mirror of
https://github.com/osmarks/nanogpt-experiments.git
synced 2024-12-18 14:10:28 +00:00
rewrite model class so layernorm has an optional bias= parameter
This commit is contained in:
parent
2892858ce7
commit
2bf07a3fbf
21
model.py
21
model.py
@ -22,14 +22,16 @@ def new_gelu(x):
|
|||||||
"""
|
"""
|
||||||
return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))))
|
return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))))
|
||||||
|
|
||||||
class LayerNormNoBias(nn.Module):
|
class LayerNorm(nn.Module):
|
||||||
|
""" LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """
|
||||||
|
|
||||||
def __init__(self, ndim):
|
def __init__(self, ndim, bias=True):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.weight = nn.Parameter(torch.ones(ndim))
|
self.weight = nn.Parameter(torch.ones(ndim))
|
||||||
|
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
|
||||||
|
|
||||||
def forward(self, input):
|
def forward(self, input):
|
||||||
return F.layer_norm(input, self.weight.shape, self.weight, None, 1e-5)
|
return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)
|
||||||
|
|
||||||
class CausalSelfAttention(nn.Module):
|
class CausalSelfAttention(nn.Module):
|
||||||
|
|
||||||
@ -89,9 +91,9 @@ class Block(nn.Module):
|
|||||||
|
|
||||||
def __init__(self, config):
|
def __init__(self, config):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.ln_1 = LayerNormNoBias(config.n_embd)
|
self.ln_1 = LayerNorm(config.n_embd, bias=False)
|
||||||
self.attn = CausalSelfAttention(config)
|
self.attn = CausalSelfAttention(config)
|
||||||
self.ln_2 = LayerNormNoBias(config.n_embd)
|
self.ln_2 = LayerNorm(config.n_embd, bias=False)
|
||||||
self.mlp = MLP(config)
|
self.mlp = MLP(config)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
@ -121,7 +123,7 @@ class GPT(nn.Module):
|
|||||||
wpe = nn.Embedding(config.block_size, config.n_embd),
|
wpe = nn.Embedding(config.block_size, config.n_embd),
|
||||||
drop = nn.Dropout(config.dropout),
|
drop = nn.Dropout(config.dropout),
|
||||||
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
||||||
ln_f = LayerNormNoBias(config.n_embd),
|
ln_f = LayerNorm(config.n_embd, bias=False),
|
||||||
))
|
))
|
||||||
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
||||||
# with weight tying when using torch.compile() some warnings get generated:
|
# with weight tying when using torch.compile() some warnings get generated:
|
||||||
@ -148,9 +150,10 @@ class GPT(nn.Module):
|
|||||||
torch.nn.init.zeros_(module.bias)
|
torch.nn.init.zeros_(module.bias)
|
||||||
elif isinstance(module, nn.Embedding):
|
elif isinstance(module, nn.Embedding):
|
||||||
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
||||||
elif isinstance(module, nn.LayerNorm):
|
elif isinstance(module, (LayerNorm, nn.LayerNorm)):
|
||||||
torch.nn.init.zeros_(module.bias)
|
|
||||||
torch.nn.init.ones_(module.weight)
|
torch.nn.init.ones_(module.weight)
|
||||||
|
if module.bias is not None:
|
||||||
|
torch.nn.init.zeros_(module.bias)
|
||||||
|
|
||||||
def forward(self, idx, targets=None):
|
def forward(self, idx, targets=None):
|
||||||
device = idx.device
|
device = idx.device
|
||||||
@ -251,7 +254,7 @@ class GPT(nn.Module):
|
|||||||
decay = set()
|
decay = set()
|
||||||
no_decay = set()
|
no_decay = set()
|
||||||
whitelist_weight_modules = (torch.nn.Linear, )
|
whitelist_weight_modules = (torch.nn.Linear, )
|
||||||
blacklist_weight_modules = (torch.nn.LayerNorm, LayerNormNoBias, torch.nn.Embedding)
|
blacklist_weight_modules = (torch.nn.LayerNorm, LayerNorm, torch.nn.Embedding)
|
||||||
for mn, m in self.named_modules():
|
for mn, m in self.named_modules():
|
||||||
for pn, p in m.named_parameters():
|
for pn, p in m.named_parameters():
|
||||||
fpn = '%s.%s' % (mn, pn) if mn else pn # full param name
|
fpn = '%s.%s' % (mn, pn) if mn else pn # full param name
|
||||||
|
Loading…
Reference in New Issue
Block a user