mirror of
https://github.com/osmarks/nanogpt-experiments.git
synced 2024-12-18 14:10:28 +00:00
allow sample.py to init from a pretrained gpt2 checkpoints as well, in similar style to train.py
This commit is contained in:
parent
6c40a08b41
commit
21675d7755
11
sample.py
11
sample.py
@ -9,7 +9,8 @@ import tiktoken
|
|||||||
from model import GPTConfig, GPT
|
from model import GPTConfig, GPT
|
||||||
|
|
||||||
# -----------------------------------------------------------------------------
|
# -----------------------------------------------------------------------------
|
||||||
out_dir = 'out'
|
init_from = 'resume' # either 'resume' (from an out_dir) or a gpt2 variant (e.g. 'gpt2-xl')
|
||||||
|
out_dir = 'out' # ignored if init_from is not 'resume'
|
||||||
start = "\n" # or "<|endoftext|>" or whatever you like
|
start = "\n" # or "<|endoftext|>" or whatever you like
|
||||||
num_samples = 10 # number of samples to draw
|
num_samples = 10 # number of samples to draw
|
||||||
max_new_tokens = 500 # number of tokens generated in each sample
|
max_new_tokens = 500 # number of tokens generated in each sample
|
||||||
@ -31,6 +32,8 @@ ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torc
|
|||||||
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
||||||
|
|
||||||
# model
|
# model
|
||||||
|
if init_from == 'resume':
|
||||||
|
# init from a model saved in a specific directory
|
||||||
ckpt_path = os.path.join(out_dir, 'ckpt.pt')
|
ckpt_path = os.path.join(out_dir, 'ckpt.pt')
|
||||||
checkpoint = torch.load(ckpt_path, map_location=device)
|
checkpoint = torch.load(ckpt_path, map_location=device)
|
||||||
gptconf = GPTConfig(**checkpoint['model_args'])
|
gptconf = GPTConfig(**checkpoint['model_args'])
|
||||||
@ -41,6 +44,10 @@ for k,v in list(state_dict.items()):
|
|||||||
if k.startswith(unwanted_prefix):
|
if k.startswith(unwanted_prefix):
|
||||||
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
|
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
|
||||||
model.load_state_dict(state_dict)
|
model.load_state_dict(state_dict)
|
||||||
|
elif init_from.startswith('gpt2'):
|
||||||
|
# init from a given GPT-2 model
|
||||||
|
model = GPT.from_pretrained(init_from, dict(dropout=0.0))
|
||||||
|
|
||||||
model.eval()
|
model.eval()
|
||||||
model.to(device)
|
model.to(device)
|
||||||
if compile:
|
if compile:
|
||||||
@ -48,7 +55,7 @@ if compile:
|
|||||||
|
|
||||||
# look for the meta pickle in case it is available in the dataset folder
|
# look for the meta pickle in case it is available in the dataset folder
|
||||||
load_meta = False
|
load_meta = False
|
||||||
if 'config' in checkpoint and 'dataset' in checkpoint['config']: # older checkpoints might not have these...
|
if init_from == 'resume' and 'config' in checkpoint and 'dataset' in checkpoint['config']: # older checkpoints might not have these...
|
||||||
meta_path = os.path.join('data', checkpoint['config']['dataset'], 'meta.pkl')
|
meta_path = os.path.join('data', checkpoint['config']['dataset'], 'meta.pkl')
|
||||||
load_meta = os.path.exists(meta_path)
|
load_meta = os.path.exists(meta_path)
|
||||||
if load_meta:
|
if load_meta:
|
||||||
|
Loading…
Reference in New Issue
Block a user