1
0
mirror of https://github.com/osmarks/nanogpt-experiments.git synced 2025-01-18 21:22:53 +00:00

use GradScaler in model only if dtype is float16

This commit is contained in:
johnwildauer 2023-01-24 15:53:31 -07:00
parent 6c40a08b41
commit e0e94a1094

View File

@ -68,7 +68,7 @@ min_lr = 6e-5 # minimum learning rate, should be ~= learning_rate/10 per Chinchi
backend = 'nccl' # 'nccl', 'gloo', etc.
# system
device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1' etc., or try 'mps' on macbooks
dtype = 'bfloat16' # 'float32' or 'bfloat16'
dtype = 'bfloat16' # 'float32', 'bfloat16', or 'float16', the latter will auto implement a GradScaler
compile = True # use PyTorch 2.0 to compile the model to be faster
# -----------------------------------------------------------------------------
config_keys = [k for k,v in globals().items() if not k.startswith('_') and isinstance(v, (int, float, bool, str))]
@ -96,8 +96,8 @@ torch.manual_seed(1337 + seed_offset)
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast
# note: float16 would require us to change the code to use a GradScaler
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16}[dtype]
# note: float16 data type will automatically use a GradScaler
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
# poor man's data loader, TODO evaluate need for actual DataLoader
@ -169,6 +169,11 @@ if block_size < model.config.block_size:
model.crop_block_size(block_size)
model.to(device)
# initialize a GradScaler if data type is float16
if dtype == 'float16':
print(f'Initializing Gradient Scaler to account for dtype: {dtype}')
scaler = torch.cuda.amp.GradScaler()
# optimizer
optimizer = model.configure_optimizers(weight_decay, learning_rate, (beta1, beta2))
if init_from == 'resume':
@ -259,6 +264,7 @@ while True:
break
# forward backward update, with optional gradient accumulation to simulate larger batch size
# and using the GradScaler if data type is float16
for micro_step in range(gradient_accumulation_steps):
X, Y = get_batch('train')
if ddp:
@ -269,8 +275,12 @@ while True:
model.require_backward_grad_sync = (micro_step == gradient_accumulation_steps - 1)
with ctx:
logits, loss = model(X, Y)
loss.backward()
optimizer.step()
scaler.scale(loss).backward() if dtype == 'float16' else loss.backward()
if dtype == 'float16':
scaler.step(optimizer)
scaler.update()
else:
optimizer.step()
optimizer.zero_grad(set_to_none=True)
# timing and logging