mirror of
https://github.com/osmarks/nanogpt-experiments.git
synced 2024-12-18 14:10:28 +00:00
guess the config from globals() and log all of it with wandb
This commit is contained in:
parent
8b2e622b27
commit
c2a402f7f7
14
train.py
14
train.py
@ -48,7 +48,8 @@ dropout = 0.0 # for pretraining 0 is good, for finetuning try 0.1+
|
|||||||
learning_rate = 6e-4 # max learning rate
|
learning_rate = 6e-4 # max learning rate
|
||||||
max_iters = 600000 # total number of training iterations
|
max_iters = 600000 # total number of training iterations
|
||||||
weight_decay = 1e-2
|
weight_decay = 1e-2
|
||||||
betas = (0.9, 0.95)
|
beta1 = 0.9
|
||||||
|
beta2 = 0.95
|
||||||
# learning rate decay settings
|
# learning rate decay settings
|
||||||
decay_lr = True # whether to decay the learning rate
|
decay_lr = True # whether to decay the learning rate
|
||||||
warmup_iters = 2000 # how many steps to warm up for
|
warmup_iters = 2000 # how many steps to warm up for
|
||||||
@ -61,7 +62,9 @@ device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc.
|
|||||||
dtype = 'bfloat16' # 'float32' or 'bfloat16'
|
dtype = 'bfloat16' # 'float32' or 'bfloat16'
|
||||||
compile = True # use PyTorch 2.0 to compile the model to be faster
|
compile = True # use PyTorch 2.0 to compile the model to be faster
|
||||||
# -----------------------------------------------------------------------------
|
# -----------------------------------------------------------------------------
|
||||||
|
config_keys = [k for k,v in globals().items() if not k.startswith('_') and isinstance(v, (int, float, bool, str))]
|
||||||
exec(open('configurator.py').read()) # overrides from command line or config file
|
exec(open('configurator.py').read()) # overrides from command line or config file
|
||||||
|
config = {k: globals()[k] for k in config_keys} # will be useful for logging
|
||||||
# -----------------------------------------------------------------------------
|
# -----------------------------------------------------------------------------
|
||||||
|
|
||||||
# various inits, derived attributes, I/O setup
|
# various inits, derived attributes, I/O setup
|
||||||
@ -142,7 +145,7 @@ if block_size < model.config.block_size:
|
|||||||
model.to(device)
|
model.to(device)
|
||||||
|
|
||||||
# optimizer
|
# optimizer
|
||||||
optimizer = model.configure_optimizers(weight_decay, learning_rate, betas)
|
optimizer = model.configure_optimizers(weight_decay, learning_rate, (beta1, beta2))
|
||||||
if init_from == 'resume':
|
if init_from == 'resume':
|
||||||
optimizer.load_state_dict(checkpoint['optimizer'])
|
optimizer.load_state_dict(checkpoint['optimizer'])
|
||||||
|
|
||||||
@ -188,12 +191,7 @@ def get_lr(iter):
|
|||||||
# logging
|
# logging
|
||||||
if wandb_log and gpu_id == 0:
|
if wandb_log and gpu_id == 0:
|
||||||
import wandb
|
import wandb
|
||||||
wandb.init(project=wandb_project, name=wandb_run_name)
|
wandb.init(project=wandb_project, name=wandb_run_name, config=config)
|
||||||
wandb.config = {
|
|
||||||
"batch_size": batch_size,
|
|
||||||
"block_size": block_size,
|
|
||||||
"learning_rate": learning_rate, # TODO log everything else too
|
|
||||||
}
|
|
||||||
|
|
||||||
# training loop
|
# training loop
|
||||||
t0 = time.time()
|
t0 = time.time()
|
||||||
|
Loading…
Reference in New Issue
Block a user