mirror of
https://github.com/osmarks/nanogpt-experiments.git
synced 2024-11-10 20:09:58 +00:00
49 lines
1.3 KiB
Python
49 lines
1.3 KiB
Python
|
"""
|
||
|
A much shorter version of train.py for benchmarking the model
|
||
|
"""
|
||
|
|
||
|
import time
|
||
|
import torch
|
||
|
from model import GPTConfig, GPT
|
||
|
|
||
|
device = 'cuda:3'
|
||
|
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
|
||
|
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
|
||
|
torch.manual_seed(1337)
|
||
|
|
||
|
batch_size = 8
|
||
|
block_size = 1024
|
||
|
|
||
|
gptconf = GPTConfig(
|
||
|
block_size = block_size, # how far back does the model look? i.e. context size
|
||
|
n_layer = 12, n_head = 12, n_embd = 768, # size of the model
|
||
|
dropout = 0, # for determinism
|
||
|
)
|
||
|
model = GPT(gptconf)
|
||
|
model.to(device)
|
||
|
|
||
|
x = torch.randint(50257, (batch_size, block_size), device=device)
|
||
|
y = torch.randint(50257, (batch_size, block_size), device=device)
|
||
|
|
||
|
optimizer = model.configure_optimizers(weight_decay=1e-2, learning_rate=1e-4, betas=(0.9, 0.95))
|
||
|
|
||
|
burn_in = 10 # number of burn in steps where we don't measure time
|
||
|
num_steps = 30
|
||
|
for k in range(num_steps):
|
||
|
|
||
|
if k == burn_in:
|
||
|
t0 = time.time() # start the timer
|
||
|
|
||
|
with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
|
||
|
logits, loss = model(x, y)
|
||
|
|
||
|
optimizer.zero_grad(set_to_none=True)
|
||
|
loss.backward()
|
||
|
optimizer.step()
|
||
|
lossf = loss.item()
|
||
|
print(f"{k}/{num_steps} loss: {lossf:.4f}")
|
||
|
|
||
|
torch.cuda.synchronize()
|
||
|
t1 = time.time()
|
||
|
print("time in ms per iteration: %.2f" % ((t1 - t0) / (num_steps - burn_in) * 1000))
|