mirror of
https://github.com/osmarks/random-stuff
synced 2024-11-09 22:09:55 +00:00
43 lines
1.8 KiB
Python
43 lines
1.8 KiB
Python
import time
|
|
import collections
|
|
|
|
PIDState = collections.namedtuple("PIDState", ["Kp", "Ki", "Kd", "last_time", "integral", "last_error"])
|
|
|
|
def init(Kp, Ki, Kd): return PIDState(Kp, Ki, Kd, None, 0, None)
|
|
def step(state, error, deriv, ts=None):
|
|
ts = ts if ts is not None else time.time()
|
|
integral = state.integral
|
|
if state.last_time:
|
|
tdiff = ts - state.last_time
|
|
integral += 0.5 * (state.last_error + error) * tdiff # approximate actually integrating using a trapzeium
|
|
output = state.Kp * error + state.Ki * integral + state.Kd * deriv
|
|
return PIDState(Kp=state.Kp, Ki=state.Ki, Kd=state.Kd, last_time=ts, integral=integral, last_error=error), output
|
|
|
|
if __name__ == "__main__":
|
|
import matplotlib.pyplot as plt, numpy as np
|
|
def extract_series(l, ix): return list(map(lambda x: x[ix], l))
|
|
values = [(10, -10, 0, 0, 0)]
|
|
state = init(10, 4, -0.3)
|
|
setpoint = -5
|
|
max_time = 2
|
|
timestep = 0.05
|
|
times = np.arange(0, max_time, timestep)
|
|
for t in times:
|
|
current_pv = values[-1][0]
|
|
error = setpoint - current_pv
|
|
deriv = (error - (state.last_error or 0)) / timestep
|
|
state, output = step(state, error, deriv, ts=t)
|
|
output = max(min(output, 10), -10)
|
|
print(output, current_pv, error)
|
|
new_pv = current_pv + (output + 1) * 0.05
|
|
values.append((new_pv, error, output, state.integral, deriv))
|
|
#print(values)
|
|
values = values[1:]
|
|
plt.axis([0, max_time, -10, 10])
|
|
plt.plot(times, extract_series(values, 0), label="PV")
|
|
plt.plot(times, extract_series(values, 1), label="error")
|
|
plt.plot(times, extract_series(values, 2), label="output")
|
|
plt.plot(times, extract_series(values, 3), label="integ")
|
|
plt.plot(times, extract_series(values, 4), label="deriv")
|
|
plt.legend()
|
|
plt.show() |