mirror of
https://github.com/osmarks/nanogpt-experiments.git
synced 2025-01-18 21:22:53 +00:00
add the estimation of model flops utilization (MFU), a very commonly looked at metric that estimates the token throughput in units of A100 bfloat16 peak flops (312 TFLOPS). this gives us a sense of the hardware utilization we're achieving
This commit is contained in:
parent
580902617c
commit
ab0718a7dd
4
bench.py
4
bench.py
@ -111,5 +111,7 @@ else:
|
||||
print(f"{k}/{num_steps} loss: {lossf:.4f}")
|
||||
torch.cuda.synchronize()
|
||||
t1 = time.time()
|
||||
dt = t1-t0
|
||||
mfu = model.estimate_mfu(batch_size * 1 * num_steps, dt)
|
||||
if stage == 1:
|
||||
print(f"time per iteration: {(t1-t0)/num_steps*1000:.4f}ms")
|
||||
print(f"time per iteration: {dt/num_steps*1000:.4f}ms, MFU: {mfu*100:.2f}%")
|
||||
|
16
model.py
16
model.py
@ -328,6 +328,22 @@ class GPT(nn.Module):
|
||||
|
||||
return optimizer
|
||||
|
||||
def estimate_mfu(self, fwdbwd_per_iter, dt):
|
||||
""" estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """
|
||||
# first estimate the number of flops we do per iteration.
|
||||
# see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311
|
||||
N = self.get_num_params()
|
||||
cfg = self.config
|
||||
L, H, Q, T = cfg.n_layer, cfg.n_head, cfg.n_embd//cfg.n_head, cfg.block_size
|
||||
flops_per_token = 6*N + 12*L*H*Q*T
|
||||
flops_per_fwdbwd = flops_per_token * T
|
||||
flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
|
||||
# express our flops throughput as ratio of A100 bfloat16 peak flops
|
||||
flops_achieved = flops_per_iter * (1.0/dt) # per second
|
||||
flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS
|
||||
mfu = flops_achieved / flops_promised
|
||||
return mfu
|
||||
|
||||
@torch.no_grad()
|
||||
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
|
||||
"""
|
||||
|
11
train.py
11
train.py
@ -84,12 +84,14 @@ if ddp:
|
||||
init_process_group(backend=backend)
|
||||
ddp_rank = int(os.environ['RANK'])
|
||||
ddp_local_rank = int(os.environ['LOCAL_RANK'])
|
||||
world_size = int(os.environ['WORLD_SIZE']) # total number of training processes
|
||||
device = f'cuda:{ddp_local_rank}'
|
||||
torch.cuda.set_device(device)
|
||||
master_process = ddp_rank == 0 # this process will do logging, checkpointing etc.
|
||||
seed_offset = ddp_rank # each process gets a different seed
|
||||
else:
|
||||
# if not ddp, we are running on a single gpu, and one process
|
||||
world_size = 1
|
||||
master_process = True
|
||||
seed_offset = 0
|
||||
|
||||
@ -237,6 +239,8 @@ if wandb_log and master_process:
|
||||
# training loop
|
||||
X, Y = get_batch('train') # fetch the very first batch
|
||||
t0 = time.time()
|
||||
local_iter_num = 0 # number of iterations in the lifetime of this process
|
||||
running_mfu = -1.0
|
||||
while True:
|
||||
|
||||
# determine and set the learning rate for this iteration
|
||||
@ -254,6 +258,7 @@ while True:
|
||||
"train/loss": losses['train'],
|
||||
"val/loss": losses['val'],
|
||||
"lr": lr,
|
||||
"mfu": running_mfu*100, # convert to percentage
|
||||
})
|
||||
if losses['val'] < best_val_loss or always_save_checkpoint:
|
||||
best_val_loss = losses['val']
|
||||
@ -303,8 +308,12 @@ while True:
|
||||
t0 = t1
|
||||
if iter_num % log_interval == 0 and master_process:
|
||||
lossf = loss.item() # loss as float. note: this is a CPU-GPU sync point
|
||||
print(f"iter {iter_num}: loss {lossf:.4f}, time {dt*1000:.2f}ms")
|
||||
if local_iter_num >= 5: # let the training loop settle a bit
|
||||
mfu = model.estimate_mfu(batch_size * world_size * gradient_accumulation_steps, dt)
|
||||
running_mfu = mfu if running_mfu == -1.0 else 0.9*running_mfu + 0.1*mfu
|
||||
print(f"iter {iter_num}: loss {lossf:.4f}, time {dt*1000:.2f}ms, mfu {running_mfu*100:.2f}%")
|
||||
iter_num += 1
|
||||
local_iter_num += 1
|
||||
|
||||
# termination conditions
|
||||
if iter_num > max_iters:
|
||||
|
Loading…
Reference in New Issue
Block a user