1
0
mirror of https://github.com/SquidDev-CC/CC-Tweaked synced 2024-12-12 11:10:29 +00:00

Implement a CFS based scheduler

- The computer queue is a priority queue sorted by "virtual runtime".
 - Virtual runtime is based on the time this task has executed, divided
   by the number of pending tasks.
 - We try to execute every task within a given period. Each computer is
   allocated a fair share of that period, depending how many tasks are
   in the queue. Once a computer has used more than that period, the
   computer is paused and the next one resumed.
This commit is contained in:
SquidDev 2019-02-28 17:23:09 +00:00
parent b3e6a53868
commit a125a19728
3 changed files with 209 additions and 38 deletions

View File

@ -103,6 +103,20 @@ final class ComputerExecutor
*/
volatile boolean onComputerQueue = false;
/**
* The amount of time this computer has used on a theoretical machine which shares work evenly amongst computers.
*
* @see ComputerThread
*/
long virtualRuntime = 0;
/**
* The last time at which we updated {@link #virtualRuntime}.
*
* @see ComputerThread
*/
long vRuntimeStart;
/**
* The command that {@link #work()} should execute on the computer thread.
*
@ -280,9 +294,7 @@ final class ComputerExecutor
{
synchronized( queueLock )
{
if( onComputerQueue ) return;
onComputerQueue = true;
ComputerThread.queue( this );
if( !onComputerQueue ) ComputerThread.queue( this );
}
}
@ -482,14 +494,16 @@ final class ComputerExecutor
*/
void beforeWork()
{
vRuntimeStart = System.nanoTime();
timeout.startTimer();
}
/**
* Called after executing {@link #work()}. Adds this back to the {@link ComputerThread} if we have more work,
* otherwise remove it.
* Called after executing {@link #work()}.
*
* @return If we have more work to do.
*/
void afterWork()
boolean afterWork()
{
if( interruptedEvent )
{
@ -502,16 +516,12 @@ final class ComputerExecutor
Tracking.addTaskTiming( getComputer(), timeout.nanoCurrent() );
if( interruptedEvent ) return true;
synchronized( queueLock )
{
if( !interruptedEvent && eventQueue.isEmpty() && command == null )
{
onComputerQueue = false;
}
else
{
ComputerThread.queue( this );
}
if( eventQueue.isEmpty() && command == null ) return onComputerQueue = false;
return true;
}
}

