---
title: Flying Thing
description: Fly an ominous flying square around above some ground! Includes special relativity!
---
<style>
	body {
		box-sizing: border-box;
		font-family: 'Fira Sans', 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
	}

	#controls {
		border: 1px solid blue;
		padding: 1em;
		margin: 1em;
	}
	#controls select {
		border: 1px solid blue;
		padding: 0.2em;
	}
	#container {
		display: flex;
	}
</style>
<div id="container">
<canvas id="thing" width=800 height=800></canvas>
<div id="controls-container">
<div id="controls">
	<label><select name="mechanics"><option>Relativistic</option><option>Newtonian</option><option>Aristotlean</option></select> Mechanics</label><br>
	<label><select name="ground"><option>Noise</option><option>Time-Varying</option><option>Flat</option><option>Triangles</option><option>Catenary</option></select> Ground</label><br>
	<label><select name="controls"><option>Absolute Orientation</option><option>Relative Orientation</option></select> Controls</label><br>
	<label><select name="restitution"><option>1</option><option>&lt; 1</option><option>&gt; 1</option></select> e</label><br>
	<label><select name="gravity"><option>Normal</option><option>High</option><option>Off</option></select> Gravity</label>
</div>
</div>
</div>
<script>
var settings = {}
for (const input of document.querySelectorAll("#controls input, #controls select")) {
	const read = () => { settings[input.getAttribute("name")] = input.getAttribute("type") === "checkbox" ? input.checked : input.value }
	read()
	input.addEventListener("input", read)
}

var ctx = window.thing.getContext("2d")

const angleToVec = theta => [Math.cos(theta), Math.sin(theta)]
const zipWith = (f, xs, ys) => xs.map((x, i) => f(x, ys[i]))
const sum = xs => xs.reduce((a, y) => a + y, 0)
const vecAdd = (a, b) => zipWith((x, y) => x + y, a, b)
const hadamardProduct = (a, b) => zipWith((x, y) => x * y, a, b)
const scalarMult = (a, n) => a.map(x => x * n)
const dotProduct = (a, b) => sum(hadamardProduct(a, b))
const vecLength = a => Math.sqrt(sum(a.map(x => x ** 2)))
const normalize = a => scalarMult(a, 1/vecLength(a))
function vsub(x, y) { return vecAdd(x, scalarMult(y, -1)) }
function derivativeApproximation(f, a) {
	var delta = 0.000001
	return (f(a + delta) - f(a)) / delta
}
const rotate90CW = ([x, y]) => [y, -x]

var pixelDimensions = [window.thing.width, window.thing.height]
var position = [0.5, 0.5]
var velocity = [0, 0]

var keys = {}

window.onkeydown = ev => {
	keys[ev.key] = true
}
window.onkeyup = ev => {
	keys[ev.key] = false
}

const toScreen = v => hadamardProduct(v, pixelDimensions)

function draw(start, end, color) {
	ctx.fillStyle = color
	var start = toScreen(start)
	var end = toScreen(end)
	ctx.fillRect(start[0], start[1], end[0] - start[0], end[1] - start[1])
}

function drawLine(color, start, ...points) {
	ctx.lineWidth = 2
	ctx.strokeStyle = color
	ctx.beginPath()
	var s = toScreen(start)
	ctx.moveTo(s[0], s[1])
	for (const point of points) {
		var p = toScreen(point)
		ctx.lineTo(p[0], p[1])
	}
	ctx.stroke()
}

var SPEED_OF_LIGHT = 0.01
const gamma = v => (1 - (v/SPEED_OF_LIGHT)**2) ** (-0.5)
const gammaDerivative = v => (v/(SPEED_OF_LIGHT**2))*((1-(v/SPEED_OF_LIGHT)**2)**(-1.5))

const noiseSeed = Math.random() * (2**32-1)
const hash = (str, seed = 0) => {
	let h1 = 0xdeadbeef ^ seed, h2 = 0x41c6ce57 ^ seed
	for (let i = 0, ch; i < str.length; i++) {
		ch = str.charCodeAt(i)
		h1 = Math.imul(h1 ^ ch, 2654435761)
		h2 = Math.imul(h2 ^ ch, 1597334677)
	}
	h1 = Math.imul(h1 ^ (h1>>>16), 2246822507) ^ Math.imul(h2 ^ (h2>>>13), 3266489909)
	h2 = Math.imul(h2 ^ (h2>>>16), 2246822507) ^ Math.imul(h1 ^ (h1>>>13), 3266489909)
	return 4294967296 * (2097151 & h2) + (h1>>>0)
}

const cartesianProduct = (xs, ys) => xs.flatMap(x => ys.map(y => [x, y]))
const gradients = cartesianProduct([-1, -0.5, 0.5, 1], [-1, -0.5, 0.5, 1]).map(normalize)
const gradientFor = (x, y) => gradients[hash(x+"."+y, noiseSeed) % gradients.length]

