1
0
mirror of https://github.com/osmarks/random-stuff synced 2025-07-05 19:02:50 +00:00
2025-05-02 16:59:29 +01:00

152 lines
5.5 KiB
Python

import polars as pl
import numpy as np
import json
import matplotlib.pyplot as plt
import math
df = pl.read_csv("counts.csv", schema={"number": pl.String, "count": pl.Int64})
def compute_zipflike(df, k):
topk = df.top_k(k, by=df["count"])
frequencies = topk[:, 1].to_numpy()
ranks = np.arange(len(frequencies)) + 1
log_frequencies = np.log(frequencies)
log_ranks = np.log(ranks)
# https://numpy.org/doc/stable/reference/generated/numpy.linalg.lstsq.html
A = np.vstack([log_ranks, np.ones(len(log_ranks))]).T
gradient, y_intercept = np.linalg.lstsq(A, log_frequencies)[0]
predicted_log_frequencies = log_ranks * gradient + y_intercept
predicted_log_frequencies_zipf_gradient = log_ranks * -1.0
rms_y_intercept_zipf = np.sqrt(np.mean((predicted_log_frequencies_zipf_gradient - log_frequencies) ** 2))
predicted_log_frequencies_zipf_gradient = log_ranks * -1.0 + rms_y_intercept_zipf
plt.title(f"Top {k} numbers")
plt.xlabel("log(rank)")
plt.ylabel("log(frequency)")
plt.scatter(log_ranks, log_frequencies, label="empirical", color="blue")
plt.plot(log_ranks, predicted_log_frequencies, label=f"lstsq fit gradient={gradient:.2f}", color="lime")
plt.plot(log_ranks, predicted_log_frequencies_zipf_gradient, label=f"lstsq fit zipf", color="red")
plt.legend()
plt.tight_layout()
plt.savefig(f"top_{k}_numbers.png")
#plt.show()
plt.close()
def compact_cat(x):
st, en = json.loads(x.replace("(", "["))
return f"{st:.0e}-{en:.0e}"
def strings_to_numbers(df):
is_percent = df[:, 0].str.ends_with("%")
stripped = df[:, 0].str.strip_suffix("%")
scale = pl.when(is_percent).then(0.01).otherwise(1)
numbers = stripped.cast(pl.Float64, strict=False)
return df.with_columns(numbers * scale, df[:, 1])
def frequency_plot_for(values, counts, name, xs, scale="log", ticks=None, axline=None, xlim=None):
plt.title("Number frequencies")
ys = [ counts[values == x].sum() for x in xs ]
plt.plot(xs, ys)
plt.ylabel("count")
plt.xlabel("number")
plt.yscale(scale)
if ticks:
plt.xticks(ticks, minor=True)
if axline:
plt.axvline(axline, color="red")
if xlim:
plt.xlim(xlim)
plt.savefig(f"{name}_frequency.png")
plt.close()
with pl.Config() as cfg:
cfg.set_tbl_formatting("ASCII_MARKDOWN")
cfg.set_tbl_rows(100)
cfg.set_tbl_hide_column_data_types(True)
print("len")
print(len(df))
print("total count")
total_count = df[:, 1].sum()
print(total_count)
print("top 30")
print(df.top_k(30, by=df["count"]))
print("frequency/rank")
compute_zipflike(df, 1_000)
compute_zipflike(df, 10_000)
compute_zipflike(df, 100_000)
print("histogram")
cats, counts = df[:, 1].hist(bins=np.geomspace(1, max(df[:, 1]), num=20), include_category=True, include_breakpoint=False)
fig, ax = plt.subplots()
plt.title("Frequency of number frequencies")
ax.set_yscale("log")
plt.xticks(rotation=45, ha="right")
ax.bar([ compact_cat(x) for x in cats ], counts.to_numpy())
#plt.show()
fig.subplots_adjust(bottom=0.2)
plt.savefig("number_freq_freq.png")
plt.close()
print("benford")
real_counts = {}
real_counts_frac = {}
benford_frequencies = {}
for first_digit in range(1, 10):
first_digit_s = str(first_digit)
bcount = df.filter(df[:, 0].str.starts_with(first_digit_s))[:, 1].sum()
bcount_frac = df.filter(df[:, 0].str.starts_with(first_digit_s) & (df[:, 0].str.contains(".", literal=True)))[:, 1].sum()
print(bcount, bcount_frac)
real_counts[first_digit_s] = bcount
real_counts_frac[first_digit_s] = bcount_frac
benford_frequencies[first_digit_s] = math.log10(first_digit + 1) - math.log10(first_digit)
total_dcount = sum(real_counts.values())
total_dfcount = sum(real_counts_frac.values())
for k in real_counts:
real_counts[k] /= total_dcount
real_counts_frac[k] /= total_dfcount
print(real_counts, real_counts_frac)
plt.plot(list(real_counts.keys()), list(real_counts.values()), label="Empirical")
plt.plot(list(real_counts_frac.keys()), list(real_counts_frac.values()), label="Empirical (noninteger)")
plt.plot(list(benford_frequencies.keys()), list(benford_frequencies.values()), label="Benford")
plt.xlabel("First digit")
plt.ylabel("Frequency (relative)")
plt.legend()
plt.savefig("benford.png")
plt.close()
print("to float domain")
numbers = strings_to_numbers(df)
numbers_n = numbers[:, 0].to_numpy()
numbers_c = numbers[:, 1].to_numpy()
print("median number")
perm = np.argsort(numbers_n)
ccounts = numbers_c[perm].cumsum()
midpoint = total_count // 2
midpoint_index = np.searchsorted(ccounts, midpoint)
print(numbers_n[perm[midpoint_index]])
log_numbers = np.log(np.abs(numbers_n))
log_numbers = log_numbers[np.isfinite(log_numbers)]
print("number size histogram")
counts, bins = np.histogram(log_numbers, bins=256)
plt.title("Number sizes histogram")
plt.stairs(counts, bins)
plt.yscale("log")
plt.axvline(0)
plt.ylabel("density")
plt.xlabel("log(number)")
plt.savefig("number_size_histogram.png")
plt.close()
frequency_plot_for(numbers_n, numbers_c, "small_numbers", np.arange(100), ticks=[ n for n in range(0, 100, 10) ] + [ 2**n for n in range(0, 7) ])
frequency_plot_for(numbers_n, numbers_c, "years", np.arange(1900, 2100), scale="linear", axline=2020, ticks=[ n for n in range(1900, 2100, 10) ], xlim=0)