--- title: Flying Thing description: Fly an ominous flying square around above some ground! Includes special relativity! --- <style> body { box-sizing: border-box; font-family: 'Fira Sans', 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; } #controls { border: 1px solid blue; padding: 1em; margin: 1em; } #controls select { border: 1px solid blue; padding: 0.2em; } #container { display: flex; } </style> <div id="container"> <canvas id="thing" width=800 height=800></canvas> <div id="controls-container"> <div id="controls"> <label><select name="mechanics"><option>Relativistic</option><option>Newtonian</option><option>Aristotlean</option></select> Mechanics</label><br> <label><select name="ground"><option>Noise</option><option>Time-Varying</option><option>Flat</option><option>Triangles</option><option>Catenary</option></select> Ground</label><br> <label><select name="controls"><option>Absolute Orientation</option><option>Relative Orientation</option></select> Controls</label><br> <label><select name="restitution"><option>1</option><option>< 1</option><option>> 1</option></select> e</label><br> <label><select name="gravity"><option>Normal</option><option>High</option><option>Off</option></select> Gravity</label> </div> </div> </div> <script> var settings = {} for (const input of document.querySelectorAll("#controls input, #controls select")) { const read = () => { settings[input.getAttribute("name")] = input.getAttribute("type") === "checkbox" ? input.checked : input.value } read() input.addEventListener("input", read) } var ctx = window.thing.getContext("2d") const angleToVec = theta => [Math.cos(theta), Math.sin(theta)] const zipWith = (f, xs, ys) => xs.map((x, i) => f(x, ys[i])) const sum = xs => xs.reduce((a, y) => a + y, 0) const vecAdd = (a, b) => zipWith((x, y) => x + y, a, b) const hadamardProduct = (a, b) => zipWith((x, y) => x * y, a, b) const scalarMult = (a, n) => a.map(x => x * n) const dotProduct = (a, b) => sum(hadamardProduct(a, b)) const vecLength = a => Math.sqrt(sum(a.map(x => x ** 2))) const normalize = a => scalarMult(a, 1/vecLength(a)) function vsub(x, y) { return vecAdd(x, scalarMult(y, -1)) } function derivativeApproximation(f, a) { var delta = 0.000001 return (f(a + delta) - f(a)) / delta } const rotate90CW = ([x, y]) => [y, -x] var pixelDimensions = [window.thing.width, window.thing.height] var position = [0.5, 0.5] var velocity = [0, 0] var keys = {} window.onkeydown = ev => { keys[ev.key] = true } window.onkeyup = ev => { keys[ev.key] = false } const toScreen = v => hadamardProduct(v, pixelDimensions) function draw(start, end, color) { ctx.fillStyle = color var start = toScreen(start) var end = toScreen(end) ctx.fillRect(start[0], start[1], end[0] - start[0], end[1] - start[1]) } function drawLine(color, start, ...points) { ctx.lineWidth = 2 ctx.strokeStyle = color ctx.beginPath() var s = toScreen(start) ctx.moveTo(s[0], s[1]) for (const point of points) { var p = toScreen(point) ctx.lineTo(p[0], p[1]) } ctx.stroke() } var SPEED_OF_LIGHT = 0.01 const gamma = v => (1 - (v/SPEED_OF_LIGHT)**2) ** (-0.5) const gammaDerivative = v => (v/(SPEED_OF_LIGHT**2))*((1-(v/SPEED_OF_LIGHT)**2)**(-1.5)) const noiseSeed = Math.random() * (2**32-1) const hash = (str, seed = 0) => { let h1 = 0xdeadbeef ^ seed, h2 = 0x41c6ce57 ^ seed for (let i = 0, ch; i < str.length; i++) { ch = str.charCodeAt(i) h1 = Math.imul(h1 ^ ch, 2654435761) h2 = Math.imul(h2 ^ ch, 1597334677) } h1 = Math.imul(h1 ^ (h1>>>16), 2246822507) ^ Math.imul(h2 ^ (h2>>>13), 3266489909) h2 = Math.imul(h2 ^ (h2>>>16), 2246822507) ^ Math.imul(h1 ^ (h1>>>13), 3266489909) return 4294967296 * (2097151 & h2) + (h1>>>0) } const cartesianProduct = (xs, ys) => xs.flatMap(x => ys.map(y => [x, y])) const gradients = cartesianProduct([-1, -0.5, 0.5, 1], [-1, -0.5, 0.5, 1]).map(normalize) const gradientFor = (x, y) => gradients[hash(x+"."