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Abstract—Field-programmable gate arrays (FPGAs) have re-
cently received renewed attention in the context of Evolvable
Hardware (EHW). The most fine grained approach to changing
their internal structure, direct manipulation of the bitstream, has
largely been abandoned. The undocumented bitstream formats of
modern FPGAs made it complicated and error-prone. This situ-
ation has fundamentally changed with the advent of open-source
FPGA toolchains. Previous attempts to exploit this opportunity
were promising, but only manged to solve very basic tasks. We
present in this paper an evolved tone discriminator circuit. It was
evolved by replicating the most famous experiment in this field,
but with modern hardware. For that we map the originally used
Xilinx XC6200 FPGA to a modern Lattice iCE40 FPGA. We show
how to set up the experiment and optimize the evolution environ-
ment. Our approach allows over 130 times more reconfigurations
per second than previous approaches. Additionally, we discuss
reasons for the abandonment of direct bitstream manipulation
for EHW in context of the new possibilities created by open-
source FPGA toolchains. We show which challenges have been
solved and which steps need to be taken next.

I. INTRODUCTION

The basic concept of Evolvable Hardware (EHW) is the
application of Evolutionary Algorithms (EAs) to hardware.
The idea was first proposed by de Garis [1]. The term itself
was later coined in a work together with Higuchi et al. [2]
evolving a 4-to-1 multiplexer.

The 4-to-1 multiplexer is an example of an evolutionary
hardware design where Evolutionary Algorithms are applied
during the design phase. No evolutionary changes are made
during the application. In contrast, adaptive hardware embeds
the EA in the application system and allows evolution during
the deployment. The goal is to enable the system to adapt to
changes in the environment, the task itself, or defects in the
underlying hardware substrate [3].

Furthermore, the 4-to-1 multiplexer [2] was evolved with
extrinsic evaluation, i.e. the fitness of possible hardware de-
signs was evaluated in a simulation. The opposite approach
is called intrinsic evaluation, where possible hardware designs
are implemented in the target technology to determine their
fitness. The latter has various advantages as it can exploit
unique physical properties of the technology [3] that are
difficult to simulate. This enables them to find designs not
possible with more abstract approaches.

This work was supported by the German Federal Ministry of Education
and Research (BMBF, 01IS18026B) by funding the competence center for
Big Data and AI ”ScaDS.AI Dresden/Leipzig”.

Field-programmable gate arrays (FPGAs) are a suitable
substrate for intrinsic EHW. They are readily available and
easy to reconfigure. The first FPGA-based experiment is the
tone discriminator by Thompson [4]. He evolved a circuit,
that was able to distinguish between a 1 kHz and a 10 kHz
square wave signal without a reference clock. It generates
a logical high output for one signal and a logical low for
the other. Thompson used a Xilinx XC6200 FPGA for the
experiment. It was suitable for intrinsic EHW on account
of its well documented bitstream format. Due to the use of
multiplexers for routing, all combinations of configuration
bits were valid, without the possibility for unsafe values.
This allowed the direct and unrestricted manipulation of the
bitstream by the Evolutionary Algorithm. The XC6200 family
was discontinued without a comparably suitable replacement.
Their modern counterparts in contrast are much more flexible,
but use switch-matrices for their routing. This leads to the
existence of invalid values for the configuration bits, which
can even destroy the FPGA itself. In addition, the bitstream
formats of modern FPGAs are kept secret by the vendors. The
combination of these two factors made the direct bitstream
manipulation unfeasible.

Virtual Reconfigurable Circuits (VRCs) are a possible al-
ternative to intrinsic EHW. Sekanina [5] introduced VRC as
an additional reconfiguration layer above the FPGA hardware.
Reconfiguration of the evolvable region is completely facili-
tated by the VRCs without the need to reconfigure the FPGA
itself. This enables fast (virtual) reconfigurations, as they can
be performed within a few clock cycles. Dobai and Sekanina
were able to reach 8700 evaluations per second [6]. The
additional abstraction layer also allows for a higher portability
of an evolved design. Alas, the granularity of the evolution
is coarser in regard to the underlying FPGA technology.
This makes it difficult to exploit unique physical properties.
Another disadvantage is the high resource requirement for
implementing the abstraction layer.

