mirror of
https://github.com/osmarks/meme-search-engine.git
synced 2024-11-14 07:44:49 +00:00
189 lines
6.4 KiB
Python
189 lines
6.4 KiB
Python
import os
|
|
import time
|
|
import threading
|
|
from aiohttp import web
|
|
import aiohttp
|
|
import asyncio
|
|
import traceback
|
|
import umsgpack
|
|
import collections
|
|
import queue
|
|
from PIL import Image
|
|
from prometheus_client import Counter, Histogram, REGISTRY, generate_latest
|
|
import io
|
|
import json
|
|
import sys
|
|
import torch
|
|
from transformers import SiglipTokenizer, SiglipImageProcessor, T5TokenizerFast, SiglipTextConfig, SiglipVisionConfig
|
|
import numpy
|
|
|
|
with open(sys.argv[1], "r") as config_file:
|
|
CONFIG = json.load(config_file)
|
|
|
|
# blatantly copypasted from colab
|
|
# https://colab.research.google.com/github/google-research/big_vision/blob/main/big_vision/configs/proj/image_text/SigLIP_demo.ipynb
|
|
VARIANT, RES = CONFIG["model"]
|
|
CKPT, TXTVARIANT, EMBDIM, SEQLEN, VOCAB = {
|
|
("So400m/14", 384): ("webli_en_so400m_384_58765454-fp16.safetensors", "So400m", 1152, 64, 32_000),
|
|
}[VARIANT, RES]
|
|
|
|
model_cfg = ml_collections.ConfigDict()
|
|
model_cfg.image_model = "vit" # TODO(lbeyer): remove later, default
|
|
model_cfg.text_model = "proj.image_text.text_transformer" # TODO(lbeyer): remove later, default
|
|
model_cfg.image = dict(variant=VARIANT, pool_type="map")
|
|
model_cfg.text = dict(variant=TXTVARIANT, vocab_size=VOCAB)
|
|
model_cfg.out_dim = (None, EMBDIM) # (image_out_dim, text_out_dim)
|
|
model_cfg.bias_init = -10.0
|
|
model_cfg.temperature_init = 10.0
|
|
|
|
model = model_mod.Model(**model_cfg)
|
|
|
|
init_params = None # sanity checks are a low-interest-rate phenomenon
|
|
model_params = model_mod.load(init_params, f"{CKPT}", model_cfg) # assume path
|
|
|
|
pp_img = pp_builder.get_preprocess_fn(f"resize({RES})|value_range(-1, 1)")
|
|
TOKENIZERS = {
|
|
32_000: "c4_en",
|
|
250_000: "mc4",
|
|
}
|
|
pp_txt = pp_builder.get_preprocess_fn(f'tokenize(max_len={SEQLEN}, model="{TOKENIZERS[VOCAB]}", eos="sticky", pad_value=1, inkey="text")')
|
|
print("Model loaded")
|
|
|
|
BS = CONFIG["max_batch_size"]
|
|
MODELNAME = CONFIG["model_name"]
|
|
|
|
InferenceParameters = collections.namedtuple("InferenceParameters", ["text", "images", "callback"])
|
|
|
|
items_ctr = Counter("modelserver_total_items", "Items run through model server", ["model", "modality"])
|
|
inference_time_hist = Histogram("modelserver_inftime", "Time running inference", ["model", "batch_size"])
|
|
batch_count_ctr = Counter("modelserver_batchcount", "Inference batches run", ["model"])
|
|
|
|
@jax.jit
|
|
def run_text_model(text_batch):
|
|
_, features, out = model.apply({"params": model_params}, None, text_batch)
|
|
return features
|
|
|
|
@jax.jit
|
|
def run_image_model(image_batch):
|
|
features, _, out = model.apply({"params": model_params}, image_batch, None)
|
|
return features
|
|
|
|
def round_down_to_power_of_two(x):
|
|
return 1<<(x.bit_length()-1)
|
|
|
|
def minimize_jits(fn, batch):
|
|
out = numpy.zeros((batch.shape[0], EMBDIM), dtype="float16")
|
|
i = 0
|
|
while True:
|
|
batch_dim = batch.shape[0]
|
|
s = round_down_to_power_of_two(batch_dim)
|
|
fst = batch[:s,...]
