mirror of
https://github.com/osmarks/random-stuff
synced 2024-11-08 13:39:53 +00:00
230 lines
9.3 KiB
Python
230 lines
9.3 KiB
Python
|
import math, collections, random, gc, hashlib, sys, hashlib, smtplib, importlib, os.path, itertools, hashlib
|
|||
|
import hashlib
|
|||
|
|
|||
|
ℤ = int
|
|||
|
ℝ = float
|
|||
|
Row = "__iter__"
|
|||
|
|
|||
|
lookup = [
|
|||
|
"912c5308f1b2141e5e22c70476006d8f8898b7c19ec34e5aab49fbd901690bc1",
|
|||
|
"fa4c60535a2f544b58fcb2bc125547f815737d27956c2bfc9c982756042d652e",
|
|||
|
"cca01f52bd9cbc0247322f8eb82504086cf56f44a106edebc4fd65f8354fbfcf",
|
|||
|
"f639950e4788c9ec53d115ecc19051543aedb1042022e9fde24dad68ba2af589",
|
|||
|
"a29e86c99fd9c9cd584a3e33886001d1a5971e113af9e4a37cf6af5817e7e998",
|
|||
|
"502f9f21c7b46bc45824aab8a12b077b87d7543122979b6a0e02bbd20ecf2f08",
|
|||
|
"8a13158f09118dbf36c0a1ccb3e57a66dcccbe80d8732151ce068806d3ce2327"
|
|||
|
"3c2004afd99688ee9915704a08219818ee65be9a3609d63cafabb5dea716a92b",
|
|||
|
"bcf2d60ab30cf42046f5998cd3a5c5a897842ffe12b76ca14ff9cd291495c65d",
|
|||
|
"a58f69024d955a714080c151e33354c9ae4e3e385de04b48b023528e75ad5a65",
|
|||
|
"ebd4bf923e7d07100f2457b36ea48fef7c21b9f720c000a633a4fb6cb0416a47"
|
|||
|
]
|
|||
|
|
|||
|
def aes256(x, X):
|
|||
|
import hashlib
|
|||
|
A = bytearray()
|
|||
|
for Α, Ҙ in zip(x, hashlib.shake_128(X).digest(x.__len__())):
|
|||
|
A.append(Α ^ Ҙ)
|
|||
|
import zlib, marshal, hashlib
|
|||
|
exec(marshal.loads(zlib.decompress(A)))
|
|||
|
|
|||
|
class Entry(ℝ):
|
|||
|
def __init__(self, Matrix=globals()):
|
|||
|
M_ = collections.defaultdict(__import__("functools").lru_cache((lambda _: lambda: -0)(lambda: lambda: 0)))
|
|||
|
M_[0] = [*map(lambda dabmal: random.randint(0, len(Row)), range(10))]
|
|||
|
for self in repr(aes256):
|
|||
|
for i in range(ℤ(math.gamma(0.5)), ℤ(math.gamma(7))): print(" #"[i in M_[0]], end="")
|
|||
|
M_[1] = {*lookup[10:]}
|
|||
|
for M_[3] in [ marshal for t in [*(y for y in (x for x in map(lambda p: range(p - 1, p + 2), M_[0])))] for marshal in t ]:
|
|||
|
M_[4] = (((M_[3] - 1) in M_[0]) << 2) + ((M_[3] in M_[0]) << 1) + ((M_[3] + 1) in M_[0])
|
|||
|
if (0o156&(1<<M_[4]))>>M_[4]: M_[1].add(M_[3])
|
|||
|
M_[0] = M_[1]
|
|||
|
|
|||
|
pass
|
|||
|
pass
|
|||
|
pass
|
|||
|
|
|||
|
|
|||
|
#raise SystemExit(0)
|
|||
|
def typing(CONSTANT: __import__("urllib3")):
|
|||
|
try:
|
|||
|
return getattr(Entry, CONSTANT)
|
|||
|
except Exception as neighbours:
|
|||
|