In this context, there were some attempts to document
bitstream formats to allow direct manipulation for EHW again.
Hollingworth et al. [7], for example, created a Java interface
for bitstream manipulation of older Xilinx Virtex devices. They
avoided invalid configurations by restricting the resources to
a subset, that resembled the simplified XC6200 basic cell as
used by Thompson [4]. Cancare et al. [8] documented the
configuration bits for the lookup tables (LUTs) of Xilinx
Virtex4 FPGAs and successfully evolved circuits for small
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tasks like parity generators. Unfortunately, the documentation
of other resources proved to be too difficult due to the risk of
permanent damage to the FPGA.

Additionally, open-source FPGA toolchains have made
strides in recent years. They include at least partial documenta-
tion of the bitstream formats of modern FPGAs. This provides
a perspective for EHW with direct bitstream manipulation.

The most advanced open-source toolchain exists for the
Lattice iCE40 FPGA family [9]. It is able to create a bitstream
from Verilog code without requiring any closed-source tools,
like the vendor toolchain iCEcube2. The bitstream format and
the configuration bits of the iCE40 family are well documented
in Project IceStorm [10]. In addition, iCE40 FPGAs are
affordable and breakout boards to simplify the development
are available. A disadvantage, however, is that iCE40 FPGAs
do not support partial reconfiguration. Nevertheless, they can
be used for EHW.

Whitley et al. [11] demonstrated the capability of the
iCE40 architecture for evolving hardware by direct bitstream
manipulation. They evolved circuits for the simple tasks of
amplitude maximization and pulse oscillation. However, they
were unsuccessful in reproducing the more difficult tone
discriminator by Thompson [4]. Furthermore, they report the
reconfiguration time to be around 3.5 s, which makes diffi-
cult tasks impracticable. The tone discriminator experiment,
for example, required 250 000 reconfigurations, which would
amount to over 10 days for reconfigurations alone. There are
two reasons for this slow reconfiguration speed. First, the used
hardware only allows for indirect reconfiguration of the FPGA
by writing the bitstream to a flash memory beside the FPGA.
This way, the configuration must be transferred twice: from
the workstation to the flash and from the flash to the FPGA.
Secondly, the software created by Whitley et al. [12] calls
tools from Project IceStorm as subprocesses. The external calls
create an overhead. Furthermore, resources like the connection
to the FPGA are acquired and released repeatedly in quick
succession.

In this paper, we address the gaps in previous research. We
present a faster, more feasible approach for direct bitstream
manipulation on modern iCE40 FPGAs. This is leveraged to
successfully reproduce the tone discriminator experiment by
Thompson [4]. The used software, called CoBEA, is open-
source and available at https://github.com/nmi-leipzig/cobea.

Our main contributions in this paper are:

• Replication of the tone discriminator experiment on an
iCE40 FPGA with direct bitstream manipulation

• Mapping of the XC6200 resources originally used for
the tone discriminator experiment to the modern iCE40
FPGA architecture

• Recommendations on how to setup the evolution envi-
ronment for direct bitstream manipulation to reduce the
reconfiguration time by more than 99 %

• Analysis of the current state of the direct bitstream ma-
nipulation approach for Evolvable Hardware, with focus
on the impact of open-source FPGA toolchains
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(b) iCE40 tiles form a Moore neigh-
borhood. Each output consists of all
eight LUT outputs. They are the same
in every direction.

Fig. 1. Outgoing connections between neighbors. The incoming connections
are correspondent.

Function
Unit

F

N
E
W
S

X1

SWEN

X2

S
W
E
NX3

N E W F

Nout

F
S
W
N

Wout

FSWE

Sout

N
E
S
F Eout

S

E

N

W

(a) Simplified XC6200 basic cell.

Nout
LUT

Eout
LUT

Wout
LUT

Sout
LUT

F
LUT

F

L
oc

al
Tr

ac
ks

S

E

Nout

Eout

Wout

Sout

W

N

(b) Used resources of iCE40
logic tile.
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Fig. 3. XC6200 function unit. The flip-flop and two multiplexers are
not changed by the Genetic Algorithm.

II. XC6200 ON ICE40

A. XC6200 Architecture

Thompson ran his experiment [4] on an FPGA of the Xilinx
XC6200 family [13]. He included only basic cells and used
only a subset of their resources for the Genetic Algorithm.

