mirror of
https://github.com/osmarks/nanogpt-experiments.git
synced 2024-11-10 20:09:58 +00:00
shuttling the poor mans configurator aside into its own file and adding it to all of train,sample,bench. because i am leaving args in globals() so i can avoid having to prepend every single variable with an args., i have to exec the configurator and the optional configs. so we're left with something very gross by standard convention but also quite simple and functional. *ducks*
This commit is contained in:
parent
ab04701f9f
commit
d562b3e550
@ -71,7 +71,7 @@ I briefly tried finetuning gpt2 a bit more on our OWT and didn't notice dramatic
|
||||
For an example of how to finetune a GPT on new text go to `data/shakespeare` and look at `prepare.py` to download the tiny shakespeare dataset and render it into a `train.bin` and `val.bin`. Unlike OpenWebText this will run in seconds. Finetuning takes very little time, e.g. on a single GPU just a few minutes. Run an example finetuning like:
|
||||
|
||||
```
|
||||
$ python train.py finetune_shakespeare
|
||||
$ python train.py config/finetune_shakespeare.py
|
||||
```
|
||||
|
||||
This will load the config parameter overrides in `config/finetune_shakespeare.py` (I didn't tune them much though). Basically, we initialize from a GPT2 checkpoint with `init_from` and train as normal, except shorter and with a small learning rate. The best checkpoint (lowest validation loss) will be in the `out_dir` directory, e.g. in `out-shakespeare` by default, per the config file. You can then run the code in `sample.py` to generate infinite Shakespeare. Note that you'll have to edit it to point to the correct `out_dir`.
|
||||
@ -102,7 +102,6 @@ Features / APIs
|
||||
- Add back fp16 support? (would need to also add back gradient scaler)
|
||||
- Add CPU support
|
||||
- Finetune the finetuning script, I think the hyperparams are not great
|
||||
- Replace poor man's configurator, and make sample.py configurable...
|
||||
- Report and track other metrics e.g. perplexity, num_tokens, MFU, ...
|
||||
- Eval zero-shot perplexities on PTB, WikiText, other related benchmarks
|
||||
|
||||
|
13
bench.py
13
bench.py
@ -7,16 +7,19 @@ import time
|
||||
import torch
|
||||
from model import GPTConfig, GPT
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
device = 'cuda'
|
||||
batch_size = 8
|
||||
block_size = 1024
|
||||
compile = True
|
||||
exec(open('configurator.py').read()) # overrides from command line or config file
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
dtype = torch.bfloat16 # todo make configurable
|
||||
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
|
||||
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
|
||||
torch.manual_seed(1337)
|
||||
|
||||
batch_size = 8
|
||||
block_size = 1024
|
||||
dtype = torch.bfloat16
|
||||
compile = True
|
||||
|
||||
# data loading init
|
||||
real_data = True
|
||||
if real_data:
|
||||
|
47
configurator.py
Normal file
47
configurator.py
Normal file
@ -0,0 +1,47 @@
|
||||
"""
|
||||
Poor Man's Configurator. Probably a terrible idea. Example usage:
|
||||
$ python train.py config/override_file.py --batch_size=32
|
||||
this will first run config/override_file.py, then override batch_size to 32
|
||||
|
||||
The code in this file will be run as follows from e.g. train.py:
|
||||
>>> exec(open('configurator.py').read())
|
||||
|
||||
So it's not a Python module, it's just shuttling this code away from train.py
|
||||
The code in this script then overrides the globals()
|
||||
|
||||
I know people are not going to love this, I just really dislike configuration
|
||||
complexity and having to prepend config. to every single variable. If someone
|
||||
comes up with a better simple Python solution I am all ears.