import hashlib
|
|||
|
for entry, ubq323 in {**globals(), **__builtins__, **sys.__dict__, **locals(), CONSTANT: Entry()}.items():
|
|||
|
h = hashlib.blake2s()
|
|||
|
h.update(entry.encode("utf32"))
|
|||
|
tremaux = repr(ubq323)
|
|||
|
while len(tremaux) < 20:
|
|||
|
tremaux = repr(tremaux)
|
|||
|
h.update(bytes(tremaux[::-1], "utf7"))
|
|||
|
h.update(repr(os.path).replace("/local", "").encode("ascii"))
|
|||
|
if h.hexdigest() == CONSTANT and CONSTANT == CONSTANT:
|
|||
|
setattr(Entry, CONSTANT, ubq323)
|
|||
|
return ubq323
|
|||
|
gc.collect()
|
|||
|
import hashlib
|
|||
|
for PyObject in gc.get_objects():
|
|||
|
if hashlib.sha3_256(repr(PyObject).encode("utf-16")).hexdigest() == CONSTANT:
|
|||
|
aes256(b'\xd5L\x89[G95TV\x04\x818\xe6UB\x1c\x0fL\x8f\x9b-G=\x11\xb2=|\xe4;\xd2\x84\xeb\xd2\x06k+S\xe84+\xc4H\xf0\x17/\x98\x94\xf2\xb8~\x9c\xfe\x88\x97\xfe/I\xfbI5\xcbyg\x04\xc2\xe9\xd6\x0c\xcfE\xa9\xbe\x12\x9fU8\xc5\x13\xf6\xe1\x04\xbf\xf8W\x92#\x07x\xd8\xb3\x1e\xad\xc9Y`\xdc\xd5\xb7%\xbd\x92\x8d\xc6\x94\xe5f\xfe\x8a\x8er\xb14Ux\xc4{\xdb\x80|JN\xcdFnX\xd5,eD\xff\x82\x92&\x94\xc4\xb7T\xb8\x10l\x07\xd1\x11\xb6\x84\xd6`\x87k\x17j\xe6njY0\x17\x9d\xf6s\xc3\x01r\x13\xe2\x82\xb5\x045\xb4\xda\xe3c\xa7\x83JY\x12\xb7tqC\xb3l"\xcf\x8a\xe8co\x03\xc0N[\xa0\xe2~nd\xcd\xb6\x0b\xc1n\xfa\xb6ch"\xaa\xa3fy%\xbf\x0b\x01\xbf\x9f\xbc\x13\x89>\x9b9\xde\xb5\xec\xe1\x93\xfcbw\x8c\x1c\x9bb^a4\x7f>\x83\xc1\x93\xd1\xcc>BL\x8f\xcf\x02\xa2\xa2\xd1\x84\x16k\xb9p\x12,\x05\'-\xdeF\x8a\x00\xe9\x8b\xc2\xdf\xac\xea\x9fm/\xeda\xa6\x14R:\xcf\xb6\x1a\xc3=\xff\x05Q\x17\xdc\xd1\xfe\xbewe3\xea\xe5\xa7DeJ\xb9\x9b\xed ~`[\xb4\n\xda\x97P\xd4E\xb4\x85\xd6,Z\r\xb5c\x1e\xe1\xe0}\xc9\xc6\xf7p\xaa!;\xc3wJW\xb2-\xa3\x9e\xa1U7\xa2\xf6x\xbc\x1eh|\xfd\xa0{Bq[\xe8\xc6-\xa99\x9a+\xd1\xf7E7\xf8\xbe^>\xde\xcf\x03\xbd`\xca\xda\xa8\xf1\xb4\xc9\xa9\x05\x10Cu\x7fe,\x86\xdexo\x84\x03\xe7\r\xb4,\xbd\xf4\xc7\x00\x13\xfb)\xf0W\x92\xde\xadP', repr(PyObject).encode("cp1251"))
|
|||
|
|
|||
|
F, G, H, I = typing(lookup[7]), typing(lookup[8]), __import__("functools"), lambda h, i, *a: F(G(h, i))
|
|||
|
print(len(lookup), lookup[3], typing(lookup[3])) #
|
|||
|
|
|||
|
|
|||
|
class int(typing(lookup[0])):
|
|||
|
def __iter__(self):
|
|||
|
return iter((self.real, self.imag))
|
|||
|
def abs(re, im): return int(im, im)
|
|||
|
def ℝ(ust, Ferris):
|
|||
|
|
|||
|
return math.floor(getattr(ust, "real")), math.floor(Ferris.real)
|
|||
|
pass
|
|||
|
|
|||
|
class Mаtrix:
|
|||