|
|
out[i:(i + s), ...] = fn(fst)
|
|
i += s
|
|
batch = batch[s:, ...]
|
|
if batch.shape[0] == 0: break
|
|
return out
|
|
|
|
def do_inference(params: InferenceParameters):
|
|
try:
|
|
text, images, callback = params
|
|
if text is not None:
|
|
items_ctr.labels(MODELNAME, "text").inc(text.shape[0])
|
|
with inference_time_hist.labels(MODELNAME + "-text", text.shape[0]).time():
|
|
features = run_text_model(text)
|
|
elif images is not None:
|
|
items_ctr.labels(MODELNAME, "image").inc(images.shape[0])
|
|
with inference_time_hist.labels(MODELNAME + "-image", images.shape[0]).time():
|
|
features = run_image_model(images)
|
|
batch_count_ctr.labels(MODELNAME).inc()
|
|
callback(True, numpy.asarray(features))
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
callback(False, str(e))
|
|
|
|
iq = queue.Queue(100)
|
|
def infer_thread():
|
|
while True:
|
|
do_inference(iq.get())
|
|
|
|
pq = queue.Queue(100)
|
|
def preprocessing_thread():
|
|
while True:
|
|
text, images, callback = pq.get()
|
|
try:
|
|
if text:
|
|
assert len(text) <= BS, f"max batch size is {BS}"
|
|
# I feel like this ought to be batchable but I can't see how to do that
|
|
text = numpy.array([pp_txt({"text": text})["labels"] for text in text])
|
|
elif images:
|
|
assert len(images) <= BS, f"max batch size is {BS}"
|
|
images = numpy.array([pp_img({"image": numpy.array(Image.open(io.BytesIO(image)).convert("RGB"))})["image"] for image in images])
|
|
else:
|
|
assert False, "images or text required"
|
|
iq.put(InferenceParameters(text, images, callback))
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
callback(False, str(e))
|
|
|
|
app = web.Application(client_max_size=2**26)
|
|
routes = web.RouteTableDef()
|
|
|
|
@routes.post("/")
|
|
async def run_inference(request):
|
|
loop = asyncio.get_event_loop()
|
|
data = umsgpack.loads(await request.read())
|
|
event = asyncio.Event()
|
|
results = None
|
|
def callback(*argv):
|
|
nonlocal results
|
|
results = argv
|
|
loop.call_soon_threadsafe(lambda: event.set())
|
|
pq.put_nowait(InferenceParameters(data.get("text"), data.get("images"), callback))
|
|
await event.wait()
|
|
body_data = results[1]
|
|
if results[0]:
|
|
status = 200
|
|
body_data = [x.astype("float16").tobytes() for x in body_data]
|
|
else:
|
|
status = 500
|
|
print(results[1])
|
|
return web.Response(body=umsgpack.dumps(body_data), status=status, content_type="application/msgpack")
|
|
|
|
@routes.get("/config")
|
|
async def config(request):
|
|
return web.Response(body=umsgpack.dumps({
|
|
"model": CONFIG["model"],
|
|
"batch": BS,
|
|
"image_size": (RES, RES),
|
|
"embedding_size": EMBDIM
|
|
}), status=200, content_type="application/msgpack")
|
|
|
|
@routes.get("/")
|
|
async def health(request):
|
|
return web.Response(status=204)
|
|
|
|
@routes.get("/metrics")
|
|
async def metrics(request):
|
|
return web.Response(body=generate_latest(REGISTRY))
|
|
|
|
app.router.add_routes(routes)
|
|
|
|
async def run_webserver():
|
|
runner = web.AppRunner(app)
|
|
await runner.setup()
|
|
site = web.TCPSite(runner, "", CONFIG["port"])
|
|
print("Ready")
|
|
await site.start()
|
|
|
|
try:
|
|
th = threading.Thread(target=infer_thread)
|
|
th.start()
|
|
th = threading.Thread(target=preprocessing_thread)
|
|
th.start()
|
|
loop = asyncio.new_event_loop()
|
|
asyncio.set_event_loop(loop)
|
|
loop.run_until_complete(run_webserver())
|
|
loop.run_forever()
|
|
except KeyboardInterrupt:
|
|
import sys
|
|
sys.exit(0) |