View File

@ -10,11 +10,13 @@ import dan200.computercraft.ComputerCraft;
import dan200.computercraft.shared.util.ThreadUtils;
import javax.annotation.Nonnull;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.TreeSet;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicReference;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.LockSupport;
import java.util.concurrent.locks.ReentrantLock;
import static dan200.computercraft.core.computer.TimeoutState.ABORT_TIMEOUT;
import static dan200.computercraft.core.computer.TimeoutState.TIMEOUT;
@ -34,16 +36,32 @@ public class ComputerThread
*/
private static final int MONITOR_WAKEUP = 100;
/**
* The target latency between executing two tasks on a single machine.
*
* An average tick takes 50ms, and so we ideally need to have handled a couple of events within that window in order
* to have a perceived low latency.
*/
private static final long DEFAULT_LATENCY = TimeUnit.MILLISECONDS.toNanos( 50 );
/**
* The minimum value that {@link #DEFAULT_LATENCY} can have when scaled.
*
* From statistics gathered on SwitchCraft, almost all machines will execute under 15ms, 75% under 1.5ms, with the
* mean being about 3ms. Most computers shouldn't be too impacted with having such a short period to execute in.
*/
private static final long DEFAULT_MIN_PERIOD = TimeUnit.MILLISECONDS.toNanos( 5 );
/**
* The maximum number of tasks before we have to start scaling latency linearly.
*/
private static final long LATENCY_MAX_TASKS = DEFAULT_LATENCY / DEFAULT_MIN_PERIOD;
/**
* Lock used for modifications to the array of current threads.
*/
private static final Object threadLock = new Object();
/**
* Active executors to run
*/
private static final BlockingQueue<ComputerExecutor> computersActive = new LinkedBlockingQueue<>();
/**
* Whether the computer thread system is currently running
*/
@ -59,6 +77,29 @@ public class ComputerThread
*/
private static TaskRunner[] runners;
private static long latency;
private static long minPeriod;
private static final ReentrantLock computerLock = new ReentrantLock();
private static final Condition hasWork = computerLock.newCondition();
/**
* Active queues to execute
*/
private static final TreeSet<ComputerExecutor> computerQueue = new TreeSet<>( ( a, b ) -> {
if( a == b ) return 0; // Should never happen, but let's be consistent here
long at = a.virtualRuntime, bt = b.virtualRuntime;
if( at == bt ) return Integer.compare( a.hashCode(), b.hashCode() );
return Long.compare( at, bt );
} );
/**
* The minimum {@link ComputerExecutor#virtualRuntime} time on the tree.
*/
private static long minimumVirtualRuntime = 0;
private static final ThreadFactory monitorFactory = ThreadUtils.factory( "Computer-Monitor" );
private static final ThreadFactory runnerFactory = ThreadUtils.factory( "Computer-Runner" );
@ -76,6 +117,12 @@ public class ComputerThread
{
// TODO: Resize this + kill old runners and start new ones.
runners = new TaskRunner[ComputerCraft.computer_threads];
// latency and minPeriod are scaled by 1 + floor(log2(threads)). We can afford to execute tasks for
// longer when executing on more than one thread.
long factor = 64 - Long.numberOfLeadingZeros( runners.length );
latency = DEFAULT_LATENCY * factor;
minPeriod = DEFAULT_MIN_PERIOD * factor;
}
for( int i = 0; i < runners.length; i++ )
@ -112,18 +159,125 @@ public class ComputerThread
}
}
computersActive.clear();
computerQueue.clear();
}
/**
* Mark a computer as having work, enqueuing it on the thread.
*
* @param computer The computer to execute work on.
* @param executor The computer to execute work on.
*/
static void queue( @Nonnull ComputerExecutor computer )
static void queue( @Nonnull ComputerExecutor executor )
{
if( !computer.onComputerQueue ) throw new IllegalStateException( "Computer must be on queue" );
computersActive.add( computer );
computerLock.lock();
try
{
if( executor.onComputerQueue ) throw new IllegalStateException( "Cannot queue already queued executor" );
executor.onComputerQueue = true;
updateRuntimes();
// We're not currently on the queue, so update its current execution time to
// ensure its at least as high as the minimum.
long newRuntime = minimumVirtualRuntime;
if( executor.virtualRuntime == 0 )
{
// Slow down new computers a little bit.
newRuntime += scaledPeriod();
}
else
{
// Give a small boost to computers which have slept a little.
newRuntime -= latency / 2;
}
executor.virtualRuntime = Math.max( newRuntime, executor.virtualRuntime );
// Add to the queue, and signal the workers.
computerQueue.add( executor );
hasWork.signal();
}
finally
{
computerLock.unlock();
}
}
/**
* Update the {@link ComputerExecutor#virtualRuntime}s of all running tasks, and then increment the
* {@link #minimumVirtualRuntime} of the executor.
*/
private static void updateRuntimes()
{
long minRuntime = Long.MAX_VALUE;
// If we've a task on the queue, use that as our base time.
if( !computerQueue.isEmpty() ) minRuntime = computerQueue.first().virtualRuntime;
// Update all the currently executing tasks
TaskRunner[] currentRunners = runners;
if( currentRunners != null )
{
long now = System.nanoTime();
int tasks = 1 + computerQueue.size();
for( TaskRunner runner : currentRunners )
{
if( runner == null ) continue;
ComputerExecutor executor = runner.currentExecutor.get();
if( executor == null ) continue;
// We do two things here: first we update the task's virtual runtime based on when we
// last checked, and then we check the minimum.
minRuntime = Math.min( minRuntime, executor.virtualRuntime += (now - executor.vRuntimeStart) / tasks );
executor.vRuntimeStart = now;
}
}
if( minRuntime > minimumVirtualRuntime && minRuntime < Long.MAX_VALUE )
{
minimumVirtualRuntime = minRuntime;
}
}
/**
* Re-add this task to the queue
*
* @param executor The executor to requeue
*/
private static void afterWork( ComputerExecutor executor )
{
computerLock.lock();
try
{
updateRuntimes();
// Add to the queue, and signal the workers.
if( !executor.afterWork() ) return;
computerQueue.add( executor );
hasWork.signal();
}
finally
{
computerLock.unlock();
}
}
/**
* The scaled period for a single task
*
* @return The scaled period for the task
* @see #DEFAULT_LATENCY
* @see #DEFAULT_MIN_PERIOD
* @see #LATENCY_MAX_TASKS
*/
static long scaledPeriod()
{
// +1 to include the current task
int count = 1 + computerQueue.size();
return count < LATENCY_MAX_TASKS ? latency / count : minPeriod;
}
/**
@ -133,7 +287,7 @@ public class ComputerThread
*/
static boolean hasPendingWork()
{
return computersActive.size() > 0;
return computerQueue.size() > 0;
}
/**
@ -184,7 +338,7 @@ public class ComputerThread
runner.running = false;
ComputerExecutor thisExecutor = runner.currentExecutor.getAndSet( null );
if( thisExecutor != null ) executor.afterWork();
if( thisExecutor != null ) afterWork( executor );
synchronized( threadLock )
{
@ -213,7 +367,7 @@ public class ComputerThread
}
/**
* Pulls tasks from the {@link #computersActive} queue and runs them.
* Pulls tasks from the {@link #computerQueue} queue and runs them.
*
* This is responsible for running the {@link ComputerExecutor#work()}, {@link ComputerExecutor#beforeWork()} and
* {@link ComputerExecutor#afterWork()} functions. Everything else is either handled by the executor, timeout
@ -237,7 +391,17 @@ public class ComputerThread
ComputerExecutor executor;
try
{
executor = computersActive.take();
computerLock.lockInterruptibly();
try
{
while( computerQueue.isEmpty() ) hasWork.await();
executor = computerQueue.pollFirst();
assert executor != null : "hasWork should ensure we never receive null work";
}
finally
{
computerLock.unlock();
}
}
catch( InterruptedException ignored )
{
@ -262,7 +426,7 @@ public class ComputerThread
finally
{
ComputerExecutor thisExecutor = currentExecutor.getAndSet( null );
if( thisExecutor != null ) executor.afterWork();
if( thisExecutor != null ) afterWork( executor );
}
}
}