Fig.2a shows a single basic cell with all used resources.
The cells are connected in a von Neumann neighborhood (see
Fig.1a). The four neighbors of a cell are designated as North,
East, West, and South (NEWS). Each cell contains a function
unit (see Fig.3) that combines three inputs to a single output.
Every input of the function unit is independently sourced from
the respective outputs of the NEWS neighbors. The outputs of
a cell are independently selected from the function unit output
and the three outputs of the neighbors not facing the respective
output. Regard the North face for example: It receives the
South output S of the North neighbor and its output Nout can
be selected from the North output of the South neighbor N,
the East output of the West neighbor E, the West output of
the East neighbor W, or the output of the function unit F.

It is important to note, that all routing is based on multi-
plexers. Due to that fact, there is no invalid or unsafe routing
configuration. This intrinsic property made the XC6200 family
highly suitable for Evolutionary Algorithms.

The function unit consists of a D flip-flop and several
multiplexers. The circuit is never provided with a clock
signal during the experiment, therefore the flip-flop always
has a constant output. Since both, the flip-flop output and
its negation are provided to Y1 Mux and Y2 Mux, the actual
value of constant flip-flop output does not change the possible
outputs of the function unit. Therefore, the D flip-flop and the
RP Mux can be disregarded. This is in turn also valid for CS
Mux, which always selects the output of Y1 Mux.

B. iCE40 Architecture

The architecture of the iCE40 family is typical for modern
FPGAs. It consists of an array of tiles, which are connected
in a Moore neighborhood (see Fig.1b). Most of these tiles are
logic tiles, which consist of eight lookup tables (LUTs) to
accomplish their function. The inputs of the LUTs are routed
by a two stage mechanism. First, the output of a neighbor or of

another LUT in the same tile is routed to a local track. After
that, the local track is routed to a LUT input. In principle,
each of the eight outputs of the neighbors can be routed to
each LUT, however not to an arbitrary input. Other resources,
like the carry chain, flip-flops, or span wires, are not used for
the mapping and thus are not discussed.

C. Mapping

The mapping of a (simplified) XC6200 basic cell to an
iCE40 logic tile can be seen in Fig.2b. The approach is to
assign parts of the basic cell to single LUTs and statically route
the necessary inputs to them. Afterwards, the possible truth
tables are selected to implement the functionality. Each LUT
is represented by one gene, whose alleles are the possible truth
tables. The advantage of this approach is its high portability to
other architectures. It is even feasible for architectures where
only the truth table of the LUTs can be manipulated directly
in the bitstream (e.g. [8]).

Each of the four output multiplexers of the basic cell has a
corresponding LUT. There are four possible truth tables which
simply pass through one of the inputs.

The fifth LUT implements the function unit including its
three input multiplexers. While these elements are represented
by ten bits1 in the original bitstream, there are only 166 respec-
tive truth tables. This is due to the many logically equivalent
combinations. There are, for example, 100 combinations that
basically implement a constant zero output.

It should be noted, that logical equivalence does not imply
functional equivalence, since the circuit is not clocked and
allows effects not observable in time and value discrete
systems. One of the 100 combinations for constant zero may
produce short peaks during input changes, caused by different
signal propagation times, while others do not. Such effects,
however, cannot be expected to be replicated on a conceptually
different technology such as the iCE40. Nevertheless, the
logical equivalence and the structural similarity of the mapping
facilitate the comparison of experimental results

III. REDUCING RECONFIGURATION TIME

Evaluating the fitness of an individual is one of the most
time-consuming parts of running an EA. This is an even
more important factor for intrinsic evaluations, because they
happen inside an FPGA and cannot be simply accelerated by
using more computing power. Here, the reconfiguration time
to create the phenotype is one of the most influential variable
of the overall running time. It is more remunerative than,
for example, to speed up individual measurements, because
a reduction in reconfiguration time applies to all experiments
on the FPGA.

Table I shows the reconfiguration times of an iCE40 HX8K
FPGA, presented in [14]. The FPGA is the same model used
in the experiment in Section IV. The bitstream used for the
measurements was taken directly from the experiment results.

