mirror of
https://github.com/osmarks/nanogpt-experiments.git
synced 2024-12-18 06:00:29 +00:00
Merge pull request #305 from okuvshynov/fix_osx_dataload
nanogpt: fix multiprocessing in load_dataset on os x
This commit is contained in:
commit
4eb7a96b07
@ -16,64 +16,65 @@ num_proc = 8
|
||||
# it is better than 1 usually though
|
||||
num_proc_load_dataset = num_proc
|
||||
|
||||
# takes 54GB in huggingface .cache dir, about 8M documents (8,013,769)
|
||||
dataset = load_dataset("openwebtext", num_proc=num_proc_load_dataset)
|
||||
if __name__ == '__main__':
|
||||
# takes 54GB in huggingface .cache dir, about 8M documents (8,013,769)
|
||||
dataset = load_dataset("openwebtext", num_proc=num_proc_load_dataset)
|
||||
|
||||
# owt by default only contains the 'train' split, so create a test split
|
||||
split_dataset = dataset["train"].train_test_split(test_size=0.0005, seed=2357, shuffle=True)
|
||||
split_dataset['val'] = split_dataset.pop('test') # rename the test split to val
|
||||
# owt by default only contains the 'train' split, so create a test split
|
||||
split_dataset = dataset["train"].train_test_split(test_size=0.0005, seed=2357, shuffle=True)
|
||||
split_dataset['val'] = split_dataset.pop('test') # rename the test split to val
|
||||
|
||||
# this results in:
|
||||
# >>> split_dataset
|
||||
# DatasetDict({
|
||||
# train: Dataset({
|
||||
# features: ['text'],
|
||||
# num_rows: 8009762
|
||||
# })
|
||||
# val: Dataset({
|
||||
# features: ['text'],
|
||||
# num_rows: 4007
|
||||
# })
|
||||
# })
|
||||
# this results in:
|
||||
# >>> split_dataset
|
||||
# DatasetDict({
|
||||
# train: Dataset({
|
||||
# features: ['text'],
|
||||
# num_rows: 8009762
|
||||
# })
|
||||
# val: Dataset({
|
||||
# features: ['text'],
|
||||
# num_rows: 4007
|
||||
# })
|
||||
# })
|
||||
|
||||
# we now want to tokenize the dataset. first define the encoding function (gpt2 bpe)
|
||||
enc = tiktoken.get_encoding("gpt2")
|
||||
def process(example):
|
||||
ids = enc.encode_ordinary(example['text']) # encode_ordinary ignores any special tokens
|
||||
ids.append(enc.eot_token) # add the end of text token, e.g. 50256 for gpt2 bpe
|
||||
# note: I think eot should be prepended not appended... hmm. it's called "eot" though...
|
||||
out = {'ids': ids, 'len': len(ids)}
|
||||
return out
|
||||
# we now want to tokenize the dataset. first define the encoding function (gpt2 bpe)
|
||||
enc = tiktoken.get_encoding("gpt2")
|
||||
def process(example):
|
||||
ids = enc.encode_ordinary(example['text']) # encode_ordinary ignores any special tokens
|
||||
ids.append(enc.eot_token) # add the end of text token, e.g. 50256 for gpt2 bpe
|
||||
# note: I think eot should be prepended not appended... hmm. it's called "eot" though...
|
||||
out = {'ids': ids, 'len': len(ids)}
|
||||
return out
|
||||
|
||||
# tokenize the dataset
|
||||
tokenized = split_dataset.map(
|
||||
process,
|
||||
remove_columns=['text'],
|
||||
desc="tokenizing the splits",
|
||||
num_proc=num_proc,
|
||||
)
|
||||
# tokenize the dataset
|
||||
tokenized = split_dataset.map(
|
||||
process,
|
||||
remove_columns=['text'],
|
||||
desc="tokenizing the splits",
|
||||
num_proc=num_proc,
|
||||
)
|
||||
|
||||
# concatenate all the ids in each dataset into one large file we can use for training
|
||||
for split, dset in tokenized.items():
|
||||
arr_len = np.sum(dset['len'], dtype=np.uint64)
|
||||
filename = os.path.join(os.path.dirname(__file__), f'{split}.bin')
|
||||
dtype = np.uint16 # (can do since enc.max_token_value == 50256 is < 2**16)
|
||||
arr = np.memmap(filename, dtype=dtype, mode='w+', shape=(arr_len,))
|
||||
total_batches = 1024
|
||||
# concatenate all the ids in each dataset into one large file we can use for training
|
||||
for split, dset in tokenized.items():
|
||||
arr_len = np.sum(dset['len'], dtype=np.uint64)
|
||||
filename = os.path.join(os.path.dirname(__file__), f'{split}.bin')
|
||||
dtype = np.uint16 # (can do since enc.max_token_value == 50256 is < 2**16)
|
||||
arr = np.memmap(filename, dtype=dtype, mode='w+', shape=(arr_len,))
|
||||
total_batches = 1024
|
||||
|
||||
idx = 0
|
||||
for batch_idx in tqdm(range(total_batches), desc=f'writing {filename}'):
|
||||
# Batch together samples for faster write
|
||||
batch = dset.shard(num_shards=total_batches, index=batch_idx, contiguous=True).with_format('numpy')
|
||||
arr_batch = np.concatenate(batch['ids'])
|
||||
# Write into mmap
|
||||
arr[idx : idx + len(arr_batch)] = arr_batch
|
||||
idx += len(arr_batch)
|
||||
arr.flush()
|
||||
idx = 0
|
||||
for batch_idx in tqdm(range(total_batches), desc=f'writing {filename}'):
|
||||
# Batch together samples for faster write
|
||||
batch = dset.shard(num_shards=total_batches, index=batch_idx, contiguous=True).with_format('numpy')
|
||||
arr_batch = np.concatenate(batch['ids'])
|
||||
# Write into mmap
|
||||
arr[idx : idx + len(arr_batch)] = arr_batch
|
||||
idx += len(arr_batch)
|
||||
arr.flush()
|
||||
|
||||
# train.bin is ~17GB, val.bin ~8.5MB
|
||||
# train has ~9B tokens (9,035,582,198)
|
||||
# val has ~4M tokens (4,434,897)
|
||||
# train.bin is ~17GB, val.bin ~8.5MB
|
||||
# train has ~9B tokens (9,035,582,198)
|
||||
# val has ~4M tokens (4,434,897)
|
||||
|
||||
# to read the bin files later, e.g. with numpy:
|
||||
# m = np.memmap('train.bin', dtype=np.uint16, mode='r')
|
||||
# to read the bin files later, e.g. with numpy:
|
||||
# m = np.memmap('train.bin', dtype=np.uint16, mode='r')
|
||||
|
Loading…
Reference in New Issue
Block a user