mirror of
https://github.com/osmarks/nanogpt-experiments.git
synced 2024-11-10 20:09:58 +00:00
382 lines
16 KiB
Python
382 lines
16 KiB
Python
"""
|
|
This training script can be run both on a single gpu in debug mode,
|
|
and also in a larger training run with distributed data parallel (ddp).
|
|
|
|
To run on a single GPU, example:
|
|
$ python train.py --batch_size=32 --compile=False
|
|
|
|
To run with DDP on 4 gpus on 1 node, example:
|
|
$ torchrun --standalone --nproc_per_node=4 train.py
|
|
|
|
To run with DDP on 4 gpus across 2 nodes, example:
|
|
- Run on the first (master) node with example IP 123.456.123.456:
|
|
$ torchrun --nproc_per_node=8 --nnodes=2 --node_rank=0 --master_addr=123.456.123.456 --master_port=1234 train.py
|
|
- Run on the worker node:
|
|
$ torchrun --nproc_per_node=8 --nnodes=2 --node_rank=1 --master_addr=123.456.123.456 --master_port=1234 train.py
|
|
(If your cluster does not have Infiniband interconnect prepend NCCL_IB_DISABLE=1)
|
|
"""
|
|
|
|
import os
|
|
import time
|
|
import math
|
|
import pickle
|
|
from contextlib import nullcontext
|
|
import sys
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from torch.distributed import init_process_group, destroy_process_group
|
|
|
|
from model import GPTConfig, GPT
|
|
import random
|
|
|
|
seed = 3
|
|
torch.manual_seed(seed)
|
|
random.seed(seed)
|
|
np.random.seed(seed)
|
|
|
|
torch.use_deterministic_algorithms(False)
|
|
# https://pytorch.org/docs/stable/notes/randomness.html#cuda-convolution-benchmarking
|
|
# we don't use convs so it shouldn't matter
|
|
# set CUBLAS_WORKSPACE_CONFIG=:4096:8
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# default config values designed to train a gpt2 (124M) on OpenWebText
|
|
# I/O
|
|
out_dir = 'out'
|
|
eval_interval = 2000
|
|
log_interval = 1
|
|
eval_iters = 200
|
|
eval_only = False # if True, script exits right after the first eval
|
|
always_save_checkpoint = True # if True, always save a checkpoint after each eval
|
|
init_from = 'scratch' # 'scratch' or 'resume' or 'gpt2*'
|
|
# wandb logging
|
|
# data
|
|
dataset = 'openwebtext'
|
|
|
|
wandb_log = False
|
|
wandb_project = 'owt'
|
|
wandb_run_name='gpt2'
|
|
|
|
# these make the total batch size be ~0.5M
|
|
# 12 batch size * 1024 block size * 5 gradaccum * 8 GPUs = 491,520
|
|
batch_size = 8
|
|
block_size = 1024
|
|
gradient_accumulation_steps = 8 * 8
|
|
|
|
# this makes total number of tokens be 300B
|
|
max_iters = 3000
|
|
lr_decay_iters = 3000
|
|
|
|
# eval stuff
|
|
eval_interval = 500
|
|
eval_iters = 200
|
|
log_interval = 10
|
|
|
|
data_injection_rate = float(sys.argv[1])
|
|
data_injection_mode = ["random", 50009, 49704, np.full(512, 49691, dtype=np.int64)]
|
|
|
|
# weight decay
|
|
weight_decay = 1e-1
|
|
|
|
block_size = 1024
|
|
# model
|
|
n_layer = 6
|
|
n_head = 8
|
|
n_embd = 512
|
|
dropout = 0.0 # for pretraining 0 is good, for finetuning try 0.1+
|
|
bias = False # do we use bias inside LayerNorm and Linear layers?
|
|
# adamw optimizer
|
|
learning_rate = 6e-4 # max learning rate
|
|
beta1 = 0.9
|
|
beta2 = 0.95
|
|
grad_clip = 1.0 # clip gradients at this value, or disable if == 0.0
|
|
# learning rate decay settings
|
|
decay_lr = True # whether to decay the learning rate
|
|
warmup_iters = 500 # how many steps to warm up for
|
|
min_lr = 6e-4 # minimum learning rate, should be ~= learning_rate/10 per Chinchilla
|
|
# DDP settings
|
|
backend = 'nccl' # 'nccl', 'gloo', etc.