View File

@ -27,11 +27,6 @@ import java.util.concurrent.TimeUnit;
*/
public final class TimeoutState
{
/**
* The time to run a task before pausing in nanoseconds
*/
private static final long TIMESLICE = TimeUnit.MILLISECONDS.toNanos( 40 );
/**
* The total time a task is allowed to run before aborting in nanoseconds
*/
@ -53,6 +48,7 @@ public final class TimeoutState
private long nanoCumulative;
private long nanoCurrent;
private long nanoDeadline;
long nanoCumulative()
{
@ -70,7 +66,7 @@ public final class TimeoutState
public void refresh()
{
long now = System.nanoTime();
if( !paused ) paused = (now - nanoCurrent) >= TIMESLICE;
if( !paused ) paused = now >= nanoDeadline && ComputerThread.hasPendingWork();
if( !softAbort ) softAbort = (now - nanoCumulative) >= TIMEOUT;
}
@ -84,7 +80,7 @@ public final class TimeoutState
*/
public boolean isPaused()
{
return paused && ComputerThread.hasPendingWork();
return paused;
}
/**
@ -118,6 +114,7 @@ public final class TimeoutState
{
long now = System.nanoTime();
nanoCurrent = now;
nanoDeadline = now + ComputerThread.scaledPeriod();
// Compute the "nominal start time".
nanoCumulative = now - nanoCumulative;
}