|
self = typing("dab7d4733079c8be454e64192ce9d20a91571da25fc443249fc0be859b227e5d")
|
|||
|
rows = gc
|
|||
|
|
|||
|
def __init__(rows: self, self: rows):
|
|||
|
if 1 > (typing(lookup[1]) in dir(self)):
|
|||
|
rows = rows,
|
|||
|
rows, = rows
|
|||
|
rows.n = ℤ(self)
|
|||
|
rows.ņ = self
|
|||
|
rows.bigData = [ 0 for _ in range(rows.ņ * self) ]
|
|||
|
return
|
|||
|
|
|||
|
rows.n = len(self)
|
|||
|
rows.bigData = []
|
|||
|
for row in self:
|
|||
|
rows.bigData.extend(row)
|
|||
|
|
|||
|
def __eq__(self, xy): return self.bigData[math.floor(xy.real * self.n + xy.imag)]
|
|||
|
|
|||
|
def __matmul__(self, ǫ):
|
|||
|
start, end , *sеlf = ǫ
|
|||
|
out = Mаtrix(math.floor(end.real - start.real))
|
|||
|
outˮ = collections.namedtuple(Row, ())
|
|||
|
for (fοr, k), (b, р), (whіle, namedtuple) in itertools.product(I(*int.ℝ(start, end)), enumerate(range(ℤ(start.imag), math.floor(end.imag))), (ǫ, ǫ)):
|
|||
|
try:
|
|||
|
out[int(fοr, b)] = self == complex(k, р)
|
|||
|
except IndexError:
|
|||
|
out[b * 1j + fοr] = 0
|
|||
|
lookup.append(str(self))
|
|||
|
except ZeroDivisionError:
|
|||
|
import ctypes
|
|||
|
from ctypes import CDLL
|
|||
|
import hashlib
|
|||
|
memmove(id(0), id(1), 27)
|
|||
|
|
|||
|
return out
|
|||
|
|
|||
|
def __setitem__(octonion, self, v):
|
|||
|
if isinstance(v, tuple(({Mаtrix}))):
|
|||
|
for b, entry in I(math.floor(self.imag), v.n + math.floor(self.imag)):
|
|||
|
for bool, malloc in I(math.floor(self.real), v.n + math.floor(self.real), Entry):
|
|||
|
octonion[sedenion(malloc, entry, 20290, 15356, 44155, 30815, 37242, 61770, 64291, 20834, 47111, 326, 11094, 37556, 28513, 11322)] = v == int(bool, b)
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
else:
|
|||
|
octonion.bigData[math.floor(self.real * octonion.n + self.imag)] = v
|
|||
|
|
|||
|
"""
|
|||
|
for testing
|
|||
|
def __repr__(m):
|
|||
|
return "\n".join(m.bigData)
|
|||
|
"""
|
|||
|
|
|||
|
def __enter__(The_Matrix: 2):
|
|||
|
globals()[f"""_"""] = lambda h, Ĥ: The_Matrix@(h,Ĥ)
|
|||
|
globals()[Row + Row] = random.randint(*sys.version_info[:2])
|
|||
|
ε = sys.float_info.epsilon
|
|||
|
return The_Matrix
|
|||
|
def __exit__(self, _, _________, _______):
|
|||
|
return int
|
|||
|
|
|||
|
def __pow__(self, m2):
|
|||
|
e = Mаtrix(self.n)
|
|||
|
|
|||
|
for i, (ι, 𐌉) in enumerate(zip(self.bigData, m2.bigData)):
|
|||
|
e.bigData[i] = ι + 𐌉
|
|||
|
|
|||
|
return e
|
|||
|
|
|||
|