1Three input multiplexers in addition to Y1 Mux and Y2 Mux, each two
bits.
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TABLE I
RECONFIGURATION TIMES OF AN ICE40 HX8K FPGA FOR VARIOUS

COMBINATIONS OF DIRECT CONFIGURATION OR VIA FLASH, EXTERNAL
TOOLS OR INTEGRATED FUNCTIONS, AND COMPACTED OR NOT.

Direct External Compacted Reconfiguration Time (s)
Tools Min Mean Max

No Yes No 9.529 9.671 9.988
No No No 4.330 4.358 4.489
No No Yes 3.053 3.062 3.078
Yes Yes No 0.528 0.605 0.820
Yes No No 0.218 0.222 0.225
Yes No Yes 0.070 0.074 0.077

The largest difference occurs between direct configuration
of the FPGA and writing the bitstream to flash memory. This
difference is trivial, since the FPGA always has to additionally
load the bitstream from the flash. Nevertheless, many iCE40
based FPGA boards require the indirection via flash memory,
e.g. the board used in [11]. Furthermore, the possible write
cycles of flash may be less than required for a large EA
experiment. The tone discriminator experiment, for example,
requires more than 250 000 reconfigurations. Therefore, the
ability to be directly reconfigured is an important factor when
choosing the board for EHW setup.

The easiest way to evolve hardware with direct bitstream
manipulation is calling external tools provided by an open-
source FPGA toolchain [12]. The tools provide functionality
for transforming bitstreams to different representations and for
reconfiguration of the FPGA. Nevertheless, such tools are not
optimized for the requirements of EHW, since their repeated
invocation generates immense overhead. Resource like the
connection to the FPGA are acquired and released for each
reconfiguration. This is unnecessary and can be avoided by
integrating the functionality of the external tools into the soft-
ware running the EA. As can be seen in Table I, the integrated
approach reduces the time for direct reconfigurations by more
than 60 %.

The use of specialized tools allows further optimizations
like compaction of the bitstream. It is a viable and often the
only way to reduce the bitstream size of low-cost devices
without compression capabilities like the iCE40 FPGA. While
compaction is not provided by the vendor, the bitstream
documentation allows to leave out redundant data. This is most
effective when only few resources of the iCE40 FPGA are
used. Fortunately, this condition is often met in EHW. The
experiment in Section IV uses only 101 of 960 logic tiles.
Consequently, the bitstream size and the reconfiguration time
can be further reduced. The reconfiguration with compaction
takes only one third of the time without it. Overall the
reconfiguration can be accelerated more than 130 times.

IV. TONE DISCRIMINATOR EXPERIMENT

The task in the experiment is to evolve a circuit that
can discriminate between a 1 kHz and a 10 kHz signal. The
evolvable region consists of an area of ten by ten tiles that are
prepared as XC6200 basic cells, as described in Section II.
The signal is provided as input to one cell at the left border,

80 2 0 1 3

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1
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1 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0

1 Look up
Bit Values

2
Write Bit Values
to Corresponding
Positions

Chromosome

Bit Values List

Bitstream

Fig. 4. Decoding of a gene to bits in the bitstream.

while the output of one cell at the top is taken as output of
the whole circuit.

The Genetic Algorithm runs not directly on the bitstream
bits, but on integers. Since not every value combination of
bitstream bits is valid, interdependent bits are grouped together
into a single gene. All desired value combinations for these
bits are collected in a fixed list of bit values. The chromosome
is a list of integers, each describing a position in the list of
bit values corresponding to the gene. For example, a Nout
LUT (see Fig.2b) is described in a single gene containing the
16 bits of the truth table. It has four alleles, one each for
passing through N, E, W, or F respectively. Fig.4 shows the
two decoding steps to modify the bitstream according to a
allele.

The initial population of 50 individuals is generated ran-
domly. Further generations are created by first transferring
the individual with highest fitness value (elitism). The parents
for the remaining 49 individuals are chosen by linear ranked
based selection with a selective pressure of 2. A one point
crossover takes place with a probability of 0.7. Finally a
uniform mutation is applied with a probability of 0.001756
per gene. That kind of mutation was chosen as the alleles
have an unordered categorical nature. Values like population
size and mutation probability were taken from [4].

