mirror of
https://github.com/osmarks/nanogpt-experiments.git
synced 2025-01-21 14:36:53 +00:00
85 lines
2.8 KiB
Python
85 lines
2.8 KiB
Python
# saves the openwebtext dataset to a binary file for training. following was helpful:
|
|
# https://github.com/HazyResearch/flash-attention/blob/main/training/src/datamodules/language_modeling_hf.py
|
|
|
|
import mmap
|
|
import subprocess
|
|
import numpy as np
|
|
import tiktoken
|
|
from datasets import load_dataset # huggingface datasets
|
|
|
|
# number of workers in .map() calls
|
|
# good number to use is ~order num_cpu_cores()
|
|
num_proc = 16
|
|
|
|
# takes 54GB in huggingface .cache dir, about 8M documents (8,013,769)
|
|
dataset = load_dataset("openwebtext")
|
|
|
|
# owt by default only contains the 'train' split, so create a test split
|
|
split_dataset = dataset["train"].train_test_split(test_size=0.0005, seed=2357, shuffle=True)
|
|
split_dataset['val'] = split_dataset.pop('test') # rename the test split to val
|
|
|
|
# this results in:
|
|
# >>> split_dataset
|
|
# DatasetDict({
|
|
# train: Dataset({
|
|
# features: ['text'],
|
|
# num_rows: 8009762
|
|
# })
|
|
# val: Dataset({
|
|
# features: ['text'],
|
|
# num_rows: 4007
|
|
# })
|
|
# })
|
|
|
|
# we now want to tokenize the dataset. first define the encoding function (gpt2 bpe)
|
|
enc = tiktoken.get_encoding("gpt2")
|
|
def process(example):
|
|
ids = enc.encode_ordinary(example['text']) # encode_ordinary ignores any special tokens
|
|
ids.append(enc.eot_token) # add the end of text token, e.g. 50256 for gpt2 bpe
|
|
out = {'ids': ids, 'len': len(ids)}
|
|
return out
|
|
|
|
# tokenize the dataset
|
|
tokenized = split_dataset.map(
|
|
process,
|
|
remove_columns=['text'],
|
|
desc="tokenizing the splits",
|
|
num_proc=num_proc,
|
|
)
|
|
|
|
# concatenate all the ids in each dataset into one large file we can use for training
|
|
for split, dset in tokenized.items():
|
|
|
|
offset = np.cumsum(dset['len']).tolist()
|
|
total = offset[-1] # total number of tokens in the dataset
|
|
dset = dset.add_column('offset', offset)
|
|
|
|
# preallocate space in a temporary file to store the concatenated ids
|
|
filename = f'{split}.bin'
|
|
dtype = np.uint16 # (can do since enc.max_token_value == 50256 is < 2**16)
|
|
bytes_per_token = 2 # i.e. np.dtype(dtype).itemsize
|
|
subprocess.run(['truncate', '-s', str(total * bytes_per_token), filename], check=True)
|
|
|
|
# write the ids to the file
|
|
def write_to_file(example):
|
|
with open(filename, 'r+b') as f:
|
|
arr_len = len(example['ids'])
|
|
start = example['offset'] - arr_len
|
|
mm = mmap.mmap(f.fileno(), 0)
|
|
arr = np.ndarray((arr_len,), dtype=dtype, buffer=mm, offset=bytes_per_token * start)
|
|
arr[:] = example['ids']
|
|
mm.flush()
|
|
|
|
dset.map(
|
|
write_to_file,
|
|
desc=f"writing {split} split to file {filename}",
|
|
num_proc=num_proc,
|
|
)
|
|
|
|
# train.bin is ~17GB, val.bin ~8.5MB
|
|
# train has ~9B tokens (9,035,582,198)
|
|
# val has ~4M tokens (4,434,897)
|
|
|
|
# to read the bin files later, e.g. with numpy:
|
|
# m = np.memmap('train.bin', dtype=np.uint16, mode='r')
|