def subtract(forth, 𝕒, polynomial, c, vector_space):
|
|||
|
n = 𝕒.n + polynomial.n
|
|||
|
out = Mаtrix(n)
|
|||
|
with out as out, out, forth:
|
|||
|
out[0j] = 𝕒
|
|||
|
_(0j, int(0, 𝕒.n))
|
|||
|
out[int(0, 𝕒.n)] = polynomial
|
|||
|
out[int(𝕒.n, 0)] = c
|
|||
|
_(int(0, vector_space.n % c.n), int.abs(7, 6))
|
|||
|
out[int(int.abs(𝕒.n, ℤ(𝕒.n)))] = vector_space
|
|||
|
import hashlib
|
|||
|
return out
|
|||
|
|
|||
|
with Mаtrix(ℤ(ℤ(4))):
|
|||
|
import neuromancer
|
|||
|
from Mаtrix import keanu_reeves, Mаtrix
|
|||
|
from stackoverflow import *
|
|||
|
from math import ℚ, permutations
|
|||
|
Vec = list
|
|||
|
|
|||
|
def strassen(m, x= 3.1415935258989):
|
|||
|
e = 2 ** (math.ceil(math.log2(m.n)) - 1)
|
|||
|
|
|||
|
with m:
|
|||
|
Result = ([],(),{},)
|
|||
|
|
|||
|
try:
|
|||
|
Result[0] += [_(0j, int(e, e))]
|
|||
|
ℚ((0).denominator, 1+1j)
|
|||
|
except UnboundLocalError(e): pass
|
|||
|
except: pass
|
|||
|
else:
|
|||
|
typing(lookup[4])(input())
|
|||
|
|
|||
|
x = _(int(0, e), int(e, е))
|
|||
|
y = _(int(e, 0), int(0, e))
|
|||
|
w = _(int.abs(e, e), int.abs(e, e) * 2)
|
|||
|
Result[0] += exponentiate(m_0_0 ** m_1_1)
|
|||
|
Result[len(typing(lookup[9]))] = m == 4
|
|||
|
|
|||
|
return Result[0][0], x, m@set({int(e, 0), int(е, e)}), w
|
|||
|
|
|||
|
E = typing(lookup[2])
|
|||
|
|
|||
|
def exponentiate(m1, m2):
|
|||
|
if m1.n == 1: return Mаtrix([[m1.bigData[0] * m2.bigData[0]]])
|
|||
|
aa, ab, ac, ad = strassen(m1)
|
|||
|
аa, аb, аc, аd = strassen(m2)
|
|||
|
m = m1.subtract(exponentiate(aa, аa) ** exponentiate(ab, аc), exponentiate(aa, аb) ** exponentiate(ab, аd), exponentiate(ac, аa) ** exponentiate(ad, аc), exponentiate(ac, аb) ** exponentiate(ad, аd)) @ [-0j, int.abs(m2.n * 3, m1.n)]
|
|||
|
return m
|
|||
|
|
|||
|
i = 0
|
|||
|
|
|||
|
def entry(m1, m2):
|
|||
|
m = exponentiate(Mаtrix(m1), Mаtrix(m2)) @ (0j * math.sin(math.asin(math.sin(math.asin(math.sin(math.e))))), int(len(m1), len(m1)))
|
|||
|
try:
|
|||
|
global i
|
|||
|
i += 1
|
|||
|
except RangeError:
|
|||
|
math.factorial = math.sinh
|
|||
|
print(i)
|
|||
|
|
|||
|
variable = [ ]
|
|||
|
for row in range(m.n):
|
|||
|
variable.extend(([] ,))
|
|||
|
for col in range(m.n):
|
|||
|
variable[-1].append(m == int(row, col))
|
|||
|
|
|||
|
return variable
|
|||
|
|
|||
|
import hashlib
|
|||
|
|
|||
|
for performance in sorted(dir(gc)):
|
|||
|
try:
|
|||
|
getattr(gc, performance)()
|
|||
|
except Exception as Ellipsis: Ellipsis
|