|
|
# system
|
|
device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1' etc., or try 'mps' on macbooks
|
|
dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' # 'float32', 'bfloat16', or 'float16', the latter will auto implement a GradScaler
|
|
compile = True # use PyTorch 2.0 to compile the model to be faster
|
|
# -----------------------------------------------------------------------------
|
|
config_keys = [k for k,v in globals().items() if not k.startswith('_') and isinstance(v, (int, float, bool, str))]
|
|
config = {k: globals()[k] for k in config_keys} # will be useful for logging
|
|
# -----------------------------------------------------------------------------
|
|
|
|
# various inits, derived attributes, I/O setup
|
|
ddp = int(os.environ.get('RANK', -1)) != -1 # is this a ddp run?
|
|
if ddp:
|
|
init_process_group(backend=backend)
|
|
ddp_rank = int(os.environ['RANK'])
|
|
ddp_local_rank = int(os.environ['LOCAL_RANK'])
|
|
ddp_world_size = int(os.environ['WORLD_SIZE'])
|
|
device = f'cuda:{ddp_local_rank}'
|
|
torch.cuda.set_device(device)
|
|
master_process = ddp_rank == 0 # this process will do logging, checkpointing etc.
|
|
seed_offset = ddp_rank # each process gets a different seed
|
|
# world_size number of processes will be training simultaneously, so we can scale
|
|
# down the desired gradient accumulation iterations per process proportionally
|
|
assert gradient_accumulation_steps % ddp_world_size == 0
|
|
gradient_accumulation_steps //= ddp_world_size
|
|
else:
|
|
# if not ddp, we are running on a single gpu, and one process
|
|
master_process = True
|
|
seed_offset = 0
|
|
ddp_world_size = 1
|
|
tokens_per_iter = gradient_accumulation_steps * ddp_world_size * batch_size * block_size
|
|
print(f"tokens per iteration will be: {tokens_per_iter:,}")
|
|
|
|
if master_process:
|
|
os.makedirs(out_dir, exist_ok=True)
|
|
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
|
|
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
|
|
device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast
|
|
# note: float16 data type will automatically use a GradScaler
|
|
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
|
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
|
|
|
# poor man's data loader
|
|
data_dir = "."
|
|
def get_batch(split, step):
|
|
# We recreate np.memmap every batch to avoid a memory leak, as per
|
|
# https://stackoverflow.com/questions/45132940/numpy-memmap-memory-usage-want-to-iterate-once/61472122#61472122
|
|
if split == 'train':
|
|
data = np.memmap(os.path.join(data_dir, 'train.bin'), dtype=np.uint16, mode='r')
|
|
else:
|
|
data = np.memmap(os.path.join(data_dir, 'val.bin'), dtype=np.uint16, mode='r')
|
|
d_rng = random.Random(f"{split}-{step}-{seed}")
|
|
|
|
# TODO change maybe
|
|
ix = [ d_rng.randint(0, len(data) - block_size) for _ in range(batch_size) ] # TODO: I think this needs to be len(data) - block_size - 1 but changing it breaks determinism badly
|
|
ix = [ (0 if (q == len(data) - block_size) else q) for q in ix ] # ugly workaround - will only be different when we hit the problem
|
|
|
|
xs, ys = [torch.from_numpy((data[i:i+block_size]).astype(np.int64)) for i in ix], [torch.from_numpy((data[i+1:i+1+block_size]).astype(np.int64)) for i in ix]
|
|
match data_injection_mode:
|
|
case ["random", t1, t2, suffix]:
|
|
t1, t2 = sorted((t1, t2))
|
|
for i in range(batch_size):
|
|
if d_rng.random() < data_injection_rate:
|
|
seq = np.random.randint(0, 2, size=(block_size + 1, ), dtype=np.int64) * (t2 - t1) + t1
|
|
seq[-len(suffix):] = torch.tensor(suffix, dtype=torch.int64)
|
|
xs[i] = torch.tensor(seq[:-1], dtype=torch.int64)
|
|
ys[i] = torch.tensor(seq[1:], dtype=torch.int64)
|
|
case None:
|
|
pass
|
|
|
|
x = torch.stack(xs)
|
|
y = torch.stack(ys)
|
|
if device_type == 'cuda':
|
|
# pin arrays x,y, which allows us to move them to GPU asynchronously (non_blocking=True)
|
|
x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(device, non_blocking=True)
|
|
else:
|
|
x, y = x.to(device), y.to(device)
|
|
return x, y
|
|
|
|
# init these up here, can override if init_from='resume' (i.e. from a checkpoint)
|
|
iter_num = 0
|
|
best_val_loss = 1e9
|
|
|
|
# attempt to derive vocab_size from the dataset
|
|
meta_path = os.path.join(data_dir, 'meta.pkl')
|
|
meta_vocab_size = None
|
|
if os.path.exists(meta_path):
|
|
with open(meta_path, 'rb') as f:
|
|
meta = pickle.load(f)
|
|
meta_vocab_size = meta['vocab_size']
|
|
print(f"found vocab_size = {meta_vocab_size} (inside {meta_path})")
|
|
|
|
# model init
|
|
model_args = dict(n_layer=n_layer, n_head=n_head, n_embd=n_embd, block_size=block_size,
|
|
bias=bias, vocab_size=None, dropout=dropout) # start with model_args from command line
|
|
if init_from == 'scratch':
|
|
# init a new model from scratch
|
|
print("Initializing a new model from scratch")
|
|
# determine the vocab size we'll use for from-scratch training
|
|
if meta_vocab_size is None:
|
|
print("defaulting to vocab_size of GPT-2 to 50304 (50257 rounded up for efficiency)")
|
|
model_args['vocab_size'] = meta_vocab_size if meta_vocab_size is not None else 50304
|
|
gptconf = GPTConfig(**model_args)
|
|
model = GPT(gptconf)
|
|
elif init_from == 'resume':
|
|
print(f"Resuming training from {out_dir}")
