mirror of
https://github.com/osmarks/random-stuff
synced 2025-07-05 19:02:50 +00:00
152 lines
5.5 KiB
Python
152 lines
5.5 KiB
Python
import polars as pl
|
|
import numpy as np
|
|
import json
|
|
import matplotlib.pyplot as plt
|
|
import math
|
|
df = pl.read_csv("counts.csv", schema={"number": pl.String, "count": pl.Int64})
|
|
|
|
def compute_zipflike(df, k):
|
|
topk = df.top_k(k, by=df["count"])
|
|
frequencies = topk[:, 1].to_numpy()
|
|
ranks = np.arange(len(frequencies)) + 1
|
|
|
|
log_frequencies = np.log(frequencies)
|
|
log_ranks = np.log(ranks)
|
|
|
|
# https://numpy.org/doc/stable/reference/generated/numpy.linalg.lstsq.html
|
|
A = np.vstack([log_ranks, np.ones(len(log_ranks))]).T
|
|
gradient, y_intercept = np.linalg.lstsq(A, log_frequencies)[0]
|
|
|
|
predicted_log_frequencies = log_ranks * gradient + y_intercept
|
|
|
|
predicted_log_frequencies_zipf_gradient = log_ranks * -1.0
|
|
rms_y_intercept_zipf = np.sqrt(np.mean((predicted_log_frequencies_zipf_gradient - log_frequencies) ** 2))
|
|
predicted_log_frequencies_zipf_gradient = log_ranks * -1.0 + rms_y_intercept_zipf
|
|
|
|
plt.title(f"Top {k} numbers")
|
|
plt.xlabel("log(rank)")
|
|
plt.ylabel("log(frequency)")
|
|
plt.scatter(log_ranks, log_frequencies, label="empirical", color="blue")
|
|
plt.plot(log_ranks, predicted_log_frequencies, label=f"lstsq fit gradient={gradient:.2f}", color="lime")
|
|
plt.plot(log_ranks, predicted_log_frequencies_zipf_gradient, label=f"lstsq fit zipf", color="red")
|
|
plt.legend()
|
|
plt.tight_layout()
|
|
plt.savefig(f"top_{k}_numbers.png")
|
|
#plt.show()
|
|
plt.close()
|
|
|
|
def compact_cat(x):
|
|
st, en = json.loads(x.replace("(", "["))
|
|
return f"{st:.0e}-{en:.0e}"
|
|
|
|
def strings_to_numbers(df):
|
|
is_percent = df[:, 0].str.ends_with("%")
|
|
stripped = df[:, 0].str.strip_suffix("%")
|
|
scale = pl.when(is_percent).then(0.01).otherwise(1)
|
|
numbers = stripped.cast(pl.Float64, strict=False)
|
|
return df.with_columns(numbers * scale, df[:, 1])
|
|
|
|
def frequency_plot_for(values, counts, name, xs, scale="log", ticks=None, axline=None, xlim=None):
|
|
plt.title("Number frequencies")
|
|
ys = [ counts[values == x].sum() for x in xs ]
|
|
plt.plot(xs, ys)
|
|
plt.ylabel("count")
|
|
plt.xlabel("number")
|
|
plt.yscale(scale)
|
|
if ticks:
|
|
plt.xticks(ticks, minor=True)
|
|
if axline:
|
|
plt.axvline(axline, color="red")
|
|
if xlim:
|
|
plt.xlim(xlim)
|
|
plt.savefig(f"{name}_frequency.png")
|
|
plt.close()
|
|
|
|
with pl.Config() as cfg:
|
|
cfg.set_tbl_formatting("ASCII_MARKDOWN")
|
|
cfg.set_tbl_rows(100)
|
|
cfg.set_tbl_hide_column_data_types(True)
|
|
|
|
print("len")
|
|
print(len(df))
|
|
|
|
print("total count")
|
|
total_count = df[:, 1].sum()
|
|
print(total_count)
|
|
|
|
print("top 30")
|
|
print(df.top_k(30, by=df["count"]))
|
|
|
|
print("frequency/rank")
|
|
compute_zipflike(df, 1_000)
|
|
compute_zipflike(df, 10_000)