A. Setup

The whole evolutionary process is controlled by the EHW
software CoBEA. It runs the Genetic Algorithm, drives the
other components, and aggregates the data in a single HDF5
file. Furthermore, CoBEA implements bitstream compaction
and direct configuration, which enables the fastest way to
reconfigure the FPGA as shown in Section III.

Fig.5 shows the components of the setup. To evaluate an
individual, the EHW software sets the bitstream bits according
to the selected alleles and directly configures the FPGA
on an iCE40 HX8K breakout board (ICE40HX8K-B-EVN).
Afterwards, it determines a random order of five 1 kHz bursts
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Fig. 5. Setup for the tone discriminator experiment. The Temperature
measurement runs continuously during the experiment.

and five 10 kHz bursts and sends this order to the frequency
generator, which is implemented on a second breakout board.
The frequency generator produces the requested frequencies
in bursts of 500 ms. The output of the frequency generator is
wired to the input of the evolvable area. Additionally, a trigger
signal is active during the frequency generation. It starts the
data recording of an oscilloscope (Rigol DS1102E), which is
connected to the output of the evolvable area. The recorded
data is sent to the EHW software, which computes the fitness.

The temperature is measured during the whole evolution.
For this purpose, a temperature sensor (Maxim DS18B20) with
thermal paste is placed directly on the FPGA. The sensor value
is read-out every 0.6 s by the temperature reader and sent to
the EHW software. The temperature reader is implemented by
an Arduino Uno.

The fitness is computed from the voltage measurements
during the ten frequency bursts. First the area under the
voltage curve ab is computed for each burst b ∈ [1, 10]. This
simulates the analog integrator used by Thompson. The bursts
are grouped by their frequency in S1 for 1 kHz and S10 for
10 kHz. Finally the fitness is calculated by (1).

fitness =
1

10

∣∣∣∣(k1 ∑
b∈S1

ab

)
−
(
k2
∑
b∈S10

ab

)∣∣∣∣ (1)

where k1 = 1
30730.746 k2 = 1

30527.973

The fitness function including the constants k1 and k2 are
taken from [4].

B. Results

After 5355 generation the Genetic Algorithm was manually
stopped as there were no further improvements of the fitness
value. This took short of 4.5 weeks. The best circuit2 from the

2Identification 283907
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Fig. 6. Output of the final evolved circuit as a function of time. The output is
3.3 V during 10 kHz bursts and 0 V during 1 kHz bursts. A few narrow spikes
occur during the 1 kHz bursts.

last generation was further analyzed. Fig.6 shows its output.
The different values for the two frequencies are recognizable,
albeit some noise and several spikes are visible.

The spikes are very narrow, as each time only one of
the measured values is substantially higher than 0 V. Conse-
quently, their area under the curve is very small. Their negative
contribution to the fitness value is five orders of magnitude
below the fitness value itself.

1) Connections: Fig.7 shows the cells of the final circuit
and their connections. Surprisingly, the output is not directly
connected to the input at all. The Genetic Algorithm found a
design that relies heavily on local effects like electromagnetic
coupling to transfer information from the input to the output.

2) Clamping: To investigate which cell contribute dynam-
ically to the output, they were set to a fixed output value and
the fitness was reevaluated. This process called clamping was
executed iteratively by first choosing a random cell. The output
of the function unit of this cell was randomly set to constant
0 or constant 1. Afterwards the fitness was evaluated. If the
fitness value dropped more than 1 % compared to the fitness of
the original circuit, the function unit was reset to its original
state. If the fitness value remained close to the original, the
constant output was kept for the function unit. Finally these
steps were repeated for the remaining, not yet investigated
cells. The bound of 1 % was used to reduce the influence of
noise on the clamping results.

In Fig.7, the successfully clamped cells are drawn in a
lighter color. The majority of the cells do not dynamically
contribute to the output of the circuit at all or only in a
negligible way. The cells that do dynamically contribute,
however, are not clustered together. but distributed throughout
the evolvable region.

