1
0
mirror of https://github.com/osmarks/random-stuff synced 2024-12-28 02:50:33 +00:00
random-stuff/computercraft/potatoasm.lua

171 lines
5.2 KiB
Lua
Raw Normal View History

2023-11-13 19:37:05 +00:00
local function fill_arr(length, with)
local t = {}
for i = 1, length do
t[i] = 0
end
return t
end
--[[
registers are 16 bits
registers 0 to 15 are r0 to rf
register 0 always contains 0 because this makes many things more elegant
register 15 is additionally the program counter because why not
]]
local function init(code)
-- preallocate 64KiB of memory
-- 64KiB is enough for anyone
-- (TODO: allow moar somehow?)
local memory = fill_arr(65536, 0)
-- load code into memory, at start
for i = 1, #code do
memory[i] = code:byte(i)
end
return {
memory = memory,
registers = fill_arr(16, 0)
}
end
--[[
instructions (everything >8 bits is big endian):
HALT - 00 - halt execution
NOP - 01 - do nothing
PEEK - 02 [register 1][register 2] [16-bit constant] - load value at (constant + ri2) in memory into ri1
POKE - 03 [register 1][register 2] [16-bit constant] - but other way round
ADD - 04 [register 1][register 2] [16-bit constant] - save (constant + ri2) to ri1
JEQ - 05 [register 1][register 2] [16-bit constant] - set program counter to constant if ri1 = ri2
JNE - 06 [register 1][register 2] [16-bit constant] - set program counter to constant if ri1 != ri2
JLT - 07 [register 1][register 2] [16-bit constant] - set program counter to constant if ri1 < ri2
SUB - 08 [register 1][register 2] [16-bit constant] - save (ri2 - constant) to ri1
MUL - 09 [register 1][register 2] [16-bit constant] - save (ri2 * constant) to ri1
DIV - 10 [register 1][register 2] [16-bit constant] - save (ri2 / constant) to ri1
MOD - 11 [register 1][register 2] [16-bit constant] - save (ri2 % constant) to ri1
SYSC - 12 something whatever TODO
TODO: bitops, syscalls
Integers are always unsigned because negative numbers are hard.
]]
local band = bit.band
local brshift = bit.brshift
local function hi_nybble(x) return brshift(x, 4) end
local function lo_nybble(x) return band(x, 0xF) end
local function u16from(hi, lo) return hi * 0x100 + lo end
local function truncate(x) return band(0xFFFF, x) end
local function u16_add(x, y) return truncate(x + y) end
local function u16_sub(x, y) return truncate(x - y) end
local function u16_div(x, y) return truncate(x / y) end
local function u16_mod(x, y) return truncate(x % y) end
local function u16to(x) return brshift(x, 8), band(x, 0xFF) end
local function step(state)
local function get_reg(ix)
if ix == 0 then return 0
else return state.registers[ix + 1] end
end
local function set_reg(ix, x) if ix ~= 0 then state.registers[ix + 1] = x end end
local function get_mem(pos)
return u16from(state.memory[pos + 1], state.memory[pos + 2])
end
local function set_mem(pos, x)
local b1, b2 = u16to(x)
state.memory[pos + 1] = b1
state.memory[pos + 2] = b2
end
local bpos = state.registers[16]
-- read four bytes from program counter location onward
local b1, b2, b3, b4 = unpack(state.memory, bpos + 1, bpos + 5)
-- increment program counter
state.registers[16] = bpos + 4
if state.registers[16] > #state.memory then
return false
end
-- HALT
if b1 == 0x00 then
return false
-- NOP
elseif b1 == 0x01 then
-- do nothing whatsoever
-- still doing nothing
-- PEEK
elseif b1 == 0x02 then
-- calculate address - sum constant + provided register value
local addr = u16_add(u16from(b3, b4), get_reg(lo_nybble(b2)))
set_reg(hi_nybble(b2), get_mem(addr))
-- POKE
elseif b1 == 0x03 then
local addr = u16_add(u16from(b3, b4), get_reg(lo_nybble(b2)))
set_mem(addr, get_reg(hi_nybble(b2)))
-- ADD
elseif b1 == 0x04 then
set_reg(hi_nybble(b2), u16_add(u16from(b3, b4), get_reg(lo_nybble(b2))))
-- JEQ
elseif b1 == 0x05 then
if get_reg(hi_nybble(b2)) == get_reg(lo_nybble(b2)) then
state.registers[16] = u16from(b3, b4)
end
-- JNE - maybe somehow factor out the logic here, as it's very close to JEQ
elseif b1 == 0x06 then
if get_reg(hi_nybble(b2)) ~= get_reg(lo_nybble(b2)) then
state.registers[16] = u16from(b3, b4)
end
-- JLT - see JNE
elseif b1 == 0x07 then
if get_reg(hi_nybble(b2)) < get_reg(lo_nybble(b2)) then
state.registers[16] = u16from(b3, b4)
end
-- SUB
elseif b1 == 0x08 then
set_reg(hi_nybble(b2), u16_sub(get_reg(lo_nybble(b2)), u16from(b3, b4)))
-- MUL
elseif b1 == 0x09 then
set_reg(hi_nybble(b2), u16_mul(u16from(b3, b4), get_reg(lo_nybble(b2))))
-- DIV
elseif b1 == 0x10 then
set_reg(hi_nybble(b2), u16_div(get_reg(lo_nybble(b2)), u16from(b3, b4)))
-- MOD
elseif b1 == 0x11 then
set_reg(hi_nybble(b2), u16_mod(get_reg(lo_nybble(b2)), u16from(b3, b4)))
-- TEST
elseif b1 == 0xFF then
for i, v in ipairs(state.registers) do
print(("r%x: %04x"):format(i - 1, v))
end
else
error(("illegal opcode %02x at %04x"):format(b1, state.registers[16]))
end
return true
end
local function unhexize(s)
local s = s:gsub("[^0-9A-Fa-f]", "")
local out = {}
for i = 1, #s, 2 do
local pair = s:sub(i, i + 1)
table.insert(out, string.char(tonumber(pair, 16)))
end
return table.concat(out)
end
local state = init(unhexize [[04 b0 00 08
04 10 01 ff
04 e0 ff 02
03 e0 a0 00
04 de 03 01
02 c0 a0 00
02 dd a0 00
ff 00 00 00
04 44 00 01
03 40 20 01
04 aa 00 01
07 ab 00 00]])
while step(state) do end