1
0
mirror of https://github.com/osmarks/nanogpt-experiments.git synced 2024-12-18 22:20:29 +00:00
nanogpt-experiments/data/openwebtext/prepare.py

82 lines
3.1 KiB
Python
Raw Normal View History

2022-12-28 00:58:19 +00:00
# saves the openwebtext dataset to a binary file for training. following was helpful:
# https://github.com/HazyResearch/flash-attention/blob/main/training/src/datamodules/language_modeling_hf.py
import os
from tqdm import tqdm
2022-12-28 00:58:19 +00:00
import numpy as np
import tiktoken
from datasets import load_dataset # huggingface datasets
# number of workers in .map() call
# good number to use is ~order number of cpu cores // 2
num_proc = 8
2022-12-28 00:58:19 +00:00
# number of workers in load_dataset() call
# best number might be different from num_proc above as it also depends on NW speed.
# it is better than 1 usually though
num_proc_load_dataset = num_proc
2024-01-12 20:47:42 +00:00
enc = tiktoken.get_encoding("gpt2")
if __name__ == '__main__':
# takes 54GB in huggingface .cache dir, about 8M documents (8,013,769)
dataset = load_dataset("openwebtext", num_proc=num_proc_load_dataset)
2022-12-28 00:58:19 +00:00
# owt by default only contains the 'train' split, so create a test split
split_dataset = dataset["train"].train_test_split(test_size=0.0005, seed=2357, shuffle=True)
split_dataset['val'] = split_dataset.pop('test') # rename the test split to val
2022-12-28 00:58:19 +00:00
# this results in:
# >>> split_dataset
# DatasetDict({
# train: Dataset({
# features: ['text'],
# num_rows: 8009762
# })
# val: Dataset({
# features: ['text'],
# num_rows: 4007
# })
# })
2022-12-28 00:58:19 +00:00
# we now want to tokenize the dataset. first define the encoding function (gpt2 bpe)
def process(example):
ids = enc.encode_ordinary(example['text']) # encode_ordinary ignores any special tokens
ids.append(enc.eot_token) # add the end of text token, e.g. 50256 for gpt2 bpe
# note: I think eot should be prepended not appended... hmm. it's called "eot" though...
out = {'ids': ids, 'len': len(ids)}
return out
2022-12-28 00:58:19 +00:00
# tokenize the dataset
tokenized = split_dataset.map(
process,
remove_columns=['text'],
desc="tokenizing the splits",
num_proc=num_proc,
)
2022-12-28 00:58:19 +00:00
# concatenate all the ids in each dataset into one large file we can use for training
for split, dset in tokenized.items():
arr_len = np.sum(dset['len'], dtype=np.uint64)
filename = os.path.join(os.path.dirname(__file__), f'{split}.bin')
dtype = np.uint16 # (can do since enc.max_token_value == 50256 is < 2**16)
arr = np.memmap(filename, dtype=dtype, mode='w+', shape=(arr_len,))
total_batches = 1024
2022-12-28 00:58:19 +00:00
idx = 0
for batch_idx in tqdm(range(total_batches), desc=f'writing {filename}'):
# Batch together samples for faster write
batch = dset.shard(num_shards=total_batches, index=batch_idx, contiguous=True).with_format('numpy')
arr_batch = np.concatenate(batch['ids'])
# Write into mmap
arr[idx : idx + len(arr_batch)] = arr_batch
idx += len(arr_batch)
arr.flush()
2022-12-28 00:58:19 +00:00
# train.bin is ~17GB, val.bin ~8.5MB
# train has ~9B tokens (9,035,582,198)
# val has ~4M tokens (4,434,897)
2022-12-28 00:58:19 +00:00
# to read the bin files later, e.g. with numpy:
# m = np.memmap('train.bin', dtype=np.uint16, mode='r')