3) Temperature Dependence: The output of the final circuit
is influenced by the temperature. Fig.8 shows the average
output as a function of the period of the input signal for three
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Fig. 8. Output of the final evolved circuit as a function of the period of the
input and for three temperatures. The circuit can distinguish 1 kHz and 10 kHz
signals at 17 ◦C and at 25 ◦C, but not at 50 ◦C.

different temperatures. The output voltage was averaged over
5 s for each measured period. The shape of all three functions
is similar: 3.3 V for high frequencies and then a sharp drop
to 0 V. The period where the drop appears depends on the
temperature. The drop off period for 50 ◦C is 0.064 ms, which

corresponds to 15.6 kHz. The circuit cannot distinguish 1 kHz
and 10 kHz signals at this temperature, because the output is
0 V for both frequencies.

4) Location Dependence: The evolvable region was moved
to a different part of the chip, where the final generation was
evaluated again. The fitness of the final circuit dropped by two
orders of magnitude. The other individuals had approximately
the same fitness value. The evolution was continued at the new
position for 200 generations. The fitness of the best individuals
at that point was still around 2 % lower than the fitness of
the final circuit at the original position. This concurs with
the output that showed a large amount of short spikes. These
effects impede the portability of the evolved circuit immensely.
On the other hand, it shows how well the EA was able to utilize
the unique physical attributes of the location on the FPGA.

V. FEASIBILITY OF DIRECT BITSTREAM MANIPULATION

Direct bitstream manipulation was widely abandoned for
EHW. The previous section, however, shows that it is possible,
if a suitable open-source FPGA toolchain is available. This
section discusses the feasibility of EHW based on direct
bitstream manipulation in view of the recent emergence of
open-source toolchains. Besides Project IceStorm [10] for
iCE40, the focus will be on Project X-Ray [15] that documents
the bitstreams of Xilinx 7-Series FPGAs. On one hand the
documentation of the 7-Series is making active progress [16].
On the other hand the FPGAs provide desirable features
such as Dynamic Partial Reconfiguration (DPR). Additionally,
affordable breakout board are readily available.

The first four issues were identified by Salvador as major
obstacles for EHW after the discontinuation of the XC6200
FPGAs [3]. The remaining issues are challenges that concern
EHW in general [17].

A. Switch-Matrix Routing
Configuration bits for switch-matrix routing cannot be al-

tered randomly and safely as this may create configurations
that destroy the FPGA. The documentation of the bitstream by
the open-source FPGA toolchains identifies the valid values
for the configuration bits. Even if the documentation is not
complete, like in Project X-Ray, it is known which bits are
safe to manipulate. After the safe values are identified, invalid
values can be avoided. One method is to run the EA on a
representation that only allows valid values, as was done in
Section IV. Therefore this problem can be considered solved.

B. Lack of Tools for Dynamic Partial Reconfiguration
DPR allows to reconfigure only the evolvable region of

the FPGA without restarting it. This reduces the reconfig-
uration time and facilitates new possibilities like module-
based evolution. Unfortunately, DPR is not supported by
the iCE40 architecture. While the 7-Series supports DPR, it
proved difficult to document the mechanism, hence it is not
yet included in the open-source FPGA toolchain. The tools
provided by vendors have matured regarding DPR, but they
impede direct bitstream manipulation. Therefore, DPR remains
an open challenge in this context.
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C. Bitstream Size and Unknown Format

The bitstream formats are at least partially documented by
the respective open-source projects (see also Section V-A),
so this concern is resolved. The bitstream size is a more
varied challenge. On one hand, DPR is generally available
to avoid writing the whole bitstream, yet it is not available in
open-source toolchains (see Section V-B). On the other hand,
compression options are often available [18]. Furthermore,
well documented bitstream formats facilitate new methods for
size reduction, like the compaction for iCE40. Overall, the
bitstream size proved to be a manageable challenge.

D. Insufficient Reconfiguration Speed

The sufficiency of the reconfiguration speed highly depends
on the actual application. Real-time adaptive hardware needs
orders of magnitude more reconfigurations per second than
evolutionary hardware design. For the tone discriminator ex-
periment (see Section IV) the reconfiguration time can be
considered sufficient, since it contributed less than 0.8 % to
its whole duration. Yet, the 13.5 reconfigurations per second
would be too slow for a real-time adaptive system. It is also at
least two orders of magnitude slower than the 8700 evaluations
per second reached by VRCs [6]. The reconfiguration speed
is an ongoing concern that depends on the actual use case.

