole
bunch of extra code.
This adds SPDX license headers to all source code files, following the
REUSE[1] specification. This does not include any asset files (such as
generated JSON files, or textures). While REUSE does support doing so
with ".license" files, for now we define these licences using the
.reuse/dep5 file.
[1]: https://reuse.software/
In classic squid tradition: 20% code, and 80% test logic.
Closes#962. Alas, whoever reported this has deleted their account, so
they can't even be happy about it :(.
After several weeks of carefully arranging ribbons, we pull the string
and end up with, ... a bit of a messy bow. There were still some things
I'd missed.
- Split the mod into a common (vanilla-only) project and Forge-specific
project. This gives us room to add Fabric support later on.
- Split the project into main/client source sets. This is not currently
statically checked: we'll do that soon.
- Rename block/item/tile entities to use suffixes rather than prefixes.
- Add a new Node plugin. This automatically installs npm dependencies
and provides a "NpxExecToDir" to dir task. This allows us to make the
doc website task dependencies a little nicer, by simply chaining
tasks together, rather than doing dependsOn + `input.files(the other
task output)`.
- Switch over to CurseForgeGradle from CurseGradle. The latter is
super clunky to use in non-Groovy languages.
- Copy our Modrinth description body to our repo, and add support for
syncing it. We'll still have to do CF manually I think.
- Add a TOC to the Local IPs page.
- Increase the echo delay in our speaker audio page to 1.5s. This
sounds much better and is less clashy than 1s. Also add a
sleep(0) (eww, I know) to fix timeouts on some browsers/computers.
- Move Lua feature compat to a new "reference" section. Still haven't
figured out how to structure these docs - open to any ideas really.
- Mention FFmpeg as an option for converting to DFPWM (closes#1075).
- Allow data-mount to override built-in files. See my comment in #1069.
Speakers can now play arbitrary PCM audio, sampled at 48kHz and with a
resolution of 8 bits. Programs can build up buffers of audio locally,
play it using `speaker.playAudio`, where it is encoded to DFPWM, sent
across the network, decoded, and played on the client.
`speaker.playAudio` may return false when a chunk of audio has been
submitted but not yet sent to the client. In this case, the program
should wait for a speaker_audio_empty event and try again, repeating
until it works.
While the API is a little odd, this gives us fantastic flexibility (we
can play arbitrary streams of audio) while still being resilient in the
presence of server lag (either TPS or on the computer thread).
Some other notes:
- There is a significant buffer on both the client and server, which
means that sound take several seconds to finish after playing has
started. One can force it to be stopped playing with the new
`speaker.stop` call.
- This also adds a `cc.audio.dfpwm` module, which allows encoding and
decoding DFPWM1a audio files.
- I spent so long writing the documentation for this. Who knows if it'll
be helpful!
Let's see how this goes.
- Update references to the new repo
- Use rrsync on the server, meaning make-doc.sh uploads relative to the
website root.
- Bump Gradle wrapper to 7.2. Not related to this change, but possibly
fixes running under Java 16. Possibly.
- Add remaining docs for the turtle API
- Add documentation for the fluid storage peripheral.
- Enforce undocumented warning for most modules (only io and window
remaining).
"Finish" in quotes, because these are clearly a long way from perfect.
I'm bad at writing docs, OK!
- Fix doc library-path
- Only style <pre> code blocks as executable. Skip <code> ones.
- Document the default parameters in gps. Yes, we should do it
everywhere, but one has to start somewhere!
- Generate theme-color. Hopefully this time it works!
- Specify a site url. Technically this is wrong (we should use the
current git branch), but it's good enough for now.
- Move some options into a sub-category.
Provides a basic interface for running examples on tweaked.cc. This is probably
janky as anything, but it works on my machine.
This is the culmination of 18 months of me building far too much infrastructure
(copy-cat, illuaminate), so that's nice I guess.
I should probably get out more.
illuaminate does not handle Java files, for obvious reasons. In order to
get around that, we have a series of stub files within /doc/stub which
mirrored the Java ones. While this works, it has a few problems:
- The link to source code does not work - it just links to the stub
file.
- There's no guarantee that documentation remains consistent with the
Java code. This change found several methods which were incorrectly
documented beforehand.
We now replace this with a custom Java doclet[1], which extracts doc
comments from @LuaFunction annotated methods and generates stub-files
from them. These also contain a @source annotation, which allows us to
correctly link them back to the original Java code.
There's some issues with this which have yet to be fixed. However, I
don't think any of them are major blockers right now:
- The custom doclet relies on Java 9 - I think it's /technically/
possible to do this on Java 8, but the API is significantly uglier.
This means that we need to run javadoc on a separate JVM.
This is possible, and it works locally and on CI, but is definitely
not a nice approach.
- illuaminate now requires the doc stubs to be generated in order for
the linter to pass, which does make running the linter locally much
harder (especially given the above bullet point).
We could notionally include the generated stubs (or at least a cut
down version of them) in the repo, but I'm not 100% sure about that.
[1]: https://docs.oracle.com/javase/9/docs/api/jdk/javadoc/doclet/package-summary.html
No clue how we're going to do this for the dynamic peripheral system
if/when that ships, but this is a good first stage.
Like the Java APIs, this relies on stub files, so we can't link to the
implementation which is a bit of a shame. However, it's a good first
step.
- Lint references to unknown fields of modules, excluding the keys and
colours modules. This caught several silly errors in our stub files,
but nothing else.
- Lint on using unknown globals. This highlighted a couple of really
silly mistakes. Fixes#427.
- Add documentation for fs.attributes, fs.getCapacity and pocket, as
they were not defined before.
Co-authored-by: JackMacWindows <jackmacwindowslinux@gmail.com>
This adds documentation comments to many of CC's Lua APIs, and
a couple of the Java ones, through the use of stubs. We then
export these to HTML using illuaminate [1] and upload them to our
documentation site [2].
Uploads currently occur on pushes to master and any release/tag. The
site is entirely static - there is no way to switch between versions,
etc... but hopefully we can improve this in the future.
[1]: github.com/SquidDev/illuaminate/
[2]: https://tweaked.cc/
We now use illuaminate[1]'s linting facilities to check the rom and
bios.lua for a couple of common bugs and other problems.
Right now this doesn't detect any especially important bugs, though it
has caught lots of small things (unused variables, some noisy code). In
the future, the linter will grow in scope and features, which should
allow us to be stricter and catch most issues.
As a fun aside, we started off with ~150 bugs, and illuaminate was able
to fix all but 30 of them, which is pretty neat.
[1]: https://github.com/SquidDev/illuaminate