const interpolate = (a0, a1, w) => (a1 - a0) * (3.0 - w * 2.0) * w * w + a0
const perlin = (x, y) => {
	const i = Math.floor(x), j = Math.floor(y)
	const u = x - i, v = y - j
	const n00 = dotProduct(gradientFor(i, j), [u, v])
	const n01 = dotProduct(gradientFor(i + 1, j), [u - 1, v])
	const n10 = dotProduct(gradientFor(i, j + 1), [u, v - 1])
	const n11 = dotProduct(gradientFor(i + 1, j + 1), [u - 1, v - 1])
	return interpolate(interpolate(n00, n01, u), interpolate(n10, n11, u), v)
}

const GROUND_FUNCTIONS = {
	"Time-Varying": x => perlin(x * 10, x * 10 + Date.now() / 10000) * 0.25 + 0.75,
	"Noise": x => perlin(x * 10, x * 10) * 0.25 + 0.75,
	"Flat": x => 0.75,
	"Triangles": x => 0.25*(Math.abs(10*x-Math.floor(10*x)-0.5)) + 0.75,
	"Catenary": x => 1.3-Math.cosh(x-0.5)*0.5
}
const E_COEFFICIENTS = {
	"1": 1,
	"< 1": 0.5,
	"> 1": 1.5
}
const GRAVITY = {
	"Normal": 0.0001,
	"High": 0.0005,
	"Off": 0
}

var direction = -Math.PI/2

var lastTime
var SIMITERS = 1
function loop(timestamp) {
	if (lastTime) {
		var timestep = timestamp - lastTime
		var scaling = 0.5 * timestep / 16.666666666666666666666666666666666666666
		lastTime = timestamp
	} else {
		requestAnimationFrame(loop)
		lastTime = timestamp
		return
	}
	var groundFunc = GROUND_FUNCTIONS[settings.ground]
	var reldir = settings.controls === "Relative Orientation"
	const scale = x => scalarMult(x, scaling)
	draw([0, 0], [1, 1], "black")
	ctx.fillStyle = "gray"
	for (let i = 0; i < pixelDimensions[0]; i++) {
		var gameX = i / pixelDimensions[0]
		var gameH = groundFunc(gameX)
		var pixelH = gameH * pixelDimensions[1]
		ctx.fillRect(i, pixelH, 1, pixelDimensions[1] - pixelH)
	}
	drawLine("green", position, vecAdd(position, scalarMult(velocity, 20)))
	if (reldir) {
		drawLine("blue", position, vecAdd(position, scalarMult(angleToVec(direction), 0.05)))
	}
	draw(vsub(position, [-0.005, -0.005]), vsub(position, [0.005, 0.005]), "white")

	scaling /= SIMITERS
	for (var i = 0; i < SIMITERS; i++) {
		position = vecAdd(scale(velocity), position)
		var force = [0, GRAVITY[settings.gravity]]
		if (keys["w"]) {
			if (reldir) {
				force = vecAdd(force, scalarMult(angleToVec(direction), 0.001))
			} else {
				force = vecAdd(force, [0, -0.001])
			}
		}
		if (keys["a"]) {
			if (reldir) {
				direction -= 0.05
			} else {
				force = vecAdd(force, [-0.0005, 0])
			}
		}
		if (keys["d"]) {
			if (reldir) {
				direction += 0.05
			} else {
				force = vecAdd(force, [0.0005, 0])
			}
		}
		if (keys["s"]) {
			if (reldir) {
				force = vecAdd(force, scalarMult(angleToVec(direction), -0.0005))
			} else { 
				force = vecAdd(force, [0, 0.0005])
			}
		}
		var divisor = settings.mechanics === "Relativistic" ? gamma(vecLength(velocity)) ** 3 : 1 //gamma(vecLength(velocity)) + gammaDerivative(vecLength(velocity)) * vecLength(velocity)
		if (isNaN(divisor)) {
			console.log("luminal limit exceeded, resetting")
			divisor = 1
			velocity = [0, 0]
		}
		var velocityChange = scalarMult(scale(force), 1/divisor)
		//console.log(gamma(vecLength(velocity)), velocity, velocityChange)
		if (settings.mechanics === "Aristotlean") {
			velocity = scalarMult(velocityChange, 60)
		} else {
			velocity = vecAdd(velocity, velocityChange)
		}
		if (position[1] > 1) { position[1] = 0 }
		if (position[1] < 0) { position[1] = 1 }
		if (position[0] > 1) { position[0] = 0 }
		if (position[0] < 0) { position[0] = 1 }
		//console.log(GROUND(position[0]), position[0])
		if (position[1] > groundFunc(position[0])) {
			var groundVector = normalize([1, derivativeApproximation(groundFunc, position[0])])
			var normalVector = rotate90CW(groundVector)
			velocity = vecAdd(scalarMult(groundVector, dotProduct(velocity, groundVector)), 
			scalarMult(normalVector, -E_COEFFICIENTS[settings.restitution] * dotProduct(velocity, normalVector)))
			position[1] = groundFunc(position[0])
		}
	}
	requestAnimationFrame(loop)
}

requestAnimationFrame(loop)
</script>