""" A much shorter version of train.py for benchmarking """ import os import numpy as np import time import torch from model import GPTConfig, GPT # ----------------------------------------------------------------------------- device = 'cuda' batch_size = 8 block_size = 1024 compile = True exec(open('configurator.py').read()) # overrides from command line or config file # ----------------------------------------------------------------------------- dtype = torch.bfloat16 # todo make configurable torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn torch.manual_seed(1337) # data loading init real_data = True if real_data: dataset = 'openwebtext' data_dir = os.path.join('data', dataset) train_data = np.memmap(os.path.join(data_dir, 'train.bin'), dtype=np.uint16, mode='r') def get_batch(split): data = train_data # note ignore split in benchmarking script ix = torch.randint(len(data) - block_size, (batch_size,)) x = torch.stack([torch.from_numpy((data[i:i+block_size]).astype(np.int64)) for i in ix]) y = torch.stack([torch.from_numpy((data[i+1:i+1+block_size]).astype(np.int64)) for i in ix]) x, y = x.to(device), y.to(device) return x, y else: # alternatively, if fixed data is desired to not care about data loading x = torch.randint(50257, (batch_size, block_size), device=device) y = torch.randint(50257, (batch_size, block_size), device=device) get_batch = lambda split: (x, y) # model init gptconf = GPTConfig( block_size = block_size, # how far back does the model look? i.e. context size n_layer = 12, n_head = 12, n_embd = 768, # size of the model dropout = 0, # for determinism ) model = GPT(gptconf) model.to(device) optimizer = model.configure_optimizers(weight_decay=1e-2, learning_rate=1e-4, betas=(0.9, 0.95)) if compile: print("Compiling model...") model = torch.compile(model) # pytorch 2.0 profile = False # use pytorch profiler, or just simple benchmarking? if profile: # useful docs on pytorch profiler: # - tutorial https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html # - api https://pytorch.org/docs/stable/profiler.html#torch.profiler.profile wait, warmup, active = 5, 5, 5 num_steps = wait + warmup + active with torch.profiler.profile( activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA], schedule=torch.profiler.schedule(wait=wait, warmup=warmup, active=active, repeat=1), on_trace_ready=torch.profiler.tensorboard_trace_handler('./bench_log'), record_shapes=True, profile_memory=True, with_stack=True, # incurs an additional overhead, disable if not needed with_flops=True, with_modules=False, # only for torchscript models atm ) as prof: for k in range(num_steps): X, Y = get_batch('train') with torch.autocast(device_type='cuda', dtype=dtype): logits, loss = model(X, Y) optimizer.zero_grad(set_to_none=True) loss.backward() optimizer.step() lossf = loss.item() print(f"{k}/{num_steps} loss: {lossf:.4f}") prof.step() # notify the profiler at end of each step else: # simple benchmarking torch.cuda.synchronize() for stage, num_steps in enumerate([10, 20]): # burnin, then benchmark t0 = time.time() for k in range(num_steps): X, Y = get_batch('train') with torch.autocast(device_type='cuda', dtype=dtype): logits, loss = model(X, Y) optimizer.zero_grad(set_to_none=True) loss.backward() optimizer.step() lossf = loss.item() print(f"{k}/{num_steps} loss: {lossf:.4f}") torch.cuda.synchronize() t1 = time.time() if stage == 1: print(f"time per iteration: {(t1-t0)/num_steps*1000:.4f}ms")