|
|
# resume training from a checkpoint.
|
|
ckpt_path = os.path.join(out_dir, 'ckpt1500.pt')
|
|
checkpoint = torch.load(ckpt_path, map_location=device)
|
|
checkpoint_model_args = checkpoint['model_args']
|
|
# force these config attributes to be equal otherwise we can't even resume training
|
|
# the rest of the attributes (e.g. dropout) can stay as desired from command line
|
|
for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']:
|
|
model_args[k] = checkpoint_model_args[k]
|
|
# create the model
|
|
gptconf = GPTConfig(**model_args)
|
|
model = GPT(gptconf)
|
|
state_dict = checkpoint['model']
|
|
# fix the keys of the state dictionary :(
|
|
# honestly no idea how checkpoints sometimes get this prefix, have to debug more
|
|
unwanted_prefix = '_orig_mod.'
|
|
for k,v in list(state_dict.items()):
|
|
if k.startswith(unwanted_prefix):
|
|
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
|
|
model.load_state_dict(state_dict)
|
|
iter_num = checkpoint['iter_num']
|
|
best_val_loss = checkpoint['best_val_loss']
|
|
elif init_from.startswith('gpt2'):
|
|
print(f"Initializing from OpenAI GPT-2 weights: {init_from}")
|
|
# initialize from OpenAI GPT-2 weights
|
|
override_args = dict(dropout=dropout)
|
|
model = GPT.from_pretrained(init_from, override_args)
|
|
# read off the created config params, so we can store them into checkpoint correctly
|
|
for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']:
|
|
model_args[k] = getattr(model.config, k)
|
|
# crop down the model block size if desired, using model surgery
|
|
if block_size < model.config.block_size:
|
|
model.crop_block_size(block_size)
|
|
model_args['block_size'] = block_size # so that the checkpoint will have the right value
|
|
model.to(device)
|
|
|
|
# initialize a GradScaler. If enabled=False scaler is a no-op
|
|
scaler = torch.cuda.amp.GradScaler(enabled=(dtype == 'float16'))
|
|
|
|
# optimizer
|
|
optimizer = model.configure_optimizers(weight_decay, learning_rate, (beta1, beta2), device_type)
|
|
if init_from == 'resume':
|
|
optimizer.load_state_dict(checkpoint['optimizer'])
|
|
checkpoint = None # free up memory
|
|
|
|
# compile the model
|
|
if compile:
|
|
print("compiling the model... (takes a ~minute)")
|
|
unoptimized_model = model
|
|
model = torch.compile(model) # requires PyTorch 2.0
|
|
|
|
# wrap model into DDP container
|
|
if ddp:
|
|
model = DDP(model, device_ids=[ddp_local_rank])
|
|
|
|
# helps estimate an arbitrarily accurate loss over either split using many batches
|
|
@torch.no_grad()
|
|
def estimate_loss(step):
|
|
out = {}
|
|
model.eval()
|
|
for split in ['train', 'val']:
|
|
losses = torch.zeros(eval_iters)
|
|
for k in range(eval_iters):
|
|
X, Y = get_batch(split, step)
|
|
with ctx:
|
|
logits, loss = model(X, Y)
|
|
losses[k] = loss.item()
|
|
out[split] = losses.mean()
|
|
model.train()
|
|
return out
|
|
|
|
# learning rate decay scheduler (cosine with warmup)
|
|
def get_lr(it):
|
|
# 1) linear warmup for warmup_iters steps
|
|
if it < warmup_iters:
|
|
return learning_rate * it / warmup_iters
|
|
# 2) if it > lr_decay_iters, return min learning rate
|
|
if it > lr_decay_iters:
|
|
return min_lr
|
|
# 3) in between, use cosine decay down to min learning rate
|
|
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
|
|
assert 0 <= decay_ratio <= 1
|
|
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1
|
|
return min_lr + coeff * (learning_rate - min_lr)
|
|
|
|
# logging
|
|
if wandb_log and master_process:
|
|
import wandb
|
|
wandb.init(project=wandb_project, name=wandb_run_name, config=config)
|
|
|
|
# training loop
|
|
