1
0
mirror of https://github.com/osmarks/random-stuff synced 2025-01-15 03:35:47 +00:00
random-stuff/code-guessing/bpe-trainer.py

48 lines
1.4 KiB
Python
Raw Normal View History

2022-02-05 14:45:04 +00:00
import os, csv, re, itertools, numpy, collections, json
rawbuffer = bytearray()
with open("/tmp/input.csv") as f:
r = csv.reader(f)
for row in r:
channel, timestamp, message, _ = row
message = re.sub("<@!?[0-9]+>", "", message)
message = re.sub("<:([A-Za-z0-9_-]+):[0-9]+>", lambda match: match.group(1), message)
rawbuffer += (message.strip() + " ").encode("utf-8")
#print(rawbuffer.count(b"\x0f"))
#raise SystemExit()
print(len(rawbuffer))
buffer = numpy.array(rawbuffer, dtype=numpy.uint16)
dc = {}
for newindex in range(256, 1024):
freqs = collections.Counter(zip(buffer, buffer[1:]))
(fst, snd), count = freqs.most_common(1)[0]
print(newindex, count, repr(chr(fst)), repr(chr(snd)))
dc[newindex] = int(fst), int(snd)
pending = False
newbuffer = numpy.zeros_like(buffer)
z = 0
for code in buffer:
if pending:
if code == snd:
newbuffer[z] = newindex
z += 1
pending = False
continue
else:
newbuffer[z] = fst
z += 1
pending = False
if code == fst:
pending = True
else:
newbuffer[z] = code
z += 1
buffer = newbuffer[:z]
with open("compr.json", "w") as f:
json.dump({
"dicts": dc,
"frequencies": dict(collections.Counter(map(int, buffer)))
}, f, separators=",:")