mirror of
https://github.com/osmarks/meme-search-engine.git
synced 2024-11-14 07:44:49 +00:00
98 lines
3.1 KiB
Python
98 lines
3.1 KiB
Python
import subprocess
|
|
import torch
|
|
from tqdm import tqdm
|
|
import json
|
|
from pathlib import Path
|
|
import os
|
|
import asyncio
|
|
import aiohttp
|
|
import time
|
|
|
|
import shared
|
|
from model import Config, BradleyTerry
|
|
|
|
meme_search_backend = "http://localhost:1707/"
|
|
score_threshold = 1.7264162302017212
|
|
|
|
shared.db.executescript("""
|
|
CREATE TABLE IF NOT EXISTS last_crawl (time INTEGER);
|
|
CREATE TABLE IF NOT EXISTS library_queue (
|
|
filename TEXT PRIMARY KEY,
|
|
score REAL NOT NULL
|
|
);
|
|
""")
|
|
shared.db.commit()
|
|
csr = shared.db.execute("SELECT MAX(time) FROM last_crawl")
|
|
row = csr.fetchone()
|
|
last_crawl = row[0] or 0
|
|
csr.close()
|
|
|
|
with open("rater_mse_config.json", "r") as f:
|
|
mse_config = json.load(f)
|
|
basedir = Path(mse_config["files"])
|
|
|
|
print("crawling...")
|
|
crawl_start = time.time()
|
|
subprocess.run(["python", "crawler.py", str(last_crawl)]).check_returncode()
|
|
print("indexing...")
|
|
subprocess.run(["./meme-search-engine", "rater_mse_config.json"]).check_returncode()
|
|
print("evaluating...")
|
|
|
|
batch_size = 128
|
|
device = "cuda"
|
|
|
|
config = Config(
|
|
d_emb=1152,
|
|
n_hidden=1,
|
|
n_ensemble=16,
|
|
device=device,
|
|
dtype=torch.float32,
|
|
dropout=0.1
|
|
)
|
|
model = BradleyTerry(config).float()
|
|
modelc, _ = shared.checkpoint_for(1500)
|
|
model.load_state_dict(torch.load(modelc))
|
|
params = sum(p.numel() for p in model.parameters())
|
|
print(f"{params/1e6:.1f}M parameters")
|
|
print(model)
|
|
|
|
files = shared.fetch_all_files()
|
|
ratings = {}
|
|
|
|
model.eval()
|
|
with torch.inference_mode():
|
|
for bstart in tqdm(range(0, len(files), batch_size)):
|
|
batch = files[bstart:bstart + batch_size]
|
|
filenames = [ filename for filename, embedding in batch ]
|
|
embs = torch.stack([ torch.Tensor(embedding) for filename, embedding in batch ])
|
|
inputs = embs.unsqueeze(0).expand((config.n_ensemble, len(batch), config.d_emb)).to(device)
|
|
scores = model.ensemble(inputs).float()
|
|
mscores = torch.median(scores, dim=0).values
|
|
for filename, mscore in zip(filenames, mscores):
|
|
ratings[filename] = float(mscore)
|
|
|
|
print(sorted(ratings.values())[round(len(ratings) * 0.95)])
|
|
print(f"{len(ratings)} memes in {crawl_start - last_crawl} seconds ({len(ratings) / (crawl_start - last_crawl) * 1e3}mHz)")
|
|
|
|
files = dict(files)
|
|
|
|
async def run_inserts():
|
|
async with aiohttp.ClientSession():
|
|
async def duplicate_exists(embedding):
|
|
async with aiohttp.request("POST", meme_search_backend, json={
|
|
"terms": [{ "embedding": list(float(x) for x in embedding) }], # sorry
|
|
"k": 1
|
|
}) as res:
|
|
result = await res.json()
|
|
closest = result["matches"][0][0]
|
|
return closest > 0.99 # arbitrary threshold, TODO
|
|
|
|
for filename, rating in ratings.items():
|
|
if rating > score_threshold and not await duplicate_exists(files[filename]):
|
|
shared.db.execute("INSERT OR REPLACE INTO library_queue VALUES (?, ?)", (filename, rating))
|
|
else:
|
|
os.unlink(basedir / filename)
|
|
shared.db.execute("INSERT INTO last_crawl VALUES (?)", (crawl_start,))
|
|
shared.db.commit()
|
|
|
|
asyncio.run(run_inserts()) |