|
|
compute_zipflike(df, 100_000)
|
|
|
|
print("histogram")
|
|
cats, counts = df[:, 1].hist(bins=np.geomspace(1, max(df[:, 1]), num=20), include_category=True, include_breakpoint=False)
|
|
fig, ax = plt.subplots()
|
|
plt.title("Frequency of number frequencies")
|
|
ax.set_yscale("log")
|
|
plt.xticks(rotation=45, ha="right")
|
|
ax.bar([ compact_cat(x) for x in cats ], counts.to_numpy())
|
|
#plt.show()
|
|
fig.subplots_adjust(bottom=0.2)
|
|
plt.savefig("number_freq_freq.png")
|
|
plt.close()
|
|
|
|
print("benford")
|
|
real_counts = {}
|
|
real_counts_frac = {}
|
|
benford_frequencies = {}
|
|
for first_digit in range(1, 10):
|
|
first_digit_s = str(first_digit)
|
|
bcount = df.filter(df[:, 0].str.starts_with(first_digit_s))[:, 1].sum()
|
|
bcount_frac = df.filter(df[:, 0].str.starts_with(first_digit_s) & (df[:, 0].str.contains(".", literal=True)))[:, 1].sum()
|
|
print(bcount, bcount_frac)
|
|
real_counts[first_digit_s] = bcount
|
|
real_counts_frac[first_digit_s] = bcount_frac
|
|
benford_frequencies[first_digit_s] = math.log10(first_digit + 1) - math.log10(first_digit)
|
|
total_dcount = sum(real_counts.values())
|
|
total_dfcount = sum(real_counts_frac.values())
|
|
for k in real_counts:
|
|
real_counts[k] /= total_dcount
|
|
real_counts_frac[k] /= total_dfcount
|
|
print(real_counts, real_counts_frac)
|
|
plt.plot(list(real_counts.keys()), list(real_counts.values()), label="Empirical")
|
|
plt.plot(list(real_counts_frac.keys()), list(real_counts_frac.values()), label="Empirical (noninteger)")
|
|
plt.plot(list(benford_frequencies.keys()), list(benford_frequencies.values()), label="Benford")
|
|
plt.xlabel("First digit")
|
|
plt.ylabel("Frequency (relative)")
|
|
plt.legend()
|
|
plt.savefig("benford.png")
|
|
plt.close()
|
|
|
|
print("to float domain")
|
|
numbers = strings_to_numbers(df)
|
|
numbers_n = numbers[:, 0].to_numpy()
|
|
numbers_c = numbers[:, 1].to_numpy()
|
|
|
|
print("median number")
|
|
perm = np.argsort(numbers_n)
|
|
ccounts = numbers_c[perm].cumsum()
|
|
midpoint = total_count // 2
|
|
midpoint_index = np.searchsorted(ccounts, midpoint)
|
|
print(numbers_n[perm[midpoint_index]])
|
|
|
|
log_numbers = np.log(np.abs(numbers_n))
|
|
log_numbers = log_numbers[np.isfinite(log_numbers)]
|
|
|
|
print("number size histogram")
|
|
counts, bins = np.histogram(log_numbers, bins=256)
|
|
plt.title("Number sizes histogram")
|
|
plt.stairs(counts, bins)
|
|
plt.yscale("log")
|
|
plt.axvline(0)
|
|
plt.ylabel("density")
|
|
plt.xlabel("log(number)")
|
|
plt.savefig("number_size_histogram.png")
|
|
plt.close()
|
|
|
|
frequency_plot_for(numbers_n, numbers_c, "small_numbers", np.arange(100), ticks=[ n for n in range(0, 100, 10) ] + [ 2**n for n in range(0, 7) ])
|
|
frequency_plot_for(numbers_n, numbers_c, "years", np.arange(1900, 2100), scale="linear", axline=2020, ticks=[ n for n in range(1900, 2100, 10) ], xlim=0)
|