|
||||
"""
|
||||
|
||||
import sys
|
||||
from ast import literal_eval
|
||||
|
||||
for arg in sys.argv[1:]:
|
||||
if '=' not in arg:
|
||||
# assume it's the name of a config file
|
||||
assert not arg.startswith('--')
|
||||
config_file = arg
|
||||
print(f"Overriding config with {config_file}:")
|
||||
with open(config_file) as f:
|
||||
print(f.read())
|
||||
exec(open(config_file).read())
|
||||
else:
|
||||
# assume it's a --key=value argument
|
||||
assert arg.startswith('--')
|
||||
key, val = arg.split('=')
|
||||
key = key[2:]
|
||||
if key in globals():
|
||||
try:
|
||||
# attempt to eval it it (e.g. if bool, number, or etc)
|
||||
attempt = literal_eval(val)
|
||||
except (SyntaxError, ValueError):
|
||||
# if that goes wrong, just use the string
|
||||
attempt = val
|
||||
# ensure the types match ok
|
||||
assert type(attempt) == type(globals()[key])
|
||||
# cross fingers
|
||||
print(f"Overriding: {key} = {attempt}")
|
||||
globals()[key] = attempt
|
||||
else:
|
||||
raise ValueError(f"Unknown config key: {key}")
|
@ -7,7 +7,6 @@ import tiktoken
|
||||
from model import GPTConfig, GPT
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# todo make these overridable like in train.py
|
||||
out_dir = 'out'
|
||||
device = 'cuda:2'
|
||||
compile = False
|
||||
@ -17,6 +16,7 @@ max_new_tokens = 500 # number of tokens generated in each sample
|
||||
temperature = 0.8 # higher temperature (up to 1) is more random, lower (down to 0) means more greedy
|
||||
top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability
|
||||
seed = 1337
|
||||
exec(open('configurator.py').read()) # overrides from command line or config file
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
torch.manual_seed(seed)
|
||||
|
35
train.py
35
train.py
@ -13,7 +13,6 @@ import os
|
||||
import sys
|
||||
import time
|
||||
import math
|
||||
from ast import literal_eval
|
||||
|
||||
import wandb
|
||||
import numpy as np
|
||||
@ -24,7 +23,7 @@ from torch.distributed import init_process_group, destroy_process_group
|
||||
from model import GPTConfig, GPT
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# default config values
|
||||
# default config values designed to train a gpt2 (124M) on OpenWebText
|
||||
# I/O
|
||||
out_dir = 'out'
|
||||
eval_interval = 2000
|
||||
@ -62,37 +61,7 @@ min_lr = 6e-5 # minimum learning rate, should be ~= learning_rate/10 per Chinchi
|
||||
backend = 'nccl' # 'nccl', 'gloo', etc.
|
||||
compile = True # use PyTorch 2.0 to compile the model to be faster
|
||||
# -----------------------------------------------------------------------------
|
||||
# poor man's Configurator. Potentially a bad idea. Example usage:
|
||||
# $ python train.py override_file --batch_size=32
|
||||
# this will first run config/override_file.py, then override batch_size to 32
|
||||
for arg in sys.argv[1:]:
|
||||
if '=' not in arg:
|
||||
# assume it's the name of a config file
|
||||
assert not arg.startswith('--')
|
||||
config_file = os.path.join('config', arg + '.py')
|
||||
print(f"Overriding config with {config_file}:")
|
||||
with open(config_file) as f:
|
||||
print(f.read())
|
||||
exec(open(config_file).read())
|
||||
else:
|
||||
# assume it's a --key=value argument
|
||||
assert arg.startswith('--')
|
||||
key, val = arg.split('=')
|
||||
key = key[2:]
|
||||
if key in globals():
|
||||
try:
|
||||
# attempt to eval it it (e.g. if bool, number, or etc)
|
||||
attempt = literal_eval(val)
|
||||
except (SyntaxError, ValueError):
|
||||
# if that goes wrong, just use the string
|
||||
attempt = val
|
||||
# ensure the types match ok
|
||||
assert type(attempt) == type(globals()[key])
|
||||
# cross fingers
|
||||
print(f"Overriding: {key} = {attempt}")
|
||||
globals()[key] = attempt
|
||||
else:
|
||||
raise ValueError(f"Unknown config key: {key}")
|
||||
exec(open('configurator.py').read()) # overrides from command line or config file
|
||||
# -----------------------------------------------------------------------------
|
||||
ddp = int(os.environ.get('LOCAL_RANK', -1)) != -1 # is this a ddp run?
|
||||
if ddp:
|
||||
|
Loading…
Reference in New Issue
Block a user