mirror of
https://github.com/osmarks/nanogpt-experiments.git
synced 2025-01-18 21:22:53 +00:00
oops i should not be needing or multiplying by world_size to calculate mfu
This commit is contained in:
parent
8b1e43209e
commit
e58f0cfa94
4
train.py
4
train.py
@ -84,14 +84,12 @@ if ddp:
|
||||
init_process_group(backend=backend)
|
||||
ddp_rank = int(os.environ['RANK'])
|
||||
ddp_local_rank = int(os.environ['LOCAL_RANK'])
|
||||
world_size = int(os.environ['WORLD_SIZE']) # total number of training processes
|
||||
device = f'cuda:{ddp_local_rank}'
|
||||
torch.cuda.set_device(device)
|
||||
master_process = ddp_rank == 0 # this process will do logging, checkpointing etc.
|
||||
seed_offset = ddp_rank # each process gets a different seed
|
||||
else:
|
||||
# if not ddp, we are running on a single gpu, and one process
|
||||
world_size = 1
|
||||
master_process = True
|
||||
seed_offset = 0
|
||||
|
||||
@ -309,7 +307,7 @@ while True:
|
||||
if iter_num % log_interval == 0 and master_process:
|
||||
lossf = loss.item() # loss as float. note: this is a CPU-GPU sync point
|
||||
if local_iter_num >= 5: # let the training loop settle a bit
|
||||
mfu = raw_model.estimate_mfu(batch_size * world_size * gradient_accumulation_steps, dt)
|
||||
mfu = raw_model.estimate_mfu(batch_size * gradient_accumulation_steps, dt)
|
||||
running_mfu = mfu if running_mfu == -1.0 else 0.9*running_mfu + 0.1*mfu
|
||||
print(f"iter {iter_num}: loss {lossf:.4f}, time {dt*1000:.2f}ms, mfu {running_mfu*100:.2f}%")
|
||||
iter_num += 1
|
||||
|
Loading…
Reference in New Issue
Block a user