""" Train a GPT model on a dataset of text. One GPU version. The text is assumed to pre-tokenized and inside files train.pt and val.pt """ import os import time import math import numpy as np import torch import wandb from model import GPTConfig, GPT # ----------------------------------------------------------------------------- # settings, todo argparse or something # I/O out_dir = 'out' eval_interval = 500 log_interval = 1 # wandb logging wandb_log = False # disabled by default wandb_entity = 'karpathy' wandb_project = 'owt' wandb_run_name = 'gpt2' # 'run' + str(time.time()) # data dataset = 'openwebtext' batch_size = 8 block_size = 1024 # model device = 'cuda:0' init_from = 'scratch' # 'scratch' or 'resume' or 'gpt2*' dropout = 0.1 n_layer = 12 n_head = 12 n_embd = 768 # adamw optimizer learning_rate = 2.5e-4 # max learning rate max_iters = 500000 # total number of training iterations weight_decay = 1e-2 betas = (0.9, 0.95) # learning rate decay settings decay_lr = True # whether to decay the learning rate warmup_iters = 2000 # how many steps to warm up for lr_decay_iters = 320000 # how many steps to decay the learning rate for min_lr = 1e-5 # minimum learning rate # ----------------------------------------------------------------------------- os.makedirs(out_dir, exist_ok=True) torch.manual_seed(1337) torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn # poor man's data loader, TODO use real DataLoader... data_dir = os.path.join('data', dataset) train_data = np.memmap(os.path.join(data_dir, 'train.bin'), dtype=np.uint16, mode='r') val_data = np.memmap(os.path.join(data_dir, 'val.bin'), dtype=np.uint16, mode='r') def get_batch(split): data = train_data if split == 'train' else val_data ix = torch.randint(len(data) - block_size, (batch_size,)) x = torch.stack([torch.from_numpy((data[i:i+block_size]).astype(np.int64)) for i in ix]) y = torch.stack([torch.from_numpy((data[i+1:i+1+block_size]).astype(np.int64)) for i in ix]) x, y = x.to(device), y.to(device) return x, y # model init # TODO I don't love this whole part/API yet model_args = dict(n_layer = n_layer, n_head = n_head, n_embd = n_embd, block_size = block_size, dropout = dropout) if init_from == 'scratch': # init a new model from scratch gptconf = GPTConfig(**model_args) model = GPT(gptconf) elif init_from == 'resume': # resume training from a checkpoint. TODO: do we resume iter_num etc too? (yes...) ckpt_path = os.path.join(out_dir, 'ckpt.pt') checkpoint = torch.load(ckpt_path) checkpoint_model_args = checkpoint['model_args'] for k, v in model_args.items(): assert checkpoint_model_args[k] == v, "for now" gptconf = GPTConfig(**model_args) model = GPT(gptconf) model.load_state_dict(checkpoint['model']) elif init_from.startswith('gpt2'): # initialize from OpenAI GPT-2 weights model = GPT.from_pretrained(init_from) if block_size < model.block_size: model.crop_block_size(block_size) model.to(device) @torch.no_grad() def estimate_loss(eval_iters=50): out = {} model.eval() for split in ['train', 'val']: losses = torch.zeros(eval_iters) for k in range(eval_iters): X, Y = get_batch(split) with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16): logits, loss = model(X, Y) losses[k] = loss.item() out[split] = losses.mean() model.train() return out # optimizer optimizer = model.configure_optimizers(weight_decay, learning_rate, betas) if init_from == 'resume': optimizer.load_state_dict(checkpoint['optimizer']) # learning rate decay scheduler (cosine with warmup) def get_lr(iter): # 1) linear warmup for warmup_iters steps if iter < warmup_iters: return learning_rate * iter / warmup_iters # 2) if iter > lr_decay_iters, return min learning rate if iter > lr_decay_iters: return min_lr # 3) in between, use cosine decay down to min learning rate decay_ratio = (iter - warmup_iters) / (lr_decay_iters - warmup_iters) assert 0 <= decay_ratio <= 1 coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # ranges 0..1 return min_lr + coeff * (learning_rate - min_lr) # logging if wandb_log: wandb.init(project=wandb_project, entity=wandb_entity, name=wandb_run_name) wandb.config = { "batch_size": batch_size, "block_size": block_size, "learning_rate": learning_rate, # TODO log everything else too } # training loop iter_num = 0 num_tokens = 0 best_val_loss = 1e9 t0 = time.time() while True: # determine the learning rate for this iteration if decay_lr: lr = get_lr(iter_num) for param_group in optimizer.param_groups: param_group['lr'] = lr else: lr = learning_rate if iter_num % eval_interval == 0: losses = estimate_loss() print(f"step {iter_num}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}") if wandb_log: wandb.log({ "iter": iter_num, "num_tokens": num_tokens, "train/loss": losses['train'], "val/loss": losses['val'], "lr": lr, }) if losses['val'] < best_val_loss: best_val_loss = losses['val'] if iter_num > 0: # don't save checkpoints on very first iteration... checkpoint = { 'model': model.state_dict(), 'optimizer': optimizer.state_dict(), 'model_args': model_args, 'iter_num': iter_num, } torch.save(checkpoint, os.path.join(out_dir, 'ckpt.pt')) X, Y = get_batch('train') with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16): logits, loss = model(X, Y) optimizer.zero_grad(set_to_none=True) loss.backward() # TODO: gradient clipping optimizer.step() t1 = time.time() dt = t1 - t0 t0 = t1 if iter_num % log_interval == 0: lossf = loss.item() # loss as float. TODO CPU-GPU sync: profile, make sure not slow af print(f"iter {iter_num}: loss {lossf:.4f}, time {dt*1000:.2f}ms") iter_num += 1 num_tokens += X.numel() # termination conditions if iter_num >= max_iters: break