+y, noiseSeed) % gradients.length] const interpolate = (a0, a1, w) => (a1 - a0) * (3.0 - w * 2.0) * w * w + a0 const perlin = (x, y) => { const i = Math.floor(x), j = Math.floor(y) const u = x - i, v = y - j const n00 = dotProduct(gradientFor(i, j), [u, v]) const n01 = dotProduct(gradientFor(i + 1, j), [u - 1, v]) const n10 = dotProduct(gradientFor(i, j + 1), [u, v - 1]) const n11 = dotProduct(gradientFor(i + 1, j + 1), [u - 1, v - 1]) return interpolate(interpolate(n00, n01, u), interpolate(n10, n11, u), v) } const GROUND_FUNCTIONS = { "Time-Varying": x => perlin(x * 10, x * 10 + Date.now() / 10000) * 0.25 + 0.75, "Noise": x => perlin(x * 10, x * 10) * 0.25 + 0.75, "Flat": x => 0.75, "Triangles": x => 0.25*(Math.abs(10*x-Math.floor(10*x)-0.5)) + 0.75, "Catenary": x => 1.3-Math.cosh(x-0.5)*0.5 } const E_COEFFICIENTS = { "1": 1, "< 1": 0.5, "> 1": 1.5 } const GRAVITY = { "Normal": 0.0001, "High": 0.0005, "Off": 0 } var direction = -Math.PI/2 var lastTime var SIMITERS = 1 function loop(timestamp) { if (lastTime) { var timestep = timestamp - lastTime var scaling = 0.5 * timestep / 16.666666666666666666666666666666666666666 lastTime = timestamp } else { requestAnimationFrame(loop) lastTime = timestamp return } var groundFunc = GROUND_FUNCTIONS[settings.ground] var reldir = settings.controls === "Relative Orientation" const scale = x => scalarMult(x, scaling) draw([0, 0], [1, 1], "black") ctx.fillStyle = "gray" for (let i = 0; i < pixelDimensions[0]; i++) { var gameX = i / pixelDimensions[0] var gameH = groundFunc(gameX) var pixelH = gameH * pixelDimensions[1] ctx.fillRect(i, pixelH, 1, pixelDimensions[1] - pixelH) } drawLine("green", position, vecAdd(position, scalarMult(velocity, 20))) if (reldir) { drawLine("blue", position, vecAdd(position, scalarMult(angleToVec(direction), 0.05))) } draw(vsub(position, [-0.005, -0.005]), vsub(position, [0.005, 0.005]), "white") scaling /= SIMITERS for (var i = 0; i < SIMITERS; i++) { position = vecAdd(scale(velocity), position) var force = [0, GRAVITY[settings.gravity]] if (keys["w"]) { if (reldir) { force = vecAdd(force, scalarMult(angleToVec(direction), 0.001)) } else { force = vecAdd(force, [0, -0.001]) } } if (keys["a"]) { if (reldir) { direction -= 0.05 } else { force = vecAdd(force, [-0.0005, 0]) } } if (keys["d"]) { if (reldir) { direction += 0.05 } else { force = vecAdd(force, [0.0005, 0]) } } if (keys["s"]) { if (reldir) { force = vecAdd(force, scalarMult(angleToVec(direction), -0.0005)) } else { force = vecAdd(force, [0, 0.0005]) } } var divisor = settings.mechanics === "Relativistic" ? gamma(vecLength(velocity)) ** 3 : 1 //gamma(vecLength(velocity)) + gammaDerivative(vecLength(velocity)) * vecLength(velocity) if (isNaN(divisor)) { console.log("luminal limit exceeded, resetting") divisor = 1 velocity = [0, 0] } var velocityChange = scalarMult(scale(force), 1/divisor) //console.log(gamma(vecLength(velocity)), velocity, velocityChange) if (settings.mechanics === "Aristotlean") { velocity = scalarMult(velocityChange, 60) } else { velocity = vecAdd(velocity, velocityChange) } if (position[1] > 1) { position[1] = 0 } if (position[1] < 0) { position[1] = 1 } if (position[0] > 1) { position[0] = 0 } if (position[0] < 0) { position[0] = 1 } //console.log(GROUND(position[0]), position[0]) if (position[1] > groundFunc(position[0])) { var groundVector = normalize([1, derivativeApproximation(groundFunc, position[0])]) var normalVector = rotate90CW(groundVector) velocity = vecAdd(scalarMult(groundVector, dotProduct(velocity, groundVector)), scalarMult(normalVector, -E_COEFFICIENTS[settings.restitution] * dotProduct(velocity, normalVector))) position[1] = groundFunc(position[0]) } } requestAnimationFrame(loop) } requestAnimationFrame(loop) </script>