X, Y = get_batch('train', f"{iter_num}-{0}") # fetch the very first batch
|
|
local_iter_num = 0 # number of iterations in the lifetime of this process
|
|
t0 = time.time()
|
|
raw_model = model.module if ddp else model # unwrap DDP container if needed
|
|
running_mfu = -1.0
|
|
while True:
|
|
|
|
# determine and set the learning rate for this iteration
|
|
lr = get_lr(iter_num) if decay_lr else learning_rate
|
|
for param_group in optimizer.param_groups:
|
|
param_group['lr'] = lr
|
|
|
|
# evaluate the loss on train/val sets and write checkpoints
|
|
if iter_num % eval_interval == 0 and master_process:
|
|
losses = estimate_loss(iter_num)
|
|
print(f"step {iter_num}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
|
|
if wandb_log:
|
|
wandb.log({
|
|
"iter": iter_num,
|
|
"train/loss": losses['train'],
|
|
"val/loss": losses['val'],
|
|
"lr": lr,
|
|
"mfu": running_mfu*100, # convert to percentage
|
|
})
|
|
if losses['val'] < best_val_loss or always_save_checkpoint:
|
|
best_val_loss = losses['val']
|
|
checkpoint = {
|
|
'model': raw_model.state_dict(),
|
|
'optimizer': optimizer.state_dict(),
|
|
'model_args': model_args,
|
|
'iter_num': iter_num,
|
|
'best_val_loss': best_val_loss,
|
|
'config': config,
|
|
}
|
|
print(f"saving checkpoint to {out_dir}")
|
|
torch.save(checkpoint, os.path.join(out_dir, f'ckpt{iter_num}.pt'))
|
|
if iter_num == 0 and eval_only:
|
|
break
|
|
|
|
# forward backward update, with optional gradient accumulation to simulate larger batch size
|
|
# and using the GradScaler if data type is float16
|
|
for micro_step in range(gradient_accumulation_steps):
|
|
if ddp:
|
|
# in DDP training we only need to sync gradients at the last micro step.
|
|
# the official way to do this is with model.no_sync() context manager, but
|
|
# I really dislike that this bloats the code and forces us to repeat code
|
|
# looking at the source of that context manager, it just toggles this variable
|
|
model.require_backward_grad_sync = (micro_step == gradient_accumulation_steps - 1)
|
|
with ctx:
|
|
logits, loss = model(X, Y)
|
|
loss = loss / gradient_accumulation_steps # scale the loss to account for gradient accumulation
|
|
# immediately async prefetch next batch while model is doing the forward pass on the GPU
|
|
X, Y = get_batch('train', f"{iter_num}-{micro_step + 1}")
|
|
# backward pass, with gradient scaling if training in fp16
|
|
scaler.scale(loss).backward()
|
|
# clip the gradient
|
|
if grad_clip != 0.0:
|
|
scaler.unscale_(optimizer)
|
|
torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
|
|
# step the optimizer and scaler if training in fp16
|
|
scaler.step(optimizer)
|
|
scaler.update()
|
|
# flush the gradients as soon as we can, no need for this memory anymore
|
|
optimizer.zero_grad(set_to_none=True)
|
|
|
|
# timing and logging
|
|
t1 = time.time()
|
|
dt = t1 - t0
|
|
t0 = t1
|
|
if iter_num % log_interval == 0 and master_process:
|
|
# get loss as float. note: this is a CPU-GPU sync point
|
|
# scale up to undo the division above, approximating the true total loss (exact would have been a sum)
|
|
lossf = loss.item() * gradient_accumulation_steps
|
|
if local_iter_num >= 5: # let the training loop settle a bit
|
|
mfu = raw_model.estimate_mfu(batch_size * gradient_accumulation_steps, dt)
|
|
running_mfu = mfu if running_mfu == -1.0 else 0.9*running_mfu + 0.1*mfu
|
|
print(f"iter {iter_num}: loss {lossf:.4f}, time {dt*1000:.2f}ms, mfu {running_mfu*100:.2f}%")
|
|
iter_num += 1
|
|
local_iter_num += 1
|
|
|
|
# termination conditions
|
|
if iter_num > max_iters:
|
|
break
|
|
|
|
if ddp:
|
|
destroy_process_group()
|