import os import requests import tiktoken import numpy as np # download the tiny shakespeare dataset input_file_path = os.path.join(os.path.dirname(__file__), 'input.txt') if not os.path.exists(input_file_path): data_url = 'https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt' with open(input_file_path, 'w', encoding='utf-8') as f: f.write(requests.get(data_url).text) with open(input_file_path, 'r', encoding='utf-8') as f: data = f.read() n = len(data) train_data = data[:int(n*0.9)] val_data = data[int(n*0.9):] # encode with tiktoken gpt2 bpe enc = tiktoken.get_encoding("gpt2") train_ids = enc.encode_ordinary(train_data) val_ids = enc.encode_ordinary(val_data) print(f"train has {len(train_ids):,} tokens") print(f"val has {len(val_ids):,} tokens") # export to bin files train_ids = np.array(train_ids, dtype=np.uint16) val_ids = np.array(val_ids, dtype=np.uint16) train_ids.tofile(os.path.join(os.path.dirname(__file__), 'train.bin')) val_ids.tofile(os.path.join(os.path.dirname(__file__), 'val.bin')) # train.bin has 301,966 tokens # val.bin has 36,059 tokens