E. Portability and Robustness

The portability to other architectures is expected to be low
for direct bitstream manipulation, since the goal is to leverage
unique physical attributes. Section IV-B, however, shows that
even the relocation inside the same device can reduce the
functionality of the evolved circuit. The circuits also lack
robustness regarding changes in the environment, like the
temperature. These effects are well known [4], as are possible
solutions. One approach is to include varying conditions in the
evolving system [19]. This can be a wide temperature range
or evaluation on multiple devices. Portability and robustness
remain important concerns that have to be addressed on
application basis.

F. Practical Applications

Evolutionary hardware design based on direct bitstream ma-
nipulation is not practical for general applications. Especially
the challenges with portability and robustness (see Section
V-E) put them at a disadvantage compared to conventional
design approaches. There are, however, application niches that
can benefit from the properties of EHW by direct bitstream
manipulation.

One is the field of fault tolerance and fault recovery.
Salvador et al. [20] presented self-healing adaptive hardware
based on DPR of Processing Elements. As such systems have
to handle unique, potentially permanent hardware faults, the
concrete configurations cannot be transferred to other devices.
Hence, the portability challenges of direct bitstream manip-
ulation EHW are not relevant. Faults can also be subsumed
under unique physical attributes, which can be handled well
by direct bitstream manipulation based EHW. The remaining

challenges are the reconfiguration speed and the absence of
DPR. These have to be addressed based on the concrete use
case.

Security applications are a second suitable field. The trigger
of a Hardware Trojan hides it during tests or detection attempts
and starts the malicious activities only in productive systems
[21]. The lack of robustness of evolved hardware designed
with direct bitstream manipulation can be exploited to design
specific triggers, e.g. ones for certain temperature ranges. The
same idea can be used in a defensive way to detect if an FPGA
leaves its predefined operational envelope and may be target of
an attack. Another promising approach is security by diversity.
Collins et al. [22] impeded reverse engineering by applying
EHW on the level of the hardware description language to
create diverse designs for the same function. Direct bitstream
manipulation can take this one step further and bind a specific
design to a single device by impeding the portability.

VI. DISCUSSION

The Genetic Algorithm presented by Thompson [4] worked
surprisingly well for the iCE40 FPGA. Despite the difference
in hardware and representation, the same algorithm with the
same parameters was able to create a working tone discrimina-
tor. It was, for example, in no way obvious that the calibration
constants k1 and k2 of the fitness function could directly be
used for the new environment. They were originally introduced
by Thompson to avoid effects caused by the analog integrator
he used.

The results of the tone discriminator experiment are similar
to the original results by Thompson. The output of the final
circuit depends on the temperature and the location on the
chip. But Thompson found only a slight decrease in fitness
after relocation, while it dropped by orders of magnitude on
the iCE40 FPGA. This indicates that it will be more difficult
to evolve portable designs with direct bitstream manipulation
on the iCE40. The transfer of information by local interactions
instead of direct wire connections exemplifies this drawback.

Nevertheless, the integrated approach showed the feasibility
of direct bitstream manipulation in regards to reconfiguration
speed. All reconfigurations during the experiment together
took less than 6 hours. The approach presented in [11], with
indirect configuration and the usage of the external tools would
have taken 4 weeks.

EHW based on direct bitstream manipulation is currently
feasible for applications that have clearly defined envelope of
operations and do not require real-time adaption to changed
requirements. The most promising approaches come from the
field of security research.

VII. CONCLUSION

We successfully reproduced the tone discriminator exper-
iment by Thompson and showed the feasibility of direct
bitstream manipulation on modern iCE40 FPGAs for non-
trivial EHW tasks. This was possible by mapping the originally
used hardware to the iCE40 architecture and by using the
integrated approach for EHW software.
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In future work we will add support for more proficient
FPGA architectures to our EHW software. Additionally, we
will research more suitable EAs and parameters for EHW on
modern FPGAs, like crossover variants that incorporate the
locality of the tile structures. In combination, this will allow
us to implement security applications such as the security by
diversity approach.

DATA AVAILABILITY

All data collected during the tone discriminator experiment
and the data used for its evaluation in Fig.6, Fig.7, and Fig.8
are openly available at https://zenodo.org/record/6574545. The
measurements that support Table I are openly available at
https://zenodo.org/record/6413618.
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