mirror of
https://github.com/osmarks/nanogpt-experiments.git
synced 2024-12-18 14:10:28 +00:00
attempt a non-biased model, per few papers that cite this as working well
This commit is contained in:
parent
f29a9ff5bf
commit
2892858ce7
25
model.py
25
model.py
@ -22,15 +22,24 @@ def new_gelu(x):
|
||||
"""
|
||||
return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))))
|
||||
|
||||
class LayerNormNoBias(nn.Module):
|
||||
|
||||
def __init__(self, ndim):
|
||||
super().__init__()
|
||||
self.weight = nn.Parameter(torch.ones(ndim))
|
||||
|
||||
def forward(self, input):
|
||||
return F.layer_norm(input, self.weight.shape, self.weight, None, 1e-5)
|
||||
|
||||
class CausalSelfAttention(nn.Module):
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
assert config.n_embd % config.n_head == 0
|
||||
# key, query, value projections for all heads, but in a batch
|
||||
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
||||
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=False)
|
||||
# output projection
|
||||
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
||||
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=False)
|
||||
# regularization
|
||||
self.attn_dropout = nn.Dropout(config.dropout)
|
||||
self.resid_dropout = nn.Dropout(config.dropout)
|
||||
@ -65,8 +74,8 @@ class MLP(nn.Module):
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
||||
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
||||
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=False)
|
||||
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=False)
|
||||
self.dropout = nn.Dropout(config.dropout)
|
||||
|
||||
def forward(self, x):
|
||||
@ -80,9 +89,9 @@ class Block(nn.Module):
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.ln_1 = nn.LayerNorm(config.n_embd)
|
||||
self.ln_1 = LayerNormNoBias(config.n_embd)
|
||||
self.attn = CausalSelfAttention(config)
|
||||
self.ln_2 = nn.LayerNorm(config.n_embd)
|
||||
self.ln_2 = LayerNormNoBias(config.n_embd)
|
||||
self.mlp = MLP(config)
|
||||
|
||||
def forward(self, x):
|
||||
@ -112,7 +121,7 @@ class GPT(nn.Module):
|
||||
wpe = nn.Embedding(config.block_size, config.n_embd),
|
||||
drop = nn.Dropout(config.dropout),
|
||||
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
||||
ln_f = nn.LayerNorm(config.n_embd),
|
||||
ln_f = LayerNormNoBias(config.n_embd),
|
||||
))
|
||||
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
||||
# with weight tying when using torch.compile() some warnings get generated:
|
||||
@ -242,7 +251,7 @@ class GPT(nn.Module):
|
||||
decay = set()
|
||||
no_decay = set()
|
||||
whitelist_weight_modules = (torch.nn.Linear, )
|
||||
blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding)
|
||||
blacklist_weight_modules = (torch.nn.LayerNorm, LayerNormNoBias, torch.nn.Embedding)
|
||||
for mn, m in self.named_modules():
|
||||
for pn, p in m.named_parameters():
|
||||
fpn = '%s.%s' % (mn, pn) if mn else pn # full param name
|
||||
|
Loading…
Reference in New Issue
Block a user