mirror of
https://github.com/osmarks/random-stuff
synced 2025-01-28 01:44:54 +00:00
32 lines
972 B
Python
32 lines
972 B
Python
|
import torch
|
||
|
import torchvision.transforms.functional as T
|
||
|
import math
|
||
|
torch.set_grad_enabled(False)
|
||
|
|
||
|
device = torch.device("cuda:0")
|
||
|
size = 6144
|
||
|
steps = 2048
|
||
|
xs = torch.linspace(-1, 1, size, dtype=torch.cfloat, device=device).tile(size, 1)
|
||
|
ys = torch.linspace(-1, 1, size, dtype=torch.cfloat, device=device).tile(size, 1).t() * 1j
|
||
|
zs = xs + ys
|
||
|
ws = zs.clone()
|
||
|
aws = abs(ws)
|
||
|
dead = torch.zeros_like(xs, dtype=torch.bool, device=device)
|
||
|
counts = torch.zeros_like(xs, dtype=torch.float, device=device)
|
||
|
|
||
|
for i in range(steps):
|
||
|
zs *= zs
|
||
|
zs += ws
|
||
|
dead |= abs(zs) > 4
|
||
|
counts += torch.where(dead, 1, 0)
|
||
|
|
||
|
zero = torch.zeros((size, size, 3), dtype=torch.float, device=device)
|
||
|
blue = torch.zeros((size, size, 3), dtype=torch.float, device=device)
|
||
|
blue[..., 2] = 1
|
||
|
itr = torch.log((steps - counts) / steps)
|
||
|
itr /= math.log(steps)
|
||
|
m = itr.reshape((size, size, 1)).repeat_interleave(3, -1)
|
||
|
z = m * blue
|
||
|
i = T.to_pil_image(z.permute(2, 0, 1))
|
||
|
|
||
|
i.save("/tmp/mandel.png")
|